Aula 2 Função_Uma Ideia Fundamental

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 2 Função_Uma Ideia Fundamental"

Transcrição

1 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega

2 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados e saem suas Matematicamente... y 12 IMAGENS O domínio é o conjunto de todas as entradas, enquanto a imagem é o conjunto de todas as saídas. Entra o x E sai o y.

3 NOÇÃO FUNDAMENTAL DE FUNÇÃO 3 Considere os seguintes conjuntos A e B A é o Conjunto DOMÍNIO Definição de Função: 1 3 A 4 2 Dados dois conjuntos A e B, se para cada valor de x (x Є A) existir, em correspondência, um único valor de y (y Є B), então dizemos que y está em função de x. f NOTAÇÃO: B 5 9 f (x) = y B é o Conjunto CONTRADOMÍNIO Conjunto IMAGEM Observe que aqui: f (x) = x + 4 f (1) = f (2) = f (3) = f (4) = 4 + 4

4 TESTANDO OS CONHECIMENTOS 4 8 O diagrama ao lado representa uma função? E agora? Temos uma função? 9 (UFRJ) Considere a relação de M em N, representada no diagrama abaixo. Para que seja uma função de M em N, basta: A) apagar a seta (1) e retirar o elemento s; B) apagar a setas (1) e (4) e retirar o elemento k; C) apagar a seta (4) e retirar o elemento k; D) apagar a seta (2) e retirar o elemento k. 10 (UFCE) Qual dos gráficos abaixo não pode representar uma função?

5 5 REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO Num determinado dia registaram-se as temperaturas numa certa cidade, de hora a hora e, a partir delas, elaborou-se o gráfico das temperaturas em função da hora do dia. Indique: 1º) o domínio; 2º) o contradomínio; 3º) Quais as horas do dia em que se registou a temperatura 3ºC? 4º) Este gráfico representa uma função? Justifique. Temperatura º C Como verificar se um gráfico determina uma função? Horas Não se trata de uma representação de uma função Trata-se de uma representação de uma função

6 TESTANDO OS CONHECIMENTOS 11 Determine o domínio das funções definidas por: a) f (x) = ( x 7) -1 b) f (x) = ( 3x 1) 1/ (UNESP SP) A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo de energia (em kcal) para meninos entre 15 e 18 anos é dada pela função (h) = 17h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3)h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2975 kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, é: A) B) C) D) 2601.

7 TESTANDO OS CONHECIMENTOS 14 (UFRN) Na figura abaixo, tem-se o gráfico de uma reta que representa a quantidade, medida em m, de um medicamento que uma pessoa deve tomar em função de seu peso, dado em kgf, para tratamento de determinada infecção. O medicamento deverá ser aplicado em seis doses. Assim, uma pessoa que pesa 85kgf receberá em cada dose: A) 7 m B) 9 m C) 8 m D) 10 m 7 15 (UFRN) Determine o valor da expressão para a = a 2 a a 2a 2

8 FUNÇÃO COMPOSTA 8 Considere as funções f: A B e g: B C, então a função h: A C é a função composta g(f(x)), com x A. A B x f(x) g(f(x)) x = 5 C Ex: f(x) = x+2 e g(x) = x 2, então g(f(x)) =? Mais exemplos: Sejam as funções f(x) = x 2 1 e g(x) = 3x, calcule: a) f(g(x)) b) g(f(x)) c) f(f(x)) d) g(g(x)) 16 Determine as funções compostas de f(x)= x e g(x)= (2 x) 17 (IFRN) Se f(g(x)) = 4x 2 8x + 6 e a) f(g(3)) b) g(f(5)) g(x)=2x 1, então f (2) é igual a: c) f(f(9)) d) g(g(7)) A) 2 B) 1 C) 3 D) 5 E) 6 18 (IFRN) Dadas as funções f(x) = 3x+4 e f(g(x))=x 5, então g( 3) é igual a: A) 4 B) 3 C) 3 D) 4 E) 5

9 FUNÇÃO INVERSA 9 Inicialmente, vamos relembrar alguns conceitos importantes: FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto B. FUNÇÃO SOBREJETORA É quando o conjunto Imagem da função for igual ao conjunto contradomínio. ( Im = CD ). FUNÇÃO BIJETORA É uma função simultaneamente injetora e sobrejetora. EXEMPLO: Classifique as funções como bijetora, sobrejetora, injetora, ou ainda nenhuma delas:

10 FUNÇÃO INVERSA 10 Uma função f(x) tem inversa se e somente ela for bijetora. D f(x) R OBS: O símbolo 1 em f 1 (x) não é um expoente. f 1 (x) não significa 1 / f(x). x f -1 (x) OBS: Os gráficos de f(x) e f 1 (x) são simétricos em relação a função y = x. y A função inversa f 1 (x) desfaz o que a função f(x) faz. Observe: f(x) = 2x + 1; f 1 (x) =? EXEMPLO: Se f (1) = 5 e f (8) = -10, determine f 1 (5) e f 1 (-10). EXEMPLO: (UFSE) Considere a função bijetora y = ( 3x 1) : (x + 3), a expressão que define sua inversa é: A) (x + 3) : ( 3x 1) B) ( 3x + 1) : ( 3 x) C) ( 2x 1) : (x + 1) D) ( 3x 1) : (x + 3)

11 TESTANDO OS CONHECIMENTOS (UFRN) Seja B o conjunto formado por todos os brasileiros e R o conjunto dos números reais. Se f: B R é a função que associa a cada brasileiro sua altura, medida em centímetros, então f : A) é injetora e não é sobrejetora. B) é injetora e é sobrejetora. C) não é injetora e é sobrejetora. D) não é injetora e não é sobrejetora. 21 Dadas as funções ƒ(x) = 5x+1 e g(x) = 6x 4, resolva a equação ƒ -1 (g(x)) = 7, seguindo o procedimento em cada item: 1º) Determine ƒ -1 (x); 2º) Na função ƒ -1 (x) obtida no item (1º), substitua x por g(x), em seguida, iguale a 7 e resolva a equação; 20 (UFRN) Sejam E o conjunto formado por todas as escolas de ensino médio de Natal e P o conjunto formado pelos números que representam a quantidade de professores de cada escola do conjunto E. Se f: E P é a função que a cada escola de E associa seu número de professores, então: A) f é uma função sobrejetora. B) f não pode ser uma função bijetora. C) f não pode ser uma função injetora. D) f é necessariamente uma função injetora. GABARITO: 11) x = 20 /3

12 FUNÇÃO PAR: f(x) = f(-x) Uma função é PAR quando ela é simétrica em relação ao eixo y. FUNÇÃO ÍMPAR: f(x) = - f(-x) Função ÍMPAR é simétrica em relação a origem. y y 12 f(x) = x² f(x) = x³ x 22 a) Verifique se f(x) = 2x³ + 5x é par ou ímpar: b) Mostre que f(x) = 3x² é par: 23 Sendo o gráfico ao lado de f(x), o gráfico de f( x) será : x

13 TESTANDO OS CONHECIMENTOS Determine a função inversa das seguintes funções: a) f(x) = 4 3x b) f(x) = x / 2 c) f(x) = x / (x 2) 25 Dada a função f(x) = 2x + 5. a) Classifique-a; b) Determine f 1 (x); c) f(f 1 (x)) e f 1 (f(x)) 26 Represente em um mesmo plano cartesiano, o gráfico da função f(x) = x, g(x) = 2 3x e g 1 (x). O que você pode observar? 27 Classifique as funções como bijetora, sobrejetora, injetora, ou ainda nenhuma delas: a) f(x) = 2x 1 b) f(x) = x 2 c) f(x) = x 3 28 (UFCE) Seja f: R R a função tal que f(1) = 4 e f(x+1) = 4.f(x) para todo x real. Nessas condições, f(10) é igual a: A) 2 10 B) 4 10 C) 2 10 D) 4 10

14 Vá correndo acessar... Você só paga R$ 5,00 (Brincadeirinha... É de graça!)

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

MATEMÁTICA I. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA I. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega MATEMÁTICA I Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com. Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

FUNÇÕES. Jairo Weber

FUNÇÕES. Jairo Weber FUNÇÕES Jairo Weber De Relações e funções Seja o conjunto A={0, 1,2, 3, 4} e o conjunto B={0, 2, 4, 6, 8, 11}, temos: R = {(x,y) AxB / y = 2x} R={(0,0); (1,2); (2,4); (3,6); (4,8)} N(R)=5 Diagrama 0 1

Leia mais

MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega

MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 14 Números Complexos Professor Luciano Nóbrega 4º Bimestre www.professorlucianonobrega.wordpress.com 2 INTRODUÇÃO Vamos relembrar os Conjuntos Numéricos: N: conjunto dos números naturais:

Leia mais

Exercícios: Funções - Introdução Prof. André Augusto

Exercícios: Funções - Introdução Prof. André Augusto Exercícios: Funções - Introdução Prof. André Augusto 1. EXERCÍCIOS BÁSICOS DE FUNÇÕES Exercício 1. Nos itens a seguir, diga se as associações f : X Y a seguir são funções ou não: 1 X = 0, 1, 2,, 4, X =

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

Semana 1 Mudança de Bases

Semana 1 Mudança de Bases 1 CÁLCULO NUMÉRICO Semana 1 Mudança de Bases Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: E1/U1 Mudança de Bases; Ponto Flutuante e Erros em Processos Numéricos; E2/U1 Equações Polinomiais;

Leia mais

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério

Leia mais

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Semana 4 Zeros das Funções

Semana 4 Zeros das Funções 1 CÁLCULO NUMÉRICO Semana 4 Zeros das Funções Professor Luciano Nóbrega UNIDADE 1 Eixo das ordenadas www.professorlucianonobrega.wordpress.com 2 ZEROS DAS FUNÇÕES INTRODUÇÃO Nas diversas áreas científicas,

Leia mais

Exercícios de Matemática Funções Função Inversa

Exercícios de Matemática Funções Função Inversa Exercícios de Matemática Funções Função Inversa 4. (Ufes) A função cujo gráfico está representado na figura 1 a seguir tem inversa. O gráfico de sua inversa é: TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s)

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens. MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um

Leia mais

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 11 Matrizes Professor Luciano Nóbrega º Bimestre MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º 45º

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

2º Trimestre ÁLGEBRA. Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega. Maria Auxiliadora

2º Trimestre ÁLGEBRA. Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega. Maria Auxiliadora 2º Trimestre 1 ÁLGEBRA Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega Maria Auxiliadora SEQUÊNCIA NUMÉRICA 2 SEQUÊNCIA NUMÉRICA Denominamos por Sequência Numérica uma função f, cujo domínio é

Leia mais

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Especialização em Matemática - Estruturas Algébricas

Especialização em Matemática - Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

MATEMÁTICA Prof.: Alexsandro de Sousa

MATEMÁTICA Prof.: Alexsandro de Sousa E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10]

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10] Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [;10] 1) Verifique se as funções são injetoras, sobrejetoras ou bijetoras: a) f: A B A 0 f 1 B 4 5 6 7 b) f: A B A 0 4 6 c) f: R R + definida

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E. UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Lista de Exercícios 01

Lista de Exercícios 01 OBS: O exercícios marcados com "*" devem ser entregues na aula seguinte Conjunto: representa uma coleção de objetos. Elemento: é um dos componentes de um conjunto. Lista de Exercícios 01 Pertinência: é

Leia mais

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 04 Licenciatura em Matemática Osasco -2010 1. Funções Sobrejetoras Dizemos que uma unção : é sobrejetora se, e somente se, o seu conjunto imagem or igual ao contradomínio, isto é, se Im() =. Em outras palavras, dado um elemento z qualquer no contradomínio,

Leia mais

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS Aula 2 Limites Professor Luciano Nóbrega O LIMITE DE UMA FUNÇÃO 2 2,5,9 Inicialmente, vamos analisar o comportamento da função f definida por

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 Tecnólogo em Construção de Edifícios Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas de todas

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 27 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Funções

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo.

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. 1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c) 2. d) 1. 2. (G1 - ifce) Seja f : 1, uma função dada por

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Ficha Prática nº Parte II. Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/04 Operações com funções. Composição de funções. Função Inversa. ) O gráfico

Leia mais

3º Bimestre. Álgebra. Autor: Leonardo Werneck

3º Bimestre. Álgebra. Autor: Leonardo Werneck 3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...

Leia mais

Exercícios de Matemática Funções Função Bijetora

Exercícios de Matemática Funções Função Bijetora Exercícios de Matemática Funções Função Bijetora 1. (Ufpe) Sejam A e B conjuntos com m e n elementos respectivamente. Analise as seguintes afirmativas: ( ) Se f:aëb é uma função injetora então m n. ( )

Leia mais

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal: Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

Semana 2 Limites Uma Ideia Fundamental

Semana 2 Limites Uma Ideia Fundamental 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 2 Limites Uma Ideia Fundamental Professor Luciano Nóbrega UNIDADE 1 2 O LIMITE DE UMA FUNÇÃO Inicialmente, vamos analisar o comportamento da função f definida

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Subtemas: Função Composta, Função Inversa, Qualidades

Subtemas: Função Composta, Função Inversa, Qualidades PLANO DE AULA 1)Escola de Educação Básica Bulcão Viana Município: Praia Grande/SC Disciplina: Matemática Série: 1º ano Nível: Ensino Médio Turma: Única Professora: Mariani Constante de Jesus Tempo previsto:

Leia mais

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2

Leia mais

Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Leia mais

Programa de Recuperação Paralela PRP - 01

Programa de Recuperação Paralela PRP - 01 Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 2013 Disciplina: Matemática 1ª Série Ensino Médio Página 1 de 26-28/6/2013-6:13 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Seja a função

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

Mat.Semana 3. Alex Amaral (Allan Pinho)

Mat.Semana 3. Alex Amaral (Allan Pinho) Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução

Leia mais

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO 1 UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO NOTAS DE AULA DA DISCIPLINA DE CÁLCULO 1 MATERIAL EM CONSTRUÇÃO

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 016-17 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA Sejam

Leia mais

Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos:

Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos: Lista de Exercícios 1. Num papel quadriculado, em um mesmo plano cartesiano, localize os pontos: A = ( 0, 4 ); B = ( -4, 5 ); C = ( 3, - 4 ); D = ( 2, 2 ); E = ( 0, 0 ) 2. No plano cartesiano abaixo, dê

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

CAPÍTULO 09 RELAÇÕES E FUNÇÕES

CAPÍTULO 09 RELAÇÕES E FUNÇÕES CAPÍTULO 09 RELAÇÕES E FUNÇÕES 105 9.1. INTRODUÇÃO 9.2. NOÇÃO DE FUNÇÃO Assunto Pág. 106 9.2.1. PRODUTO CARTESIANO 9.2.2. RELAÇÃO de A em B (R: A B) 9.3. FUNÇÃO de A em B (f: A B) 9.3.1. DOMÍNIO, CONTRADOMÍNIO

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais