Aula 26 Separação de Variáveis e a Equação da Onda.

Tamanho: px
Começar a partir da página:

Download "Aula 26 Separação de Variáveis e a Equação da Onda."

Transcrição

1 Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

2 Equação da Onda Considere uma corda elástica de comprimento L preza nas extremidades em suportes de mesmo nível horizontal. Vamos denotar por upx, tq o deslocamento vertical da ponta no ponto ď x ď L no instante t ě. Desprezando efeitos de amortecimento e supondo que a amplitude do movimento não é grande, u satisfaz a equação diferencial parcial a 2 u xx u tt, em que a é a velocidade de propagação de ondas ao longo da corda (depende da tensão e da massa por unidade de comprimento). Para descrever o movimento da corda, precisamos também das condições iniciais e de contorno.

3 Condições de Iniciais e de Contorno Como as extremidades da corda permanecem fixas, as condições de contorno são: up, tq e upl, tq. As condições iniciais são: Posição inicial: upx, q f pxq, ď x ď L. Velocidade inicial: u t px, q gpxq, ď x ď L. em que f e g são funções tais que f pq f plq e gpq gplq.

4 Corda Elástica com Deslocamento Não-Nulo Iniciaremos o estudo do problema de vibrações de uma corda elástica admitindo que a velocidade inicial é nula, ou seja, ď x ď L. Em outras palavras, considere o problema $ a 2 u xx u tt, & up, tq e upl, tq, upx, q f pxq, ď x ď L, % u t px, q, ď x ď L,. em que f pq f plq descreve a configuração inicial da corda.

5 Separação de Variáveis Vamos admitir que u pode ser escrita como upx, tq XpxqT ptq, em que X depende apenas de x e T depende somente de t. Derivando e substituindo na equação diferencial parcial, obtemos X 2 X 1 T 2 a 2 T λ, em que λ é uma constante de separação. Equivalentemente, temos as equações diferenciais ordinárias X 2 ` λx e T 2 ` a 2 λt.

6 Usando a condição de contorno, encontramos o problema X 2 ` λx, Xpq XpLq, cuja solução é X m pxq sen mπx L e λ m mπ 2, m 1, 2,.... L Com as constantes de separação acima, obtemos a EDO cujas soluções são T 2 ` ω 2 T, com ω mπa L, T ptq k 1 cospωtq ` k 2 senpωtq.

7 Como a velocidade inicial é nula, deduzimos u t px, q XpxqT 1 ď x ď L ùñ T 1 pq. Como temos T 1 ptq ωk 1 senpωtq ` ωk 2 cospωtq, T 1 pq ùñ k 2. Assim, as soluções fundamentais da equação da onda, com as condições de contorno e a segunda condição inicial, são mπx mπx ˆmπat u m px, tq sen cospωtq sen cos, L L L para m 1, 2,.... Note que u m é periódica no tempo com período 2L{ma.

8 A superposição das soluções fundamentais fornece upx, tq 8ÿ m 1 c m sen mπx cos L ˆmπat L. Finalmente, a condição inicial upx, q f pxq, fornece upx, q 8ÿ m 1 c m sen mπx f pxq. L Portanto, admitindo que f é uma função ímpar com período T 2L, concluímos que os coeficiente satisfazem c m 2 L ż L f pxq sen mπx dx, m 1, 2,.... L

9 Concluindo, a solução do problema $ a 2 u xx u tt, & up, tq e upl, tq, upx, q f pxq, ď x ď L, % u t px, q, ď x ď L,. é em que upx, tq c m 2 L ż L 8ÿ m 1 c m sen f pxq sen mπx cos L ˆmπat L, mπx dx, m 1, 2,.... L

10 Observações A solução é a superposição de funções periódicas no tempo com período 2L{ma. As quantidades mπa{l são chamadas frequências naturais da corda. O fator sen ` mπx L é chamado modo natural de vibração. O período do modo natural de vibração 2L{m é chamado comprimento da onda.

11 Exemplo 1 Considere uma corda vibrante de comprimento L 3 que satisfaz a equação da onda 4u xx u tt, ă x ă 3 e t ą. Suponha que as extremidades da corda estão fixas e que a corda é colocada em movimento sem velocidade inicial da posição inicial # x 1, ď x ď 1, upx, q p3 xq 2, 1 ă x ď 3. Encontre o deslocamento upx, tq da corda.

12 Exemplo 1 Considere uma corda vibrante de comprimento L 3 que satisfaz a equação da onda 4u xx u tt, ă x ă 3 e t ą. Suponha que as extremidades da corda estão fixas e que a corda é colocada em movimento sem velocidade inicial da posição inicial # x 1, ď x ď 1, upx, q p3 xq 2, 1 ă x ď 3. Encontre o deslocamento upx, tq da corda. Resposta: upx, tq 9 π 2 A solução é 8ÿ m 1 1 mπ m 2 sen sen 3 mπx cos 3 ˆ2mπt 3.

13 t=

14 t=

15 t=

16 t=

17 t=

18 t=

19 t=

20 t=

21 t=

22 t=

23 t=

24 t=

25 t=

26 t=

27 t=

28 t=

29 t=

30 t=

31 t=

32 t=

33 t=

34 t=

35 t=

36 t=

37 t=

38 t=

39 t=

40 t=

41 t=

42 t=

43 t=

44 Corda Elástica com Velocidade Não-Nula Um problema semelhante ao discutido anteriormente, consiste no estudo das vibrações de uma corda que é colocada em movimento a partir do repouso com uma velocidade dada. Formalmente, temos o problema $ a 2 u xx u tt, & up, tq e upl, tq, upx, q, ď x ď L, % u t px, q gpxq, ď x ď L, em que gpxq é a velocidade inicial da corda no ponto x.

45 Procedendo de forma semelhante, concluímos que a solução é em que upx, tq k m 2 mπa ż L 8ÿ m 1 k m sen gpxq sen mπx sen L ˆmπat L, mπx dx, m 1, 2,.... L Esclarecemos que o fator 2{pmπaq multiplicando a integral acima aparece porque precisamos identificar a série de Fourier em senos da derivada u t px, tq 8ÿ m 1 mπa mπx L k m sen cos L com a série de Fourier em senos de g. ˆmπat L,

46 Problema Geral para a Corda Elástica Finalmente, a solução do problema geral $ a 2 u xx u tt, & up, tq e upl, tq, upx, q f pxq, ď x ď L, % u t px, q gpxq, ď x ď L, em que f pxq e gpxq descrevem, respectivamente, a posição e a velocidade inicial da corda no ponto x, é obtido superpondo as soluções dos problemas anteriores, ou seja, upx, tq vpx, tq ` wpx, tq, em que v e w são as soluções da corda elástica com deslocamento não-nulo e velocidade não-nula, respectivamente.

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a

Leia mais

Corda Elástica Presa Somente em uma das Extremidades

Corda Elástica Presa Somente em uma das Extremidades Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de

Leia mais

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante. Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

36 a Aula AMIV LEAN, LEC Apontamentos

36 a Aula AMIV LEAN, LEC Apontamentos 36 a Aula 004113 AMIV EAN, EC Apontamentos (RicardoCoutinho@mathistutlpt) 361 Equação do Calor não homogénea Considere-se o problema do calor numa barra de comprimento ecomconstante dedifusão térmica k,

Leia mais

SEGUNDA PROVA DE EDB - TURMA M

SEGUNDA PROVA DE EDB - TURMA M SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) =

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) = Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito seg. prova unificada - Escola Politécnica / Escola de Química - 1/06/018 Questão 1: (.5 pontos) Seja f : [0,] R a função

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

Seção 29 Ortogonalidade das funções de Bessel Membrana circular

Seção 29 Ortogonalidade das funções de Bessel Membrana circular Seção 9 Ortogonalidade das funções de Bessel Membrana circular Vamos considerar o problema de determinar vibrações livres de uma membrana presa pelo bordo tambor), conhecidos o deslocamento e a velocidade

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

Capítulo 8 Equações Diferenciais Parciais

Capítulo 8 Equações Diferenciais Parciais Capítulo 8 Equações Diferenciais Parciais Equação de Onda Transversal em Uma Dimensão Seja uma onda se propagando em 1 dimensão na direção. A deflexão dessa onda é descrita por uma função de 2 variáveis.

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Modelagem Matemática das Vibrações de uma Corda Elástica

Modelagem Matemática das Vibrações de uma Corda Elástica Modelagem Matemática das Vibrações de uma Corda Elástica Rossato, Jéssica Helisa Hautrive 1 ; Bisognin, Eleni 2 Trabalho de Iniciação Científica, Probic - CNPq 1 Curso de Engenharia de Materiais do Centro

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCIAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Reflexão de Roteiro Reflexão de 1 Reflexão de Reflexão de Suponhamos, agora, que as ondas

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18.

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18. Gabarito da a Prova Unificada de Cálculo IV Dezembro de a Questão: (. pts) Resolva o problema de contorno: x y 6xy + y =, x > y() =, y() = 8. Solução: Como se trata de uma equação de Euler, a solução geral

Leia mais

Questão 1: (2.5 pontos) f(x) =

Questão 1: (2.5 pontos) f(x) = Página 1 de 7 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito prim. prova unificada - Escola Politécnica / Escola de Química - 07/07/010 Questão 1: (.5 pontos Seja

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova de Recuperação - 14/02/200 - Gabarito 1. Uma massa é abandonada com velocidade inicial igual a zero de modo que atinge o solo 10 segundos depois de solta. Desprezando

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em. Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série

Leia mais

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ).

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ). A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = (τ sen θ). Aqui assumimos que θ

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

1 [20] O problema difusivo

1 [20] O problema difusivo TEA13 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental UFPR F 1 Dez 218 Prof. Nelson Luís Dias Declaro que segui o código de ética do Curso de Engenharia Ambiental

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno

Leia mais

Problema de Dirichlet no Círculo e em Regiões Circulares

Problema de Dirichlet no Círculo e em Regiões Circulares Problema de Dirichlet no Círculo e em Regiões Circulares Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples. 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

Equações Diferenciais com Derivadas Parciais

Equações Diferenciais com Derivadas Parciais 1/13 Equações Diferenciais com Derivadas Parciais Chamam-se equações principais da física matemática às seguintes equações diferenciais com derivadas parciais de segunda ordem: 2/13 2 u t 2 = a 2 2 u x

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

Prof. Oscar 2º. Semestre de 2013

Prof. Oscar 2º. Semestre de 2013 Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Lista de Exercícios - ONDAS I - Propagação, Interferência e Ondas Estacionárias. Prof: Álvaro Leonardi Ayala Filho

Lista de Exercícios - ONDAS I - Propagação, Interferência e Ondas Estacionárias. Prof: Álvaro Leonardi Ayala Filho UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - ONDAS I - Propagação, Interferência e Ondas Estacionárias. Prof:

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações ) Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

Capítulo 4 O Oscilador Amortecido

Capítulo 4 O Oscilador Amortecido Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional

Leia mais

Entender o Princípio da Superposição;

Entender o Princípio da Superposição; Page 1 of 7 Princípio da Superposição Guia de Estudo: Após o estudo deste tópico você deve ser capaz de: Entender o Princípio da Superposição; Reconhecer os efeitos da Interferência das ondas; Distinguir

Leia mais

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana Ondas transversas: pulsos numa corda, mola, etc. Ondas longitudinais: mola, som, etc. Diferentes tipos

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço.

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. 16 ONDAS 1 16.3 Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. Onda transversal: a deformação é transversal à direção de propagação. Deformação Propagação 2 Onda longitudinal:

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

Reginaldo J. Santos. Universidade Federal de Minas Gerais 22 de novembro de 2007

Reginaldo J. Santos. Universidade Federal de Minas Gerais  22 de novembro de 2007 Séries de Fourier e Equações Diferenciais Parciais Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.r/~regi de novemro de 7 Sumário Séries de

Leia mais

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP Aula 18: Cordas Vibrantes e Intensidade de Uma Onda Prof a Nair Stem Instituto de Física da USP Cordas Vibrantes Considere vibrações transversais em uma corda distendida como as que encontramos em instrumentos

Leia mais

Ondas ONDAS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 23 de maio de R.R.Pelá

Ondas ONDAS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 23 de maio de R.R.Pelá ONDAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Sonoras Roteiro Sonoras 1 Sonoras Sonoras Vamos considerar uma corda de comprimento L presa nas duas extremidades.

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

b) (0,5) Supondo agora que µ é uma função linear de x e que µ = µ 0 para x = 0 e µ = µ L para x = L. Obter µ(x) para o intervalo 0 x L.

b) (0,5) Supondo agora que µ é uma função linear de x e que µ = µ 0 para x = 0 e µ = µ L para x = L. Obter µ(x) para o intervalo 0 x L. Problemas 1) (2,5) Um bloco de massa m = 0, 05 kg, apoiado sobre uma mesa horizontal sem atrito, está ligado à extremidade de uma mola de constante elástica k = 20 N/m. Este conjunto está imerso em um

Leia mais

Exercícios de Complementos de Matemática I

Exercícios de Complementos de Matemática I Exercícios de Complementos de Matemática I 9 de Novembro de 018 Semana I-II-III Do Leithold: Exercicios 1.1: ex. 1 até 56. Exercicios de revisão do cap. 1., pag 5-53: ex 1 até ex 0. Exercìcio 1. Sejam

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Capítulo 18 Movimento ondulatório

Capítulo 18 Movimento ondulatório Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,

Leia mais

Cap. 16 Ondas I. Prof. Oscar 1º. Semestre de 2011

Cap. 16 Ondas I. Prof. Oscar 1º. Semestre de 2011 Cap. 16 Ondas I Prof. Oscar 1º. Semestre de 011 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I PROF.: KAIO DUTRA Tipos de Ondas As ondas podem ser de três tipos principais: Ondas Mecânicas: São governadas pelas leis de Newton e existem apenas

Leia mais

6. Mecânica Quântica

6. Mecânica Quântica 6. Mecânica Quântica Sumário A função de onda A equação de Schrödinger Partícula em uma caixa Poço de potencial Barreira de potencial e o efeito túnel Oscilador harmônico A função de onda Ψ descreve uma

Leia mais

Problemas de Mecânica e Ondas 7

Problemas de Mecânica e Ondas 7 Problemas de ecânica e Ondas 7 P 7. Considere que as vagonetas de massa m e m (ver figur podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos, para efeito da descrição

Leia mais

Mecânica e Ondas. Ondas estacionárias em cordas vibrantes

Mecânica e Ondas. Ondas estacionárias em cordas vibrantes Mecânica e Ondas Ondas estacionárias em cordas vibrantes Objectivo Estudo das ondas estacionárias em cordas vibrantes. Estudo da variação da frequência de ressonância da onda com a tensão e o comprimento

Leia mais

Mecânica e Ondas. Ondas estacionárias em cordas vibrantes

Mecânica e Ondas. Ondas estacionárias em cordas vibrantes Mecânica e Ondas Ondas estacionárias em cordas vibrantes Objectivo Estudo das ondas estacionárias em cordas vibrantes. Estudo da variação da frequência de ressonância da onda com a tensão e o comprimento

Leia mais

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Limites no infinito Exercício 1: Calcule os seguintes limites (a) (b) (c) (d) ( 1 lim 10 x + x +

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2

Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2 Eletromagnetismo Aplicado Propagação de Ondas Guiadas Guias de Onda - 1/2 Heric Dênis Farias hericdf@gmail.com PROPAGAÇÃO DE ONDAS GUIADAS - GUIAS DE ONDA 1/2 Introdução; Guia de Onda Retangular; Modos

Leia mais

Mecânica e Ondas 1º Ano -2º Semestre 2º Teste/1º Exame 05/06/ :00h. Mestrado Integrado em Engenharia Aeroespacial

Mecânica e Ondas 1º Ano -2º Semestre 2º Teste/1º Exame 05/06/ :00h. Mestrado Integrado em Engenharia Aeroespacial Mestrado Integrado em Engenharia Aeroespacial Mecânica e Ondas 1º Ano -º Semestre º Teste/1º Exame 05/06/013 15:00h Duração do Teste (problemas 3, 4 e 5): 1:30h Duração do Exame: :30h Leia o enunciado

Leia mais

EXERCÍCIOS PARA A LISTA 6 CAPÍTULO 20 ONDAS MECÂNICAS. NOME: Turma:

EXERCÍCIOS PARA A LISTA 6 CAPÍTULO 20 ONDAS MECÂNICAS. NOME: Turma: Exercícios Conceituais QUESTÃO 1. As crianças montam um telefone de brinquedo fazendo passar as extremidades de um fio através de um orifício feito em um copo de papel e amarrando-as de modo que o fio

Leia mais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu

Leia mais

A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição

A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição O princípio de superposição nos diz que quando houver mais de uma onda se propagando em uma corda, a onda resultante

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Universidade Federal Rural do Semi-Árido - UFERSA Ondas Subênia Karine de Medeiros Mossoró, Outubro de 2009 Ondas Uma ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Ondas Eletromagnéticas

Ondas Eletromagnéticas Capítulo 11 Ondas Eletromagnéticas 11.1 Equação de Onda Mecânica: Corda Considere um pulso de onda que se propaga em uma corda esticada com extremidades fixas. Podemos obter a equação de ondas nesse caso

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba]

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba] [z7ba] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um em cada

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

fig. III.1. Exemplos de ondas.

fig. III.1. Exemplos de ondas. Unidade III - Ondas fig III Exemplos de ondas Situando a Temática Nesta unidade temática daremos algumas ideias do fenômeno ondulatório e sua introdução como modelo matemático, especialmente em uma corda

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. A equação de uma onda transversal se propagando ao longo de uma corda muito longa é, onde e estão expressos em centímetros e em segundos. Determine (a) a amplitude, (b) o comprimento de onda,

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

Integral. Mudança de variável. 1. Determine uma primitiva de cada uma das seguintes funções, usando mudanças de variável adequadas:

Integral. Mudança de variável. 1. Determine uma primitiva de cada uma das seguintes funções, usando mudanças de variável adequadas: Integral Mudança de variável. Determine uma primitiva de cada uma das seguintes funções, usando mudanças de variável adequadas: lnx a arctanpxqcosparctan xq x ln x ` `x senxe? cosx? cosx (d) e x cospe

Leia mais

4 e 6/Maio/2016 Aulas 17 e 18

4 e 6/Maio/2016 Aulas 17 e 18 9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

ESCOLA NAVAL PROVA DE FÍSICA ESCOLA NAVAL. QUESTÕES RESOLVIDAS POR DANILO JOSÉ DE LIMA CAMPINAS OUTUBRO 2012 RESOLUÇÕES ONLINE

ESCOLA NAVAL PROVA DE FÍSICA ESCOLA NAVAL.   QUESTÕES RESOLVIDAS POR DANILO JOSÉ DE LIMA CAMPINAS OUTUBRO 2012 RESOLUÇÕES ONLINE ϕ PROVA DE 20062007200820092010201120122013201420152016 2006 2007 QUESTÕES RESOLVIDAS POR DANILO JOSÉ DE LIMA CAMPINAS OUTUBRO 2012 1 20062007200820092010201120122013201420072006 ϕ 1ª QUESTÃO A figura

Leia mais

Cap. 21 Superposição 1º/2012

Cap. 21 Superposição 1º/2012 Cap. 21 O princípio da superposição distingue partículas e ondas Partículas não se sobrepõem Ondas sim! Ondas Progressivas O que irá acontecer quando essas ondas se cruzarem? Evolução temporal Qual o valor

Leia mais

5. Ondas Estacionárias

5. Ondas Estacionárias 5. Ondas Estacionárias 1 O que são ondas estacionárias? Comecemos por pensar numa onda progressiva, y 1 = A sin(kx ωt), (1) que se propaga num dado meio e que encontra uma parede, sendo reectida. A onda

Leia mais