Resolução das equações

Tamanho: px
Começar a partir da página:

Download "Resolução das equações"

Transcrição

1 Resolução das equações Equação de Difusão (calor) (1D) Equação de odas (corda vibrae) (1D) Equação de aplace (2D) Odas acúsicas: corda (1D) e ambor (2D); odas de água, odas eleromagéicas e odas sísmicas (3D).

2 Equação de odas (corda vibrae) (1D)

3 Problema específico Odas mecâicas em uma corda elásica de comprimeo, ligeiramee esicada ere dois supores sedo o eixo x ao logo da corda (violio,...). Desprezados os efeios de amorecimeo resisêcia do ar. Deslocameo da corda u(x,) 0 x a 2 2 u x 2 = 2 u 2 a 2 = F ρ - F é a força - é a massa/uid. comp. - Codição iicial em = 0 - u(x,0) = f(x) : posição iicial - u (x,0) = g(x) (u = du/d): velocidade iicial - Codição de cooro: u(0,) = u(,) = 0 para 0. (parado as exremidades em qq momeo)

4 Resolução: dois casos 1) Corda elásica com deslocameo iicial ão ulo: u(x,0) = f(x) e u (x,0) = 0 2) Corda elásica colocada em movimeo a parir da posição de equilíbrio u(x,0) = 0, mas com velocidade iicial u (x,0) = g(x). a 2 2 u x 2 = 2 u 2 Separação de variáveis: u(x,) = X(x) T() d 2 X dx X = 0 d 2 T d a 2 T = 0

5 Caso 1 Corda elásica com deslocameo iicial ão ulo: u(x,0) = f(x) e u (x,0) = 0

6 - Codição de cooro: u(0,) = u(,) = 0 para 0. (parado as exremidades em qq momeo) d 2 X dx X = 0 X x = A 1 si x +A 2 cos x d 2 T d a 2 T = 0 T = B 1 si a +B 2 cos cos a

7 d 2 X dx X = 0 - Codição de cooro: u(0,) = u(,) = 0 (somee x!) - A 2 = 0 - A = = π X x = X (x) = A 1 () si π x Da equação em : T = B 1 () si πa u = X(x) T() X x = A 1 si x +A 2 cos x +B 2() cos πa u x, = A 1 () si π x B 1() si πa u x, = si π x A si πa +B cos πa +B 2() cos πa

8 u x, = si π x A si πa +B cos πa Aplicado-se a codição iicial: u(x,0) = f(x) e u (x,0) = 0 u x, = si π u x, 0 = si π πa x u (x,0) = 0 x πa A cos πa A 1 B 0 = 0 B si πa A = 0 u x, = B cos πa si π x Solução geral é a superposição liear de odos u (x,) u x, = B cos πa si π x

9 Resulado para as codições: u(x,0) = f(x) e u (x,0) = 0 u x, = B cos πa si π x Só fala aplicar a codição: u(x,0) = f(x) f x = B si π x Coeficiees B são os coeficiees de Fourier e depedem da forma de f(x). B = 2 f x si πx 0 dx

10 Aálise u x, = B cos πa si π x Para um valor fixo de a fução é periódica o empo cujo período é T = 2/a, pois: cos πa = cos ω ω = πa T = 2π ω São as frequêcias aurais da corda, ou seja, as frequêcias o qual a corda vibra livremee.

11 Aálise (co.) u x, = B cos πa si π x O faor depedee da posição si π x represea o padrão de deslocameo que ocorre a corda ao vibrar em uma dada frequêcia. Cada padrão de deslocameo é chamado de modo aural de vibração e é periódico em x com período o comprimeo de oda do modo de frequêcia Veor de oda = k = 2 / λ = 2 ω que é = πa

12 Resumido... Em : ω = πa ; T = 2π ω T = 2 a Em x: k = π ; = 2π k = 2 u x, = B cos ω si k x com f x = B si π x

13 Caso 2 Corda elásica colocada em movimeo a parir da posição de equilíbrio. Codição iicial: u(x,0) = 0, u (x,0) = g(x).

14 - Codição de cooro: u(0,) = u(,) = 0 para 0. (parado as exremidades em qq momeo) d 2 X dx X = 0 X x = A 1 si x +A 2 cos x d 2 T d a 2 T = 0 T = B 1 si a +B 2 cos cos a

15 - Como as equações difereciais são as mesmas e as codições de cooro são as mesmas o resulado aes de aplicar as codições iiciais são as mesmas do caso 1: u x, = si π x A si πa +B cos πa - Aplicado-se a primeira codição iicial, u(x,0) = 0 : B = 0 u x, = A si π x si πa Solução geral é a superposição liear de odos u (x,) u x, = A si π x si πa

16 - Aplicado-se a seguda codição iicial: u (x,0) = g(x). u x, = A si πx πa si u x, = u x, = A si πx πa πa cos - u (x,0) = g(x) ou seja para = 0. u x, 0 = A si πx πa = g(x)

17 u x, 0 = A si πx - Reescrevedo como: g(x) πa = A si πx πa = g(x) - Chamado de: g(x) πa = f(x) f x = B si π x A = 2 πa 0 A = B - Ou seja: g(x) si π x B = 2 0 f x si π x A = 2 g(x) si π πa 0 x

18 Fialmee u x, = com A si π x si πa A = 2 g(x) si π πa 0 x

19 Equação de odas (corda vibrae) (1D) a 2 2 u x 2 = 2 u 2 d 2 X dx X = 0 d 2 T d a 2 T = 0 Separação de variáveis 0 u(x,) = X(x) T() X x = A 1 si x +A 2 cos x T = B 1 si a +B 2 cos cos a Mesmas codições de cooro para os dois casos: u(0,) = u(,) = 0 para 0. (parado as exremidades em qq momeo) Muda a codição iicial x Corda elásica com deslocameo iicial ão ulo: u(x,0) = f(x) e u (x,0) = 0 B cos πa B = 2 0 f x si π x si π x Corda elásica colocada em movimeo a parir da posição de equilíbrio. Codição iicial: u(x,0) = 0, u (x,0) = g(x). A = 2 A si π πa 0 x si πa g(x) si π x

1 a Lista: MTM146: Prof. Paulo Magalhães:

1 a Lista: MTM146: Prof. Paulo Magalhães: Exercício : Mosre que a solução do sisema de EDO s x y f ( x y y com codições iiciais: x ( ) x() ) ), f saisfazedo x( f ( ) d f ( ) cos( ) d f ( ) cos( ) d f ( ), é dada por Exercício : Resolva o seguie

Leia mais

1 a Lista: MTM146: Prof. Paulo Magalhães:

1 a Lista: MTM146: Prof. Paulo Magalhães: a Lisa: MTM46: Prof Paulo Magalhães: Exercício : Mosre que a solução do sisema de EDO s x y f ( x y y com codições iiciais: x ( x(, f saisfazedo f (, é dada por x( f ( d Exercício : Resolva o seguie y

Leia mais

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42 Isiuo Tecológico de Aeroáuica VIBRAÇÕES MECÂNICAS MPD-4 Isiuo Tecológico de Aeroáuica SISTEMAS DISCRETOS MPD-4 Isiuo Tecológico de Aeroáuica SISTEMAS COM UM GRAU DE LIBERDADE: VIBRAÇÃO FORÇADA MPD-4 3

Leia mais

Exercícios de Análise de Sinal

Exercícios de Análise de Sinal Exercícios de Aálise de Sial Faculdade de Egeharia da Uiversidade do Poro Seembro 006 recolha de problemas de diversos auores edição feia por: H. Mirada, J. Barbosa (000) M. I. Carvalho, A. Maos (003,006)

Leia mais

5 Análise Não-Linear pelos Métodos de Galerkin-Urabe e Balanço Harmônico

5 Análise Não-Linear pelos Métodos de Galerkin-Urabe e Balanço Harmônico álise Não-Liear pelos Méodos de Galerki-Urabe e Balaço Harmôico expressão (.7) obida o Capíulo para a fução de Larae é uilizada essa seção para a obeção das equações difereciais de movimeo uilizadas a

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42 VIBRAÇÕES MECÂNICAS . Irodução CONTEÚDO. Pequeas oscilações em oro de uma posição de equilíbrio Sisemas discreos: 3. Sisemas com um grau de liberdade 4. Sisemas com graus de liberdade modos ormais de vibração

Leia mais

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE EDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES ORÇADAS NÃO HARMONICAMENTE DE SISTEMAS DE 1 GL NOTAS DE AULAS Virgílio

Leia mais

Exercícios de Análise de Sinal

Exercícios de Análise de Sinal Exercícios de Aálise de Sial FEUP DEEC Seembro 008 recolha de problemas de diversos auores edição feia por: H. Mirada, J. Barbosa (000) M.I. Carvalho, A. Maos (003, 006, 008) Coeúdo Complexos 3 Siais 5

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

ONDAS APONTAMENTOS TEÓRICOS. Filipe Santos Moreira 2004/05

ONDAS APONTAMENTOS TEÓRICOS. Filipe Santos Moreira 2004/05 ONDAS AONTAMENTOS TEÓRICOS Filipe Satos Moreira 4/5 Odas (EE) Ídice ÍNDICE... ANÁLISE VECTORIAL... 5. Derivadas parciais... 5.. Derivada de uma fução... 5.. Derivadas parciais... 5..3 Derivadas de fuções

Leia mais

SEGUNDA PROVA DE EDB - TURMA M

SEGUNDA PROVA DE EDB - TURMA M SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...

Leia mais

Corda Elástica Presa Somente em uma das Extremidades

Corda Elástica Presa Somente em uma das Extremidades Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar

Leia mais

Capítulo 5 Difusão em regime transiente

Capítulo 5 Difusão em regime transiente Prof. Dr. Édler L. de lbuquerque, Eg. Química IFB Prof. Dr. Édler L. de lbuquerque, Eg. Química IFB 8//7 Trasf. de assa - ENG 54, apíulo 5 Trasferêcia de assa ENG 54 apíulo 5 Difusão em regime rasiee Prof.

Leia mais

Secção 7. Sistemas de equações diferenciais.

Secção 7. Sistemas de equações diferenciais. 7. Sisemas de equações difereciais Secção 7. Sisemas de equações difereciais. (Farlow: Sec. 6., 6.4 e 6.6) No caso geral, um sisema de equações difereciais de primeira ordem pode ser represeado da seguie

Leia mais

4 Método dos elementos distintos para simular rochas

4 Método dos elementos distintos para simular rochas 4 Méodo dos elemeos disios para simular rochas Em 2004, Poyody e Cudall (56) propuseram um modelo para simular o comporameo de rochas, o BPM ( Boded Paricle Model for rock ). Nesse modelo, a rocha é modelada

Leia mais

ANÁLISE DE SINAIS E SISTEMAS

ANÁLISE DE SINAIS E SISTEMAS ANÁLISE DE SINAIS E SISTEMAS AULA 3: OPERAÇÕES BÁSICAS EM SINAIS: OPERARAÇÕES NAS VARIÁVEIS DEPENDENTES; OPERARAÇÕES NA VARIÁVEL INDEPENDENTE. FUNÇÕES ELEMENTARES: O DEGRAU UNITÁRIO; A RAMPA UNITÁRIA;

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8 - - -4-6 -8-3 -3 Frequecy (khz Hammig kaiser Chebyshev Siais e Sisemas Power Specral Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy (db/hz Sie Wave Joi Acuaor Joi Sesor

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

Resolução das equações

Resolução das equações Resolução das equações Equação de Difusão (calor) (1D) Equação de ondas (corda virante) (1D) Equação de Laplace (2D) - Difusão térmica em estado estacionário (2D e 3 D); - Função potencial de uma partícula

Leia mais

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCE DEPARAMENO DE ENGENHARIA ELÉRICA Disciplia de Pricípios de elecomuicações Pro. MC. Leoardo Gosioroski da Silva Séries e rasormadas de Fourier Aálise de um sial seoidal o empo

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

Ondas e Dispersão. Seminário de Matemática. Jorge Drumond Silva. Departamento de Matemática Instituto Superior Técnico.

Ondas e Dispersão. Seminário de Matemática. Jorge Drumond Silva. Departamento de Matemática Instituto Superior Técnico. Ondas e Dispersão Seminário de Matemática Jorge Drumond Silva Departamento de Matemática Instituto Superior Técnico jsilva@math.ist.utl.pt 1 Ondas 2 3 4 Ondas de Choque 5 Interacção e Interferência 6 Definição

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental. Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(

Leia mais

Aula 26 Separação de Variáveis e a Equação da Onda.

Aula 26 Separação de Variáveis e a Equação da Onda. Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a

Leia mais

- Processamento digital de sinais Capítulo 2 Sinais e sistemas discretos

- Processamento digital de sinais Capítulo 2 Sinais e sistemas discretos - Processameo digial de siais Capíulo Siais e sisemas discreos Siais discreos Siais aalógicos x digiais Coíuos x discreo Admiido como sequêcia de úmeros. {x[]}, 0, ±, ±,... Z Período amosragem: s Variáveis

Leia mais

Ondas e Dispersão. Escola de Inverno de Matemática Jorge Drumond Silva. Departamento de Matemática Instituto Superior Técnico

Ondas e Dispersão. Escola de Inverno de Matemática Jorge Drumond Silva. Departamento de Matemática Instituto Superior Técnico Ondas e Dispersão Escola de Inverno de Matemática 2015 Jorge Drumond Silva Departamento de Matemática Instituto Superior Técnico jsilva@math.ist.utl.pt 1 Ondas 2 3 4 Ondas de Choque 5 Interacção e Interferência

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante. Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da

Leia mais

5 Modelo Teórico Modelagem determinística

5 Modelo Teórico Modelagem determinística 5 Modelo Teórico Nese rabalho será adoada a simulação de Moe Carlo para precificar as opções reais do projeo, uilizado o sofware @Risk. O modelo eórico aplicado é baseado a premissa de que o valor presee

Leia mais

Física para Engenharia II - Prova de Recuperação

Física para Engenharia II - Prova de Recuperação 43096 Física para Engenharia II - Prova de Recuperação - 03 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos

Leia mais

CONCEITOS DE VIBRAÇÃO

CONCEITOS DE VIBRAÇÃO CONCEITOS DE VIBRAÇÃO Paulo S. Varoto 55 3.1 - Itrodução O objetivo pricipal desta secção é o de apresetar coceitos básicos da teoria de vibrações bem como iterpretá-los sob o poto de vista dos esaios

Leia mais

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói CES Cetro de Esio Superior de C. Lafaiete Faculdade de Egeharia Elétrica Física II Prof. Aloísio Elói Superposição e Odas Estacioárias Resumo Serway & Jewett, capítulo 14. 1. Pricípío da superposição:

Leia mais

MOSFET: O MOSFET canal p e a Resistência de Saída Aula 3

MOSFET: O MOSFET canal p e a Resistência de Saída Aula 3 MOSFET: O MOSFET caal p e a Resisêcia de Saída Aula 3 49 Aula Maéria Cap./págia ª 03/08 Elerôica PS33 Programação para a Primeira Prova Esruura e operação dos rasisores de efeio de campo caal, caracerísicas

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Unidimensionais Equação de Unidimensionais Harmônicas em cordas Roteiro Unidimensionais Equação

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCIAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Reflexão de Roteiro Reflexão de 1 Reflexão de Reflexão de Suponhamos, agora, que as ondas

Leia mais

Capacidade térmica de sólidos

Capacidade térmica de sólidos Capítulo 5 Capacidade térmica de sólidos 1 Relação de dispersão As excitações elementares num sólido correspondem a ondas elásticas. Para exemplificar, considere uma cadeia de N átomos ligados por molas

Leia mais

Equações Diferenciais com Derivadas Parciais

Equações Diferenciais com Derivadas Parciais 1/13 Equações Diferenciais com Derivadas Parciais Chamam-se equações principais da física matemática às seguintes equações diferenciais com derivadas parciais de segunda ordem: 2/13 2 u t 2 = a 2 2 u x

Leia mais

GABARITO DO GE5 ONDAS ESTACIONÁRIAS, BATIMENTOS E EFEITO DOPPLER

GABARITO DO GE5 ONDAS ESTACIONÁRIAS, BATIMENTOS E EFEITO DOPPLER GABARTO DO GE ONDAS ESTACONÁRAS, BATMENTOS E EFETO DOPPLER.9 Exercícios de Fixação G.E..9.1) Duas odas 1 e estão presetes em uma corda: y 1 (3 mm) se [(, rad/m)x - (1,7 rad/s)t] y (3 mm) se [(, rad/m)x

Leia mais

Quarta lista de exercícios da disciplina SMA0353- Cálculo I

Quarta lista de exercícios da disciplina SMA0353- Cálculo I Quarta lista de exercícios da disciplina SMA0353- Cálculo I Exercícios da Seção 2.7 1. Uma curva tem por equação y = f(x). (a) Escreva uma expressão para a inclinação da reta secante pelos pontos P (3,

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

MAP0214 Cálculo Numérico com

MAP0214 Cálculo Numérico com MAP0214 Cálculo Numérico com Aplicações em Física 2 o Semestre de 2006. June 19, 2007 1 Método dos Mínimos Quadrados em duas variáveis 1.1 Introdução. O objetivo deste texto é apresentar aplicações do

Leia mais

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO 1 EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO Bruno Claudino dos Santos, Viviane Colucci, Vitória Maria Almeida Teodoro de Oliveira, Felipe Borino Giroldo, eticia Darlla Cordeiro. Universidade Tecnológica

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletromagetismo 1 o Semestre de 7 Noturo - Prof. Alvaro Vaucci 1 a aula 7/fev/7 ivros-texto: eitz-milford Griffiths Vamos relembrar as 4 equações básicas do Eletromagetismo 1 a ) ei de Gauss: O Fluxo do

Leia mais

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18.

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18. Gabarito da a Prova Unificada de Cálculo IV Dezembro de a Questão: (. pts) Resolva o problema de contorno: x y 6xy + y =, x > y() =, y() = 8. Solução: Como se trata de uma equação de Euler, a solução geral

Leia mais

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS 4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS Muitas vezes os experimetos requerem medidas de gradezas físicas que variam com o tempo. Para a correta medição destas gradezas, é ecessário cohecer as propriedades

Leia mais

ECONOMIA DOS RECURSOS NATURAIS. A gestão dos recursos naturais recursos renováveis

ECONOMIA DOS RECURSOS NATURAIS. A gestão dos recursos naturais recursos renováveis ECONOMIA DOS RECURSOS NATURAIS A gesão dos recursos aurais recursos reováveis Recursos biológicos Os recursos biológicos diferem dos recursos ão reováveis o seido em que aqueles crescem e se reproduzem

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) =

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) = Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito seg. prova unificada - Escola Politécnica / Escola de Química - 1/06/018 Questão 1: (.5 pontos) Seja f : [0,] R a função

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A Séries de Fourier Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke As séries de Fourier são a ferramente básica para se representar as funções periódicas, as quais desempenham um importante

Leia mais

MAGISTÉRIO MATEMÁTICA

MAGISTÉRIO MATEMÁTICA PROVA DE CONHECIMENTOS ESPECÍFICOS CONCURSO DE ADMISSÃO 0 ao CFO/QC - 0 PAG -6 4 Aalise as afirmaivas a seguir, colocado ere parêeses a lera V quado se raar de proposição verdadeira e a lera F quado se

Leia mais

UM ESTUDO SOBRE EFEITOS DISPERSIVOS EM EQUAÇÕES DIFERENCIAIS PARCIAIS 1 A STUDY ON THE DISPERSIVE EFFECTS IN PARTIAL DIFFERENTIAL EQUATIONS

UM ESTUDO SOBRE EFEITOS DISPERSIVOS EM EQUAÇÕES DIFERENCIAIS PARCIAIS 1 A STUDY ON THE DISPERSIVE EFFECTS IN PARTIAL DIFFERENTIAL EQUATIONS Disc. Scieia. Série: Ciêcias Narais e Tecológicas, S. Maria, v. 9,., p. 75-86, 008. 75 ISSN 98-84 UM ESTUDO SOBRE EFEITOS DISPERSIVOS EM EQUAÇÕES DIFERENCIAIS PARCIAIS A STUDY ON THE DISPERSIVE EFFECTS

Leia mais

FUNDAMENTOS DE CONTROLE - EEL 7531

FUNDAMENTOS DE CONTROLE - EEL 7531 Soluções periódicas e ciclos limite Funções descritivas FUNDAMENTOS DE CONTROLE - EEL 7531 Professor: Aguinaldo S. e Silva LABSPOT-EEL-UFSC 9 de junho de 2015 Professor: Aguinaldo S. e Silva FUNDAMENTOS

Leia mais

1. Calcule as integrais de linha de primeira espécie. (a) (b)

1. Calcule as integrais de linha de primeira espécie. (a) (b) Lista de Exercícios de álculo 3 Nona Semana Parte 1. alcule as integrais de linha de primeira espécie. xds sobre o arco da parábola y = x 2 de (0, 0) a (1, 1). x2 + y 2 ds sobre a curva r(t) = 4 cos ti

Leia mais

36 a Aula AMIV LEAN, LEC Apontamentos

36 a Aula AMIV LEAN, LEC Apontamentos 36 a Aula 004113 AMIV EAN, EC Apontamentos (RicardoCoutinho@mathistutlpt) 361 Equação do Calor não homogénea Considere-se o problema do calor numa barra de comprimento ecomconstante dedifusão térmica k,

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016 Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =

Leia mais

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto

Leia mais

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos:

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos: Crso de iâica das Esrras 5 III ESTRUTURAS COM VÁRIOS GRAUS E LIBERAE III. Eqações do Movieo No exelo de rês gras de liberdade (GLs) logidiais, ara cada a das aríclas, eos: x F x F x F As orças elásicas

Leia mais

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T.

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T. Capítulo 4 CONDUÇÃO BI-DIMENSIONAL REGIME PERMANENE ρc p t =! # x k " x $ &! # % y k " y $ &! % z k $ # &!q " z % < q Equação de calor (k cte e se geração coordeadas cartesiaas): x y = 4.- Método de separação

Leia mais

0 = 4,0 cm cos(φ) 4,0 cm = 4,0 cm cos( π 2 +φ) (20 cm) 4,0 cm 2π. (10 s)

0 = 4,0 cm cos(φ) 4,0 cm = 4,0 cm cos( π 2 +φ) (20 cm) 4,0 cm 2π. (10 s) ± π 2 y(0, t) 0 = 4,0 cm cos(φ) 4,0 cm = 4,0 cm cos( π 2 +φ) + π 2 y x, t = A cos(kx ωt + φ) y 0, t = A cos( ωt + φ) 2π (20 cm) 4,0 cm 2π (10 s) y x, t = (4,0 cm) cos 2π 2π x (20 cm) (10 s) t + π 2 v =

Leia mais

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba]

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba] [z7ba] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um em cada

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

2-TRANSFORMAÇÃO DE COORDENADAS: PARÂMETROS DE REPRESENTAÇÃO

2-TRANSFORMAÇÃO DE COORDENADAS: PARÂMETROS DE REPRESENTAÇÃO 2-TANSFOMAÇÃO DE COODENADAS: PAÂMETOS DE EPESENTAÇÃO 2.1 Cosseos Dreores e a Mar de oação Seam dos ssemas caresaos um de referêca e ouro fo um corpo rígdo defdos pelos ssemas ( e ( respecvamee que são

Leia mais

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em. Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Séries de Fourier AM3D. Generalidades sobre funções periódicas

Séries de Fourier AM3D. Generalidades sobre funções periódicas 11 1 Séries de Fourier AM3D Geeralidades sobre fuções periódicas Defiição 1 Seja f uma fução da variável real. Diz-se que f é periódica de período T > se x D f, f(x+t = f(x. Exemplo As fuções seo e co-seo

Leia mais

SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS

SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Notas de aula- Física II Profs. Amauri e Ricardo SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Superposição de Odas O pricípio de superposição é uma propriedade do movimeto odulatório. Este pricípio afirma

Leia mais

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 3 Professora: Mazé Bechara Aula 3 Alicações de Wilso-Sommerfeld. A roosta de de Broglie de caráter dual das artículas materiais 1. Alicações de Wilso-Sommerfeld:

Leia mais

Capítulo 18 Movimento ondulatório

Capítulo 18 Movimento ondulatório Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas das versıes de m ltipla escolha: 16A7: (1) C; () D; (3) C; (4) D; 3A33: (1) C; () B; (3) C; (4) E; E7Hx: (1) C; () B; (3) B; (4) C; 11F: (1) A;

Leia mais

Aula 5: O MOSFET como Amplificador e como Chave

Aula 5: O MOSFET como Amplificador e como Chave Aula 5: O MOSFET como Amplificador e como Chave Aula Maéria Cap./págia ª 03/08 Elerôica PS33 Programação para a Primeira Prova Esruura e operação dos rasisores de efeio de campo caal, caracerísicas esão-corree.

Leia mais

INTERFERÊNCIA, ONDAS ESTACIONÁRIAS, ONDAS NÃO HARMÔNICAS

INTERFERÊNCIA, ONDAS ESTACIONÁRIAS, ONDAS NÃO HARMÔNICAS INTERFERÊNCIA, ONDAS ESTACIONÁRIAS, ONDAS NÃO HARMÔNICAS Aula 5 META Itroduzir aos aluos coceitos da iterferêcia das odas, odas estacioárias e odas ão harmôicas. Mostrar o papel que as odas estacioárias

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. A equação de uma onda transversal se propagando ao longo de uma corda muito longa é, onde e estão expressos em centímetros e em segundos. Determine (a) a amplitude, (b) o comprimento de onda,

Leia mais

Luz e Ondas Eletromagnéticas ONDAS MECÂNICAS. Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz

Luz e Ondas Eletromagnéticas ONDAS MECÂNICAS. Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz 7 ONDAS MECÂNICAS Luiz Nunes de Oliveira Daniela Jacobovitz 71 Introdução 72 Oscilação simples 73 Corda vibrante 74 Características da onda na corda 741 Velocidade 742 Comprimento de onda 75 Som 76 Velocidade

Leia mais

Ondas ONDAS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 23 de maio de R.R.Pelá

Ondas ONDAS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 23 de maio de R.R.Pelá ONDAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Sonoras Roteiro Sonoras 1 Sonoras Sonoras Vamos considerar uma corda de comprimento L presa nas duas extremidades.

Leia mais

2 Mecânica da Fratura

2 Mecânica da Fratura Mecâica da Fraura Ese capíulo desia-se a apresear os coceios básicos da Mecâica da Fraura. Desa forma, quaro seções são apreseadas. A primeira seção apresea os primeiros esudos a Mecâica da Fraura. A seguda

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 5 Professora: Mazé Bechara Aula 5 Aida o átomo de H. A proposta de de Broglie de caráter dual das partículas materiais 1. Aida o átomo de hidrogêio, a procura do

Leia mais

Sistemas de Controle I

Sistemas de Controle I 4. Repoa o Domíio do Tempo Pólo, Zero e Repoa do Siema: Defiiçõe Siema de Corole I Repoa do iema: oma da repoa forçada repoa aural. Repoa forçada é ambém chamada de repoa eacioária ou olução paricular;.

Leia mais

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4 CAPÍTULO 9 Exercícios 9.. Ï0, x e. Seja f( x) Ìx, se x0 Ó, se 0x Temos È 0 f x dx x dx dx ( ) Í ( ) Î 0 È 0 ù an f x dx x dx dx ( ) cos Í Î ( ) cos cos ú 0 û n n n an È cos sen ù Ê cos ˆ ÎÍ n ûú Ë È 0

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

z 0 0 w = = 1 Grupo A 42. alternativa C det A = Como A é inteiro positivo, então n deve ser par. 43. A comuta com B A B = B A

z 0 0 w = = 1 Grupo A 42. alternativa C det A = Como A é inteiro positivo, então n deve ser par. 43. A comuta com B A B = B A Resoluções das aividades adicioais Capíulo 6 Grupo A. aleraiva C de A 6 (de A) 8 de A. aleraiva C de A de( A) (de A) de A (de A) de A Como A é ieiro posiivo, eão deve ser par.. A comua com B A B B A y

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8.

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8. MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de 6 - a Lista de exercícios. Obter uma expressão das somas das séries abaixo e os respectivos raios de covergêcia, usado derivação e itegração

Leia mais

Capítulo 1 Tensão. (corresponde a σ

Capítulo 1 Tensão. (corresponde a σ Capíulo Tesão Problema Cosidere o esado bidimesioal de esões idicado a figura. Deermie: a) os valores e as direcções das esões pricipais do esado dado; b) compoees irísecas o plao que faz o âgulo de 0º

Leia mais