MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega"

Transcrição

1 1 MATEMÁTICA II Aula 14 Números Complexos Professor Luciano Nóbrega 4º Bimestre

2 2 INTRODUÇÃO Vamos relembrar os Conjuntos Numéricos: N: conjunto dos números naturais: {0, 1, 2, 3,...} Criado para representar a contagem. Z: conjunto dos números inteiros: {..., -2, -1, 0, 1, 2,...} Criado para responder questões, tais como 3 8 =? Q: conjunto dos números racionais: {x x = a/b ; a, b Z, b 0} Criado para responder questões, tais como 3 : 8 =? I: conjunto dos números irracionais: {x x Q} Criado para responder questões, tais como 3 =? R: conjunto dos números reais: {x x (Q I)} Criado para unir os conjuntos Q e R Acreditou-se durante muito tempo que o conjunto dos números reais era suficiente para satisfazer todas as situações. Mas, algo continuava em aberto, como por exemplo: Qual a solução da equação x = 0? Coube a Gauss a ideia de fazer i = 1, implicando em i 2 = 1 1 Resolva as equações: a) x 2 2x 5 0 b) x 2 4x 5 0 GABARITO: 1) a) x = i e x = 1 2.i b) x = 2 i e x = 2 + i

3 GABARITO: 2) a) 1 + 4i b) 5 5i c) 8 + 6i d) 5 12i 3) a) 1 /2 b) 5 /3 4) a) 2 b) i, 1, i, 1, i, 1, i, 1, i, 1, i, 1,... c) 2i, 4, 16, 1024, i 3 DEFINIÇÃO Um número complexo z é um número escrito na forma z = a + b.i, onde a e b são números reais e i = 1. Onde: a é a parte real; b é a parte imaginária. 2 Dados os números complexos z = 1 + 3i e w = 2 + i, calcule as operações indicadas: a) z + w b) z.w c) z 2 d) (z w) 2 3 Determine os valores de x, para que o número complexo dado seja: a) imaginário puro com z = (1 2x) + 3i b) real com z = 6 (3x 5).i 4 Efetue as operações indicadas: a) (1 + i).(1 i) b) i 1, i 2, i 3, i 4, i 5, i 6, i 7, i 8, i 9, i 10, i 11, i 12, i 23, i 32, i 77, i 2010 c) (i + 1) 2, (i + 1) 4, (i + 1) 8, (i + 1) 20, (i + 1) 21 CONJUGADO DE UM NÚMERO COMPLEXO Seja z = a + b.i, então definimos como conjugado de z, o número complexo w = a b.i onde as partes reais são iguais e as partes imaginárias são simétricas. 5 Determine o conjugado dos seguintes números complexos: a) z = 6 + 5i b) z = ½ + ¾i c) z = 3. i 2 d) z = 2i

4 4 PROPRIEDADES DO CONJUGADO Seja z = a + b.i um número complexo e w = a b.i o conjugado de z, então: P1) z.w = a 2 + b 2 P2) z = w se, e somente se, z for um número real puro. P3) O conjugado da soma é igual a soma dos conjugados. P4) O conjugado de um produto é igual ao produto dos conjugados. 6 ( ACAFE - SC ) Se z = i é um número complexo, então w = z + z i é: a) 4 i b) 4-4 i c) i d) i e) 4 7 ( OSEC - SP ) Se f(z) = z 2 z + 1 então f ( 1 i ) é igual a: a) i + 1 b) i 1 d) 2i 1 d) i + 1 e) i 8 ( FATEC - SP ) Se o número complexo z é então z 2 é: a) b) c) d) 1 e) -1 9 ( UNIMAR - SP ) A forma mais simples do número complexo é: a) i b) 1 i c) 1 + i d) 1 + i e) 0 10 ( UFRN ) Se z = 4 + 2i, então vale: a) 6 + i b) 1 + 8i c) 8 + 8i d) 1 8i e) i 11 (UFRN) Considere os números complexos Se, então é correto afirmar que: a) w= 10 6i b) w= 8 6i c) w=-8+6i d) w=10+6i

5 GABARITO: 14) a) 13 b) 3 c) 5 d) 2 /3 e) 7 f) PLANO COMPLEXO (ou de Argand Gauss) Da mesma forma como a cada ponto da reta real está associado um número real, o plano complexo associa biunivocamente o ponto (x, y) do plano ao número complexo x + y.i. Esta associação conduz a duas formas de representar um número complexo: Forma Cartesiana z = x + y.i ; Forma Polar z = r.(cos Θ + i. sen Θ) 12 Represente geometricamente os números complexos abaixo: A = 3 2i B = 5 C = 2i D = 2 + 5i E = (3, 2) F = 2 + i G = 2 + i H = 2 i I = 2 i J = ( 2, 1) 13 Efetue algebricamente e geometricamente a adição dos números complexos: a) Z 1 = 1 + 2i e Z 2 = 4 + i. b) Z 1 = 2 + 3i e Z 2 = 1 + 2i. MÓDULO DE UM NÚMERO COMPLEXO Por definição, dizemos que módulo de z é o seguinte número positivo ou nulo: 14 Determine o módulo dos seguintes números complexos: a) i b) 3.i c) 1 2.i d) 2 / 3 e) 7 f) 0

6 6 FORMA TRIGONOMÉTRICA (OU POLAR) DE UM NÚMERO COMPLEXO Observe a figura abaixo: Determine: cos a = sen a = Isolando a e b, temos: Substituindo na forma algébrica, z = a + b.i, temos: Portanto a forma trigonométrica de um número complexo é: EXEMPLO: Determine a forma trigonométrica de z = 1 + i. 3 1º) a = 1 b = 3 2º) z = [1 2 + ( 3) 2 ] z = 2 3º) cos  = 1 / 2 sen  = 3 / 2  = 30º 15 Determine a forma trigonométrica dos seguintes números complexos: a) 1 + i b) 2.i c) 3 16 Determine a forma algébrica dos seguintes números complexos: a) 2.( cos П / 4 + i.sen П / 4 ) b) 8.( cos 7П / 6 + i.sen 7П / 6 ) 4º) Usando a fórmula: z=2.( cos П / 3 + i.sen П / 3 ) GABARITO: 15) a) 2.(cos 3П /4 + i. sen 3П /4 b) 2.(cos П /2 + i. Sen П /2 c) 3.(cos П + i. Sen П 16) a) 2 + i. 2 b) 4 3 4i

7 GABARITO: 17) 128(cos 7П /4 + i.sen 7П /4) e 64 2 i ) a) 2 2i b) i c) 64 2 i ª FÓRMULA DE De Moivre Observe: z = z.( cos a + i.sen a) Como: cos 2a = cos 2 a sen 2 a sen 2a = 2.sen a.cos a Generalizando: z n.( = z n.( cos na + i. sen na) 17 Dado o número complexo z = 2.( cos П / 4 + i.sen П / 4 ) determine z 7 utilizando a fórmula de De Moivre, em seguida, represente-o na forma algébrica. 18 Calcule, utilizando a fórmula de De Moivre, para isso, inicialmente, represente na forma trigonométrica: a) (1 i) 10 b) (3 3.i) 5 c) ( 2 + i. 2) 7 d) (1 i) 3

8 8 2ª FÓRMULA DE De Moivre Sejam z = z.( cos a + i.sen a) e w = w.( cos b + i.sen b), tais que: w n = z w n = z w = z 1/n Portanto: w = z 1/n.[cos ( a + 2kП / n ) + i. sen ( a + 2kП / n )] 19 Determine as raízes cúbicas de i, para isso, siga o procedimento: 1º) Determine a, b e z ; 2º) Determine cos Â, sen  e Â; 3º) Escreva z = i na forma trigonométrica; 4º) Utilize a 2ª fórmula de De Moivre ; 5º) Atribua os valores para k = 1; k = 2; e k = 3 e escreva as raízes na forma algébrica. 20 (UFCE) Sendo z 1 = 7 2i e z 2 = 3 + 5i, então z 1 + z 2 vale: A) 2 B) 3 C) 4 D) 5 E) 6 GABARITO: 19) i, ( 3 i) /2 e ( 3 i) / 2

9 TESTANDO OS CONHECIMENTOS 21 ( UEL - PR ) Na figura ao lado, o ponto P é a imagem de um número complexo z, representado no plano de Gauss.Nessas condições, o módulo de z é igual a: A) 5 B) 2 5 C) 3 5 D) 10 E) 5 22 ( UEPG - PR ) A forma trigonométrica do complexo z = 1 + i é dada por: 9 23 (Mack-SP) Sendo z 1 = 4 + 2i e z 2 = 1 2i, então é igual a: a)5 b) 5 c) 3 5 d)10 e) Determine as raízes quartas de z = 1 + i. Para isso, siga o procedimento: 1º) Determine a, b e z ; 2º) Determine cos Â, sen  e Â; 3º) Escreva z na forma trigonométrica; 4º) Utilize a 2ª fórmula de De Moivre ; 5º) Atribua os valores para k = 1; k = 2; k = 3 e k = 4 escreva as raízes na forma algébrica. 25 Determine as raízes quartas dos seguintes números complexos: a) 1 b) 1 i. 3 c) i

10 Vá correndo acessar... Você só paga R$ 5,00 (Brincadeirinha... É de graça!)

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1

SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1 SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

Números Complexos 2017

Números Complexos 2017 Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.

Leia mais

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2 Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1

Leia mais

b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real.

b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real. 1 Projeto Jovem Nota 10 Números Complexos Lista 2 Professor Marco Costa 1. (Fuvest 2003) Nos itens abaixo, z denota um número complexo e i a unidade imaginária (i = -1). Suponha z i. a) Para quais valores

Leia mais

Revisão números Complexos

Revisão números Complexos ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma

Leia mais

Matemática capítulo 1

Matemática capítulo 1 Matemática capítulo Eercícios propostos 0. Escreva as raízes abaio em função da unidade imaginária: = b) = 4 = 0. Resolva as equações abaio: 7 + = 0 b) + 0 = 0 4 = 0 0. Resolva as equações abaio: 7 = 0

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

1, o valor de (x + y) 2 é. (1 i) é: z= i i é igual a a) 2. b) 0. c) 3. d) 1. 1 i. π. 3. z 1 é igual a

1, o valor de (x + y) 2 é. (1 i) é: z= i i é igual a a) 2. b) 0. c) 3. d) 1. 1 i. π. 3. z 1 é igual a 1 (Unicamp 014) O módulo do número complexo 014 1987 z= i i é igual a a) b) 0 c) d) 1 (Unicamp 01) Chamamos de unidade imaginária e denotamos por i o número complexo tal que i = 1 Então i 0 + i 1 + i +

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

Números Complexos - Forma Algébrica

Números Complexos - Forma Algébrica Matemática - 3ª série Roteiro 07 Caderno do Aluno Números Complexos - Forma Algébrica I - Introdução ao Estudo dos Números Complexos Desafio: 1) Um cubo tem volume equivalente à soma dos volumes de dois

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 11 Matrizes Professor Luciano Nóbrega º Bimestre MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º 45º

Leia mais

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder

Leia mais

2º Trimestre ÁLGEBRA. Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega. Maria Auxiliadora

2º Trimestre ÁLGEBRA. Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega. Maria Auxiliadora 2º Trimestre 1 ÁLGEBRA Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega Maria Auxiliadora SEQUÊNCIA NUMÉRICA 2 SEQUÊNCIA NUMÉRICA Denominamos por Sequência Numérica uma função f, cujo domínio é

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representadas, no plano complexo, as imagens geométricas

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Tarefa 01 Cursista: Maria Amelia de Moraes Corrêa Tutora: Maria Cláudia Padilha Tostes 1 S u m á

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

NÚMEROS COMPLEXOS ANA CRISTINA DA SILVA FERREIRA

NÚMEROS COMPLEXOS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA NÚMEROS COMPLEXOS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL PADRE MANUEL DA NÓBREGA PROFESSORA

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência

Leia mais

Projeto Jovem Nota 10 Números Complexos Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Números Complexos Lista 1 Professor Marco Costa 1 Projeto Jovem Nota 10 Números Complexos Lista 1 Professor Marco Costa 1. (Fuvest 2001) No plano complexo, cada ponto representa um número complexo. Nesse plano, considere o hexágono regular, com centro

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos. Tarefa intermédia nº 9

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos. Tarefa intermédia nº 9 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Complexos Tarefa intermédia nº 9 1. Considere os números complexos z = + i, w = 1 i e t =

Leia mais

Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas

Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas Matemática 7 Complexos, Polinômios e Equações Algébricas Capítulo 1 PVD-07-MA74 01. Dados z 1 = 1 + i; z = i e z 3 = i, então: a) z 1 + z = z 3 b) z 1 z = z 3 c) z 1 z = z 3 d) z 1 z z 3 = + 6i e) z 1

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

PRIMEIRA LISTA PARA A DISCURSIVA DE MATEMÁTICA-COMPLEXOS PROFESSOR PAULO ROBERTO

PRIMEIRA LISTA PARA A DISCURSIVA DE MATEMÁTICA-COMPLEXOS PROFESSOR PAULO ROBERTO 1. (Fuvest 94) a) Se z = cosš + isenš e z = cosš + isenš, mostre que o produto zz é igual a cos (š + š ) + isen(š + š ). b) Mostre que o número complexo z = cos48 + isen48 é raiz da equação z + z + 1 =

Leia mais

NÚMEROS COMPLEXOS. 3) (UFRGS) O valor de x que torna o número complexo m = 2 + (x-i) (2-2i) um imaginário puro é

NÚMEROS COMPLEXOS. 3) (UFRGS) O valor de x que torna o número complexo m = 2 + (x-i) (2-2i) um imaginário puro é NÚMEROS COMPLEXOS ) (UFRGS) A raiz x da equação a x - b=0, para a=+i e b=-i, é (a) -0,5 - i (b) -0,5 + i (c) 0,5 - i (d) 0,5 + i (e) - - i ) (UFRGS) A forma a + bi de z = ( + i) / ( - i) é (a) / + 3/ i

Leia mais

Semana 4 Zeros das Funções

Semana 4 Zeros das Funções 1 CÁLCULO NUMÉRICO Semana 4 Zeros das Funções Professor Luciano Nóbrega UNIDADE 1 Eixo das ordenadas www.professorlucianonobrega.wordpress.com 2 ZEROS DAS FUNÇÕES INTRODUÇÃO Nas diversas áreas científicas,

Leia mais

Mestrado em Ensino da Matemática. Ensino da Matemática II. Ensino da Matemática II - Tânia Lopes

Mestrado em Ensino da Matemática. Ensino da Matemática II. Ensino da Matemática II - Tânia Lopes Mestrado em Ensino da Matemática Ensino da Matemática II Conceito de números: Naturais; Inteiros; Racionais; Reais; E agora, Complexos. Equações de 2º grau Equações do 3º grau No século XVI, em Itália,

Leia mais

Módulo Números Complexos - Forma Algébrica. Introdução à forma polar de um número complexo. 3 ano E.M.

Módulo Números Complexos - Forma Algébrica. Introdução à forma polar de um número complexo. 3 ano E.M. Módulo Números Complexos - Forma Algébrica Introdução à forma polar de um número complexo 3 ano E.M. Introdução à forma polar de um número complexo Exercícios Introdutórios Exercício. Encontre a representação

Leia mais

Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306)

Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Colocado na internet Estude e se baseie nesse trabalho para os seus, mas não copie. Plágio

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, a expressão i + i 1 + i 2 +...i 218 é

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Números Complexos

Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Números Complexos Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Números Complexos Tarefa 1 Cursista: Thiago Thompson Pereira Tutora: Danúbia

Leia mais

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e

Leia mais

Números Complexos. Rafael Aguilar, Gabriella Martos - PIBID Matemática

Números Complexos. Rafael Aguilar, Gabriella Martos - PIBID Matemática Números Complexos Rafael Aguilar, Gabriella Martos - PIBID Matemática 7 de outubro de 2015 0.1 Números Complexos Durante anos, muitos matemáticos foram movidos por problemas que eram aparentemente insolúveis,

Leia mais

Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos

Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos Tarefa 3 Reelaboração do PT1 Cursista : Anderson Ribeiro da Silva

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 3 _ Introdução às Funções Professor Luciano Nóbrega 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS

Leia mais

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS Aula 2 Limites Professor Luciano Nóbrega O LIMITE DE UMA FUNÇÃO 2 2,5,9 Inicialmente, vamos analisar o comportamento da função f definida por

Leia mais

Conjunto dos números complexos

Conjunto dos números complexos NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1

Leia mais

dia 10/08/2010

dia 10/08/2010 Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa Intermédia nº 9 versão A

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa Intermédia nº 9 versão A Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Tarefa Intermédia nº 9 versão A Nome: Nº Turma Data: 0/06/01 Classificação: A Professora: 1. Sabe-se

Leia mais

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y

Leia mais

POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos

POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico

Leia mais

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 7/0/01 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º Complexos: PROFESSOR: Alexandre da Silva Bairrada 1i 1i 1.

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba

PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus Sombrio Curso de Licenciatura em Matemática PLANO DE AULA Dados de identificação Escola:

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares Funções do Plano Complexo(MAT62) Notas de Aulas 2-209 Prof Carlos Alberto S Soares O Plano Complexo Considerando a nossa definição de número complexo, é claro que existe uma correspondênca biunívoca entre

Leia mais

ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 3 _ Introdução às Funções Professor Luciano Nóbrega Maria Auxiliadora 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS y

Leia mais

Conteúdo. 2 Polinômios Introdução Operações... 13

Conteúdo. 2 Polinômios Introdução Operações... 13 Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

Números Complexos - Parte II

Números Complexos - Parte II Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula 17 Números Complexos - Parte II Vamos finalizar nosso estudo dos números complexos apresentando a forma de escrevêlos com

Leia mais

Pré-Cálculo ECT2101 Slides de apoio Funções II

Pré-Cálculo ECT2101 Slides de apoio Funções II Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens. MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um

Leia mais

Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi.

Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi. Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Números Complexos Parte 8 Parte 08 Matemática Básica 1 Parte 08 Matemática Básica 2 Números

Leia mais

NÚMEROS COMPLEXOS AULAS 01 e

NÚMEROS COMPLEXOS AULAS 01 e NÚMEROS COMPLEXOS AULAS 01 e 0-009 0)Sendo z 1 = + i e z = -1 + i, calcule: a) z 1 + z -01) Resolver em IR a equação x +1 = 0 b) z 1 - z 00) Resolver a equação x +1 = 0 c) z 1. z z1 d) z i: a unidade imaginária.

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

Eletrotécnica II Números complexos

Eletrotécnica II Números complexos Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba

PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus Sombrio Curso de Licenciatura em Matemática PLANO DE AULA Dados de identificação Escola:

Leia mais

ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT

ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado

Leia mais

Professor: Marcelo de Moura Costa

Professor: Marcelo de Moura Costa PLANO COMPLEXO HISTÓRICO A associação entre complexos e pontos reais no plano foi feita inicialmente por Caspar Wessel (745-88), Jean Robert Argand (768-8) e Carl Friedrick Gauss (777-855). Embora Wessel

Leia mais

Formação Continuada em Matemática. Matemática 3º ano - 3º Bimestre / Plano de Trabalho 1. Números Complexos

Formação Continuada em Matemática. Matemática 3º ano - 3º Bimestre / Plano de Trabalho 1. Números Complexos Formação Continuada em Matemática Matemática 3º ano - 3º Bimestre / 2014 Plano de Trabalho 1 Números Complexos Tarefa 1 Cursista: Marciele Euzébio de Oliveira Nascimento Grupo:1 Tutora:Bianca Coloneze

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2. setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Semana 2 Limites Uma Ideia Fundamental

Semana 2 Limites Uma Ideia Fundamental 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 2 Limites Uma Ideia Fundamental Professor Luciano Nóbrega UNIDADE 1 2 O LIMITE DE UMA FUNÇÃO Inicialmente, vamos analisar o comportamento da função f definida

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

DVD do professor. banco De questões

DVD do professor. banco De questões coneões com Capítulo 8 números compleos capítulo 8. Escreva na forma algébrica os números compleos abaio. a) i i b) i i i c) e o i. (UEL-PR) Qual é a parte real do número compleo 5 a bi, com a e b reais

Leia mais

Avaliação da implementação do Plano de trabalho 1 Números complexos Por Inara Zaú Tutor:Rodolfo Gregório de Moraes

Avaliação da implementação do Plano de trabalho 1 Números complexos Por Inara Zaú Tutor:Rodolfo Gregório de Moraes Avaliação da implementação do Plano de trabalho 1 Números complexos Por Inara Zaú Tutor:Rodolfo Gregório de Moraes PONTOS POSITIVOS: A introdução história, a história da matemática e principalmente o completar

Leia mais

Notas breves sobre números complexos e aplicações

Notas breves sobre números complexos e aplicações Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se

Leia mais

Números Complexos. Números complexos: Forma Algébrica: Representação geométrica. 1. Identifique Re(z) e Im(z) nos seguintes complexos:

Números Complexos. Números complexos: Forma Algébrica: Representação geométrica. 1. Identifique Re(z) e Im(z) nos seguintes complexos: Números Complexos Números complexos: Forma Algébrica: Representação geométrica 1. Identifique Re(z) e Im(z) nos seguintes complexos: a) z = 3 + 2i b) z = i + 2 c)z = 1 i d)z = 2i ln 2 e) z = 4 f) z = 2i

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE

DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE Instituto Federal de Educação Ciência e Tecnologia Fluminense Campus Macaé DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA Nível Curso Série CH Semanal CH Anual Ensino Médio Integrado AUTOMAÇÃO INDUSTRIAL

Leia mais

Aula 4 Números Complexos - Forma

Aula 4 Números Complexos - Forma Aula 4 Números Complexos - Forma algébrica MÓDULO - AULA 4 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1) Entender o contexto que originou o aparecimento dos números complexos. ) Compreender

Leia mais

Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios

Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Silva - Ensino Médio - 3º ano Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios 3 3 a a

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Números Complexos: uma proposta geométrica PRODUTO DA DISSERTAÇÃO SEQUÊNCIA DIDÁTICA

Leia mais