MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega"

Transcrição

1 MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo, Físico e Matemático Françês) Aula 04 Função Uma Ideia Fundamental Professor Luciano Nóbrega

2 NOÇÃO FUNDAMENTAL DE FUNÇÃO 2 A função é como uma máquina onde entram que são transformados e saem suas Matematicamente... Entra o x E sai o y. IMAGENS y 12 f(x) elementos O domínio é o conjunto de todas as entradas, enquanto a imagem é o conjunto de todas as saídas. 117 JOGO DE ADIVINHAÇÃO Consiste no seguinte: O Professor pede a um aluno que diga um número natural em voz alta e imediatamente em seguida o Professor responde dizendo outro número. Marca 1 ponto quem adivinhar primeiro qual é o padrão utilizado pelo Professor para responder o número.

3 NOÇÃO FUNDAMENTAL DE FUNÇÃO Os fenômenos não ocorrem de forma isolada e sim em função da relação entre grandezas. Sendo assim, relacione as duas colunas: (A) Lucro de uma empresa ( ) Quantidade de Km rodados. (B) Quantidade de bactérias ( ) Medida do lado (C) Pressão em um mergulho ( ) Medida do raio (D) Medida de uma circunferência ( ) Quantidade de vendas (E) Área de um quadrado ( ) Profundidade (F) Valor pago em um táxi ( ) Tempo decorrido INTERPRETANDO A FUNÇÃO POR MEIO DE UM CONJUNTO Considere os seguintes conjuntos A e B A é o Conjunto DOMÍNIO A Definição de Função: f B Conjunto IMAGEM B é o Conjunto CONTRADOMÍNIO Dados dois conjuntos A e B, se para cada valor de x (x Є A) existir, em correspondência, um único valor de y (y Є B), então dizemos que y está em função de x. NOTAÇÃO: f (x) = y

4 NOÇÃO FUNDAMENTAL DE FUNÇÃO 4 a b c 119 Considere os diagramas: x y z w a b c x y z w a b c y z (I) (II) (III) (IV) Assinale a alternativa correta: A) Somente a (IV) representa uma função. B) Somente a (I) e (IV) representam funções. C) Todas representam funções. D) Somente a (II) e (III) representam funções. 120 (UFRJ) Considere a relação de M em N, representada no diagrama abaixo. Para que seja uma função de M em N, basta: A) apagar a seta (1) e retirar o elemento s; B) apagar a setas (1) e (4) e retirar o elemento k; C) apagar a seta (4) e retirar o elemento k; D) apagar a seta (2) e retirar o elemento k. 121 Dada a função f (x) = ax + b, calcule o valor de a e b, sabendo que f (1) = 10 e f ( 1) = Dada a função f (x) = ax + b, sabendo que f (2) = 3 e f (1) = 2, calcule f ( 1). a y

5 NOÇÃO FUNDAMENTAL DE FUNÇÃO Seja a função f: R R, definida por f(x) = x 2 3x + 5, determine: a) f(0), ou seja, o termo independente b) f(1), ou seja, a soma dos coeficientes c) f(2) f( 2) d) A imagem de x = 3 e) O valor de x, para y = Seja as funções de R R, definidas por f(x) = 2x e g(x) = m x, determine o valor de m, para que se tenha f( 1) + g(3) = Seja a função f: R R, definidas por para todo x R. Determine a, de tal forma que f(a) = f(a 4). 126 Considere as funções f(x) = 2x + m e g(x) = x 2 x + 4. Sabendo que f(2) = 6, determine a soma dos valores de x para que f(x) = g(x) (UFRN) Determine o valor da expressão 1 3a 1 3a para a = 1. A) 32 / 3 B) 32 / 3 C) 0,32 D) 0, a 2a 128 Determine o domínio das funções: a) f (x) = (x 7) 1 b) f(x) = (3x 1) 1/2 c) f(x) = (x + 1) 1/2 + (x 3) 1/2 d) f(x) = (2x 2 + x 1) 1 e) f(x) = (1 x) 1/2. x 1/2

6 NOÇÃO FUNDAMENTAL DE FUNÇÃO 129 (UFPE) Observe a seguir a ilustração de uma operação correta de adição, na qual as parcelas e a soma estão expressas no sistema decimal de numeração hindu arábico e x, y e z são algarismos entre 0 e 9. Quanto vale x + y + z? A) 16 B) 17 C) 18 D) 19 8 x 3 y 8 7 _ 5 7 z_ (UFCE) Qual dos gráficos ao lado não pode representar uma função? 131 Dados os pontos A( 3, 2), C(2, 2), E(4, 2), G(2, 5), I(0, 3), J( 1, 4) e L( 5, 3). a) Marque no plano cartesiano ao lado os pontos supra citados. b) Determine as coordenadas dos pontos B, D, F, H, K e M. c) Ligue os pontos na ordem alfabética. Feche a figura, ligando os pontos M e A. d) O gráfico formado representa uma função? Por quê? Vamos formalizar o estudo do Plano Cartesiano.

7 NOÇÃO FUNDAMENTAL DE FUNÇÃO COORDENADAS CARTESIANAS PLANO CARTESIANO 2º Quadrante Q(-x, +y) y Eixo das ordenadas 1º Quadrante P(+x, +y) 7 S(+x, -y) R(-x, -y) 3º Quadrante 4º Quadrante x Eixo das abscissas Todo ponto possui uma coordenada dada por um par ordenado (x, y); 132 Esboçe, atribuindo valores, os gráficos das funções e, em seguida, determine suas respectivas imagens. a) f(x) = 2x b) f(x) = 2x 1 c) f(x) = 2x + 1 d) f(x) = x 2 e) f(x) = x 2 3 f) f(x) = x g) f(x) = x 2 3x h) f(x) = x 2 + 3x i ) f(x) = x 2 + 5x 6

8 FUNÇÃO COMPOSTA Considere as funções f: A B e g: B C, então a função h: A C é a função composta g(f(x)), com x A. A NOÇÃO FUNDAMENTAL DE FUNÇÃO B C 8 x f(x) g(f(x)) x = 5 EXEMPLO: f(x) = x+2 e g(x) = x 2, então g(f(x)) =? 133 Sejam as funções f(x) = x 2 1 e g(x) = 3x, calcule: a) f(g(x)) b) g(f(x)) c) f(f(x)) d) g(g(x)) e) f(g( 1)) 134 Considere as funções f(x) = x 2 5x + 6 e g(x) = x + 1, determine: a) f(g(x)) b) Se f(g(x)) = 0, x =? c) Se g(g(x)) = 1, x =? 135 (IFRN) Se f(g(x)) = 4x 2 8x + 6 e g(x) = 2x 1, então f (2) é igual a: A) 2 B) 1 C) 3 D) 5 E) (IFRN) Dadas as funções f(x) = 3x + 4 e f(g(x)) = x 5, então g( 3) é igual a: A) 4 B) 3 C) 3 D) 4 E) 5

9 NOÇÃO FUNDAMENTAL DE FUNÇÃO 9 FUNÇÃO COMPOSTA 137 Dadas f(x) = x 2 4 e g(x) = 2x + 1, determine: a) f(g(x)) b) g(f(x)) c) f(f(x)) d) g(g(x)) e) f(g( 7)) 138 Sendo f(x) = 2x 5 e g(x) = 3x + m. determine m de modo que f(g(x)) = g(f(x)). 139 Se f(g(x)) = 6x 13 e g(x) = 3x + 2, calcule o valor de f (7). 140 Sendo f(x) = 2x 10 e g(x) = x 2 100, calcule x para g(f(x)) = Sejam f(x) = x 2 2x 3 e g(x) = 4x + m. Sabendo que f(g( 1)) = 12, calcule o valor de m. 142 Considere as funções f(x) = 2x + 1, g(x) = 5x + 9 e h(x) = 6x 2, determine: a) f(g(h(x))) b) h(g(f(x))) c) g(f(h(x))) d) g(h(f(x))) 143 Dada a função f(x + 1) = x 2, determine: a) f(4) b) f(a) 144 (UFCE) Seja f: R R tal que f(1) = 4 e f(x + 1) = 4.f(x) para todo x real. Nestas condições, f(10) é igual a: A) 2 10 B) 4 10 C) 2 10 D) 4 10

10 NOÇÃO FUNDAMENTAL DE FUNÇÃO FUNÇÃO INVERSA Inicialmente, vamos conhecer alguns conceitos importantes: FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto B. 10 Ou seja, x diferente, tem y diferente!!! FUNÇÃO SOBREJETORA É quando o conjunto Imagem da função for igual ao conjunto contradomínio. ( Im = CD ). FUNÇÃO BIJETORA É uma função simultaneamente injetora e sobrejetora. Ou seja, NÃO pode sobrar y!!! 145 Classifique as funções como bijetora, sobrejetora, injetora, ou ainda nenhuma delas: (UFRN) Seja B o conjunto formado por todos os brasileiros e R o conjunto dos números reais. Se f: B R é a função que associa a cada brasileiro sua altura, medida em centímetros, então f : A) é injetora e não é sobrejetora. B) é injetora e é sobrejetora. C) não é injetora e é sobrejetora. D) não é injetora e não é sobrejetora

11 D x NOÇÃO FUNDAMENTAL DE FUNÇÃO FUNÇÃO INVERSA Uma função f(x) tem inversa se e somente ela for bijetora. Para determiná-la, basta seguir o procedimento: 1º) Isola x ; OBS: O símbolo 1 em f 1 (x) não é 2º) Troca x por y e vice versa. um expoente. f 1 (x) não significa 1 / f(x). f(x) f -1 (x) OBS: Os gráficos de f(x) e f 1 (x) são simétricos em relação a função y = x. y R A função inversa f 1 (x) desfaz o que a função f(x) faz. Sendo f(x) = 2x + 1, determine f 1 (x). Em seguida, calcule f(3) e f 1 (7). 148 Se f (1) = 5 e f (8) = 10, determine f 1 (5) e f 1 ( 10). 149 (UFSE) Considere a função bijetora y = ( 3x 1) : (x + 3), a expressão que define sua inversa é: A) (x + 3) : ( 3x 1) B) ( 3x + 1) : ( 3 x) C) ( 2x 1) : (x + 1) D) ( 3x 1) : (x + 3)

12 NOÇÃO FUNDAMENTAL DE FUNÇÃO FUNÇÃO INVERSA 150 (UFRN) Sejam E o conjunto formado por todas as escolas de ensino médio de Natal e P o conjunto formado pelos números que representam a quantidade de professores de cada escola do conjunto E. Se f: E P é a função que a cada escola de E associa seu número de professores, então: A) f é uma função sobrejetora. B) f não pode ser uma função bijetora. C) f não pode ser uma função injetora. D) f é necessariamente uma função injetora. 151 Dadas as funções ƒ(x) = 5x + 1 e g(x) = 6x + 6, resolva a equação ƒ -1 (g(x)) = 7, seguindo o procedimento em cada item: a) Determine ƒ -1 (x); b) Na função ƒ -1 (x) obtida no item (a), substitua x por g(x), em seguida, iguale a 7 e resolva a equação; 152 Dadas as funções ƒ(x) = 2x + 1 e g(x) = x 2, resolva a equação ƒ -1 (g(x)) = Dada a função f(x) = 2x + 5. Determine: a) f 1 (x); b) f(f 1 (x)) c) f 1 (f(x)) d) f(f 1 (7)) 154 Represente em um mesmo plano cartesiano, o gráfico da função f(x) = x, g(x) = 2 3x e g 1 (x). O que você pode observar? 12

13 MATEMÁTICA 13 Eu sou um Matemático! E você? Antes de responder, saibas o significado dessa bela palavra de origem grega. Mathematikós = Disposto à aprender. (Professor Luciano Nóbrega) Aula 05 Função Polinomial do 1º Grau Professor Luciano Nóbrega

14 14 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação entre a variável dependente y e a variável independente x de grau 1. EXEMPLOS: f(x) = 3x + 2; f(x) = ( ½).x f(x) = 5 2x f(x) = (2 x) / 7 Podemos observar que a forma algébrica é do tipo f(x) = ax + b, onde a e b são números reais, x é a variável independente e y é a variável dependente de x. OBS: Lembre se que f(x) = y y = f(x) 155 Determine os valores de a e b nos exemplos acima. CLASSIFICAÇÃO DAS FUNÇÕES DO 1º GRAU (ou função afim) Função Linear f(x) = ax, com a R*, ou seja, b = 0. Função Identidade f(x) = x. Função Constante f(x) = b, com b R*, ou seja a = 0 Função Nula f(x) = 0. OBS: Essas duas últimas não são do 1º grau. 156 Simplifique as funções e classifique-as quanto a serem: Linear; Nula; Constante ou Identidade 157 Determine a função afim a) f(x) = 3.(x+1) + 4(x 1) + 7 f(x) = ax + b, sendo: b) f(x) = (x+2) 2 (x+2)(x 2) 4.(x +2) a) f(1) = 5 e f( 3) = 7 c) f(x) = (x 3) 2 x(x 5) + x b) f( 1) = 7 e f(2) = 1 d) (x 4) 2 + (x+4)(x 4) c) f(5) = 1 e f( 2) = 3

15 15 FUNÇÃO POLINOMIAL DO 1º GRAU 158 Num determinado dia registaram-se as temperaturas numa certa cidade, de hora a hora e, a partir delas, elaborou-se o gráfico das temperaturas em função da hora do dia. Indique: a) o domínio; b) a imagem; c) Quais as horas do dia em que se registou a temperatura 3ºC? d) Este gráfico representa uma função? Justifique. 159 Ainda em relação ao gráfico da questão anterior, represente os intervalos que a respectiva função pode ser classificada como: a) constante; b) linear 160 (UFRN) Na figura abaixo, tem-se o gráfico de uma reta que representa a quantidade, medida em m, de um medicamento que uma pessoa deve tomar em função de seu peso, dado em kgf, para tratamento de determinada infecção. O medicamento deverá ser aplicado em seis doses. Assim, uma pessoa que pesa 85kgf receberá em cada dose: A) 7 m B) 9 m C) 8 m D) 10 m

16 16 FUNÇÃO POLINOMIAL DO 1º GRAU COEFICIENTE ANGULAR E LINEAR O coeficiente angular de uma reta representa a inclinação dessa reta. Observe a figura: 161 No triângulo retângulo destacado, calcule tg β. y LEMBRE SE: tg β = cateto oposto a β_ cateto adjacente a β y 2 y 1 x 1 x 2 OBS 2 : O coeficiente b é denominado coeficiente linear, ele determina o ponto em que a reta corta o eixo y. ß 162 A partir do resultado da questãao anterior, fazendo tg β = m e isolando y 2 y 1, que expressão obtemos? 163 Utilize as expressões obtidas nos exercícios anteriores para determinar a equação da reta que passa pelos pontos A (2, 3) e B (6, 6). x OBS 1 : Na função do 1º grau f(x) = ax + b, o coeficiente a é denominado coeficiente angular, tem-se que tg β = a, e portanto a determina o grau de inclinação da reta. 164 Dados o coeficiente angular m = 1 e o ponto P( 2, 3), determine a equação da reta

17 FUNÇÃO POLINOMIAL DO 1º GRAU Em um mesmo plano cartesiano, construa os gráficos das funções f(x) = 2x + 1, g(x) = 2x 1 e h(x) = 2x. Em seguida, responda: a) Os gráficos tem algum ponto em comum? b) As retas são paralelas entre si? c) Quais os coeficientes angulares das funções? d) Quais os coeficientes lineares? 166 Em um mesmo plano cartesiano, construa os gráficos das funções f(x) = 3x 2, g(x) = x e h(x) = f 1 (x). Em seguida, responda aos mesmos itens da questão anterior. RAIZ DA FUNÇÃO DO 1º GRAU É todo número x que possui imagem nula. Isto é, f(x) = Determine a raiz (ou zero) de cada uma das seguintes equações: a) f(x) = 2x + 5 b) f(x) = ax + b c) f(x) = ( 1 / 3 )x + 3 d) f(x) = 4x f(x) = x + 2 FUNÇÃO CRESCENTE OU DECRESCENTE CRESCENTE A função é crescente se o coeficiente angular for positivo. Ex: y = 2x +1 a = 2 a > 0 FUNÇÃO CRESCENTE DECRESCENTE A função é decrescente se o coeficiente angular for negativo. Ex: y = x + 3 a = 1 a < 0 FUNÇÃO DECRESCENTE 168 Classifique entre crescente ou decrescente as funções da questão anterior:

18 18 FUNÇÃO POLINOMIAL DO 1º GRAU INEQUAÇÕES DO 1º GRAU Uma inequação do 1º grau pode ser definida como uma função do 1º grau que apresenta um sinal de desigualdade. Assim: ax + b > 0 ax + b < 0 ax + b 0 ax + b Determine todos os possíveis números inteiros positivos para os quais satisfaça a inequação 3x + 5 < Resolva as inequações: < < 171 Um comerciante teve uma despesa de R$ 230,00 na compra de certa mercadoria. Como vai vender cada unidade por R$ 5,00 o lucro final será dado em função das x unidades vendidas. Responda. a) Qual a lei dessa função? b) Para que valores de x temos f (x) < 0? c) Como a resposta ao item (b) pode ser interpretada? d) Para que valor de x haverá um lucro de R$ 315,00? e) Para que valores de x o lucro será maior que R$ 280,00? f) Para que valores de x o lucro estará entre R$ 100,00 e R$ 180,00?

19 19 FUNÇÃO POLINOMIAL DO 1º GRAU INEQUAÇÕES DO 1º GRAU 172 (UFRS) Certo dia de janeiro, a temperatura em São Leopoldo, situada no interior do Rio Grande do Sul, subiu uniformemente desde 23 C, às 10 h, até 38 C, às 15 h. Fazendo-se um gráfico cartesiano que representa tal situação térmica, no qual se marca os tempos (em horas) nas abscissas e as temperaturas (em graus centígrados) nas ordenadas, obtem-se o segmento de reta AB, como mostra a figura. a) Encontre uma função que indique a temperatura em São Leopoldo em função do tempo verificada no intervalo [10,15]. b) A partir de que horas a temperatura ultrapassa 32º? 173 (UFRS) Uma locadora de veículos apresenta, para aluguel de certo tipo de carro a seguinte tabela: Em uma diária, com percurso não superior a 100 km, para que a 2ª opção seja menor em reais, é necessário que o número de quilômetros percorridos pelo locatário pertença ao intervalo: A) [60, 100] B) ]60, 100] C) [0, 60[ D) ]60, 100[ E) [0, 60]

20 20 FUNÇÃO POLINOMIAL DO 1º GRAU INEQUAÇÕES DO 1º GRAU 174 (FUVEST) A tabela abaixo mostra a temperatura das águas do Oceano Atlântico (ao nível do Equador) em função da profundidade: Admitindo que a variação da temperatura seja aproximadamente linear entre cada uma das medições feitas para a profundidade, a temperatura prevista para a profundidade de 400m é de: A) 16ºC B) 14ºC C) 12ºC D) 10,5ºC e) 8ºC 175 (UFRJ) Uma fábrica produz óleo de soja por encomenda, de modo que a produção é comercializada. O custo de produção é composto de duas parcelas. Uma parcela fixa, independente do volume produzido, corresponde a gastos com aluguel, manutenção de equipamentos, salários, etc; a outra parcela é variável, dependente da quantidade de óleo fabricado. No gráfico a seguir, a reta r 1 representa o custo de produção e a reta r 2 descreve o faturamento da empresa, ambos em função do número de litros comercializados. A escala é tal que uma unidade representa R$ 1.000,00 (mil reais) no eixo das ordenadas e 1000 (mil litros) no eixo das abscissas. a) Determine em reais, o custo correspondente à parcela fixa; b) Determine o volume mínimo de óleo a ser produzido para que a empresa não tenha prejuízo.

21 21 FUNÇÃO POLINOMIAL DO 1º GRAU INEQUAÇÕES DO 1º GRAU 176 (UFRN) Seja a função linear y = ax 4. Se y = 10 para x = 2, então o valor de y para x = 1 é: A) 3 B) 4 C) 7 D) 11 E) NDA 177 (UFRJ) O gráfico ao lado expressa a temperatura em graus Fahrenheit em função da temperatura em graus Celsius. a) Encontre a equação que expressa os graus Fahrenheit em função dos graus Celsius; b) Determine o valor aproximado da temperatura na escala Celsius correspondente a zero graus Fahrenheit. 178 (UFPB) Considere a função bijetora f: R R definida por f(x) = 2x + b, onde b é uma constante. Sendo f 1 (x) a sua inversa, qual o valor de b sabendo que f 1 (x) passa pelo ponto A (1, 2)? 179 (UFCE) Se f: R R é a função dada por f(x) = 100x 5, então o valor de é: A) 10 1 B) 1 C) 10 D) 10 2

22 GABARITO 117) Dinâmica em Grupo. 118) F, E, D, A, C e B 119) B 120) C 121) a = 3 e b = 7 122) ) a) 5 b) 3 c) 12 d) 23 e) x = 1 ou x = 2 124) m = 4 125) a = 2 126) x = 1 ou x = 2 127) A 128) a) R {7} b) x 1 / 3 c) x > 3 d) x = ½ ou x = 1 e) 0 < x 1 129) B 130) D 131) a) Gráfico b) B (0, 4) ; D (4, 0) ; F (3, 4) ; H (1, 4) ; K ( 3, 5) c) Gráfico d) Não, porque nesse gráfico existem x que se correspondem com mais de um y. 132) a) R b) R c) R d) y 0 e) y 3 f) y 3 g) y 2,25 h) y 2,25 i) y g) y 0,25 133) a) 9x 2 1 b) 3x 2 3 c) x 4 2x 2 d) 9x e) 8 134) a) x 2 3x + 2 b) x = 1 ou x = 2 c) x = 1 135) C 136) A 137) a) 4x 2 + 4x + 5 b) 2x 2 7 c) x 4 8x d) 4x + 3 e) ) m = ) 3 140) x = 0 ou x = ) m = 1 ou m = 9 142) a) 60x b) 600x x c) 60x d) 120x x ) a) 9 b) a 2 2a ) A) 145) Injetora; Sobrejetora; Bijetora e NDA 146) D 147) f 1 (x) = (x 1) / 2 ; f(3) = 7 ; f 1 (x) = 3 148) f 1 (5) = 1 ; f 1 ( 10) = 8 149) B 150) A 151) x = 6 152) x = ± 5 153) a) f 1 (x) = (x 5) / 2 ; b) x c) x d) 7 154) Os gráficos de g(x) e g 1 (x) são simétricos a f(x) = x 155) a) a = 3 e b = 2 ; b) a = 1 / 2 e b = 0 ; c) a = 2 e b = 5 ; d) a = 1 / 7 e b = 2 / 7 156) a) f(x) = x Função Identidade Cont. 156) b) f(x) = 0 Função Nula ; c) f(x) = 9 Função Constante ; d) f(x) = 8x Função Linear 157) a) a = 3 e b = 2 ; b) a = 2 e b = 5 ; c) a = 4 / 7 e b = 13 / 7 158) a) D f = [0;24] b) Im f = [ 3; 6] c) 8h e das 15 às 17 h d) Sim. Pois, para cada hora corresponde uma, e só uma, temperatura. 159) a) [2; 4], [15; 17] e [20; 22] b) [0; 2] 160) B 161) (y2 y1) / (x2 x1) 162) y 2 y 1 = m.(x 2 x 1 ) 163) y = 0,75x +1,5 164) y = x 5 165) a) Não b) Sim c) 2 em todas d) 1, 1 e 0 166) a) Sim b) Não c) 3, 1 e 1 / 3 d) 2, 0 e 2 / 3

23 GABARITO 167) a) x = 5/2 b) x = b/a c) x = 9 d) x = 0 e) x = 2 168) a) b) c) Crescentes ; d) e) Decrescentes ) S = {1, 2, 3} 170) a) 2 x 1 / 2 b) x< 1 ou x > 3 / 2 c) x 14 d) 0 x < 4 e) 2 x < 4 f) 1 / 2 x < 3 171) a) f(x) = 5x 230 b) x < 46 c) Terá prejuízo se vender menos que 46 unidades. d) x = 109 e) x > 102 f) 66 < x < ) f(x) = 3x 7 b) 13 hrs 173) B 174) D 175) a) 10 mil reais b) 10 mil litros 176) A 177) a) f(x) = 1,8x + 32 b) x = ) b = 5 179) D

24 A Matemática é como um jogo. Aprenda a jogar e você vai se divertir com ela. (Francisco das Chagas Gomes Meu Pai) Foi colocado uma planta num lago que todos os dias aumenta para o dobro do seu tamanho. Ao fim de quinze dias já ocupava metade do lago. Daí a quantos dias cobrirá o lago inteiro? Vá correndo acessar... Você só paga R$ 5,00 (Brincadeirinha... É de graça!)

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

MATEMÁTICA I. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA I. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega MATEMÁTICA I Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 3 _ Introdução às Funções Professor Luciano Nóbrega 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 3 _ Introdução às Funções Professor Luciano Nóbrega Maria Auxiliadora 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS y

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B

Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B Relação de Conjuntos Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B A x B = { 1,2, 1,3, 1,4, 2,2, 2,3, 2,4 } A B 1 2 2 3 4 Funções Uma Relação será função se: 1.

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

Acadêmico(a) Turma: Capítulo 6: Funções

Acadêmico(a) Turma: Capítulo 6: Funções 1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas

Leia mais

2. Escreva em cada caso o intervalo real representado nas retas:

2. Escreva em cada caso o intervalo real representado nas retas: ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

(Nova) Matemática, Licenciatura / Engenharia de Produção

(Nova) Matemática, Licenciatura / Engenharia de Produção Portaria MEC 7, de 5.. - D.O.U.... (Nova) Matemática, Licenciatura / Engenharia de Produção Módulo de Pesquisa: Práticas de ensino em matemática, contextos e metodologias Disciplina: Fundamentos de Matemática

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: Funções 10/04/14 e 11/04/14 Definição de função Dados dois conjuntos A e B não vazios, uma relação f de A em

Leia mais

Função Afim. Definição. Gráfico

Função Afim. Definição. Gráfico Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função

Leia mais

COLÉGIOMARQUES RODRIGUES- SIMULADO

COLÉGIOMARQUES RODRIGUES- SIMULADO COLÉGIOMARQUES RODRIGUES- SIMULADO PROF(A) MARILEIDE DISCIPLINA MATEMÁTICA SIMULADO: P Estrada da Água Branca, Realengo RJ Tel: () 46-70 wwwcolegiomrcombr ALUNO TURMA 90 Questão atraves do diagrama abaixo,

Leia mais

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com. Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

PROFESSOR: ALEXSANDRO DE SOUSA

PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções

Leia mais

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2 LISTA - 1 1 Números Reais 1. Expresse cada número como decimal: (a) 7 10 (b) 2 5 (c) 9 15 (d) 7 8 (e) 17 20 (f) 4 11 (g) 8 7 (h) 56 14 2. Expresse cada número decimal como uma fração na forma mais reduzida

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Campos dos Goytacazes/RJ Maio 2015

Campos dos Goytacazes/RJ Maio 2015 Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par

Leia mais

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função

Leia mais

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1)

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

AFA Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo

AFA Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo AFA 2010 1. Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo CARGO SALÁRIOS Nº DE (em reais) FUNCIONÁRIOS COSTUREIRO(A) 1 000 10 SECRETÁRIO(A) 1 500 4 CONSULTOR

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA

FORMAÇÃO CONTINUADA EM MATEMÁTICA FORMAÇÃO CONTINUADA EM MATEMÁTICA MATEMÁTICA 1 ANO/ 2 BIMESTRE/ 2013 (grupo 5) PLANO DE TRABALHO 1 FUNÇÃO POLINOMIAL DO 1 GRAU TAREFA: 1 CURSISTA: Cátia Pereira da Silva Souza TUTORA: Leziete Cubeiro da

Leia mais

Registro CMI Aulas 4 e 5

Registro CMI Aulas 4 e 5 Registro CMI 4317 Aulas 4 e 5 QUESTÃO 01 Seja a n uma sequência de números reais cujo termo geral é verdadeira? a) a n é uma progressão aritmética de razão 1. b) a n é uma progressão geométrica de razão

Leia mais

1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3].

1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3]. Lista de Exercícios - Função Afim 1. Seja f uma função afim definida por f(x) = 4x 5. Determine os valores do domínio dessa função que produzem imagem no intervalo [ 3, 3]. 2. As frutas que antes se compravam

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

Matemática e suas tecnologias CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA. Função Afim Função Quadrática Função Exponencial ORIENTAÇÕES

Matemática e suas tecnologias CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA. Função Afim Função Quadrática Função Exponencial ORIENTAÇÕES Matemática e suas tecnologias MATEMÁTICA GLAYSON L. CARVALHO ROTEIRO DE RECUPERAÇÃO FINAL RECUP. FINAL 5 pts,75 pts 8 º ANO A B CONTEÚDOS POR ETAPA ª ETAPA ª ETAPA ª ETAPA Função Afim Função Quadrática

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Página 1 de 12. 1º Trimestre/ Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito. a) B = {0, 1, 2,...

Página 1 de 12. 1º Trimestre/ Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito. a) B = {0, 1, 2,... Página 1 de 1 1º Trimestre/015 ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT Rua Bento Gonçalves, 1171 Telefone: 359.1795 - CEP: 93010-0 São Leopoldo RS DISCIPLINA: Matemática PROFESSOR: César Lima

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários

Leia mais

MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES E. E. E. M. NOME COMPLETO: Nº TURMA: TURNO: ANO:

MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES E. E. E. M. NOME COMPLETO: Nº TURMA: TURNO: ANO: E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE DOIS CONTEÚDOS: NOÇÃO DE FUNÇÕES FUNÇÃO DO 1 GRAU APLICAÇÕES NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 Função Função é uma relação entre duas grandezas

Leia mais

TEORIA DOS CONJUNTOS

TEORIA DOS CONJUNTOS Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para

Leia mais

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a: COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R

Leia mais

MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017

MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017 MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A Nome: RA: Lista 3 - Função Afim - 25/08/2017 Obs.: É importante fazer todos os exercícios e discutir as dúvidas existentes. 1. Dados os gráficos

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)

Leia mais

PLANO DE AULA IDENTIFICAÇÃO

PLANO DE AULA IDENTIFICAÇÃO PLANO DE AULA IDENTIFICAÇÃO Disciplina: Matemática Nível: Ensino Médio Tempo estimado: 5 aulas de 45 min Tema: Função do 1º Grau Subtema: Definição, Gráficos, Zero da Função, Equação do 1º Grau, Sinal

Leia mais

Foi o primeiro a usar o termo função em Euler ( )

Foi o primeiro a usar o termo função em Euler ( ) 1) Conceito de função I) Introdução histórica O conceito de função é um dos mais importantes da Matemática. Este conceito sofreu uma grande evolução ao longo dos séculos, sendo que a introdução do método

Leia mais

M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F.

M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F. Módulo de Funções - Noções Básicas Funções - Noções Básicas. 9 o ano E.F. Funções - Noções Básicas 1 Exercícios Introdutórios Exercício 1. Em um certo dia, três mães deram à luz em uma maternidade. Uma

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

AULA 04 FUNÇÃO DO 1º GRAU 1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0)

AULA 04 FUNÇÃO DO 1º GRAU 1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0) 1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0) 1 c) f 3 1 d) f - 2 2. Dada a função afim f(x) = 2x + 3, determine os valores de x para que: a) f(x) = 1 b) f(x) = 0 c) f(x) = 3 1 3. Dada

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ.

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. SIMULADO DE MATEMÁTICA TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Banco de questões. 4 Função quadrática. ) é igual a 60. ( ( )) por g( x) é igual ( ) = 5 ( ) = ( ) e g( f ( 7) funções UNIDADE I I

Banco de questões. 4 Função quadrática. ) é igual a 60. ( ( )) por g( x) é igual ( ) = 5 ( ) = ( ) e g( f ( 7) funções UNIDADE I I UNIDADE I I funções CAPÍTULO Função quadrática Banco de questões 1 (FURG RS) Determine os números reais a e b b para que a função quadrática f x a x x a tenha valor máximo no ponto x = 3 e que esse valor

Leia mais

OFICINA DE MATEMÁTICA BÁSICA Lista 3

OFICINA DE MATEMÁTICA BÁSICA Lista 3 OFICINA DE MATEMÁTICA BÁSICA Lista 3 Data da lista: 29/06/2017 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Demonstre que cada uma das seguintes igualdades são identidades. (a)

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é

Leia mais

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte

Leia mais

Matemática para Biomedicina

Matemática para Biomedicina Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.

Leia mais

Programa de Recuperação Paralela PRP - 01

Programa de Recuperação Paralela PRP - 01 Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 2013 Disciplina: Matemática 1ª Série Ensino Médio Página 1 de 26-28/6/2013-6:13 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Seja a função

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais