GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

Tamanho: px
Começar a partir da página:

Download "GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))"

Transcrição

1 GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0 =. (()) Cálculo de a n. Temos que: a n = f (x) cos nπx dx = a n = { cos nπx dx + cos nπx } dx, ou equivalentemente, a n = { 4 [sin nπ ] nπ x + [ sin nπ ] } nπ x, ou equivalentemente, a n = { 4 nπ sin nπ nπ sin nπ } = a n = nπ sin nπ. (()) Cálculo de b n. Temos que: b n = f (x) sin nπx dx = b n = { sin nπx dx + sin nπx } dx,

2 ou equivalentemente, b n = { 4 [cos nπ ] nπ x [ cos nπ ] } nπ x, ou equivalentemente, b n = { 4 nπ cos nπ 4( )n ( )n + nπ nπ nπ cos nπ Portanto, a série de Fourier da função f é da forma: } = b n = 3 nπ cos nπ 3( )n nπ. ((3)) 4 + π n= n sin nπ cos nπ x + 3 π n= [ cos nπ n ( )n] sin nπx. ((4)) (c) Teorema de Fourier: Suponha que f intervalo [ L, L]. e f são contínuas por partes no Suponha também que f está definida fora do intervalo [ L, L], de modo a ser periódica com período T = L. Então, f a 0 + n= a n cos nπx L tem uma série de Fourier + n= b n sin nπx L. ((5)) Além disso, a série de Fourier converge para f (x) em todos os pontos onde f é contínua e converge para descontínua. f (x+) + f (x ) em todos os pontos onde No nosso caso f e f satisfazem as hipóteses do teorema no intervalo [, ] e T = 4. A função f Terema de f é é descontínua em x =, x =, x = e x =. Então, pelo

3 Fourier temos que se: (i) x = = a série de Fourier converge para + = ; (ii) x = = a série de Fourier converge para 0 = ;. (iii) x = = a série de Fourier converge para (iv) x = = a série de Fourier converge para + =. f (+) + f ( ) f ( +) + f ( ) f (+) + f ( ) = + 0 f (+) + f ( ) Por outro lado, nos pontos onde f é contínua pelo Terema de Fourier temos que a série converge para f (x). O gráfico da soma da série é esboçado na Figura. a Questão:(valor.5) a) Denotemos por g(x) a extensão par e periódica definida por: g(x) = f(x), 0 x π, f( x), π < x < 0. ; g(x + π) = g(x) = = = = Logo: g(x) = x, 0 x π/, 0, π/ < x < π, x, π/ < x, 0, 0, π < x < π/. ; g(x) = g(x + π) ((6)) O gráfico de g(x) é esboçado na Figura 3. b) Denotemos por h(x) a extensão ímpar e periódica definida por: h(x) = f(x), 0 < x <, 0, x = 0 e x =, f( x), < x < 0. ; h(x) = h(x + π) 3

4 Logo: h(x) = x, 0 < x π/, 0, π/ < x π, 0, x = 0, x, π/ x < 0, 0, π < x < π/. ; h(x) = h(x + π) ((7)) c) Cálculo de b n. Temos que: b n = π π 0 f (x) sin nxdx = b n = π π/ 0 x sin nxdx = b n = n cos nπ + πn sin nπ. ((9)) Portanto, a série de Fourier da função g é da forma: n= 3 a Questão:(valor 3.0) a) Considere: ( n cos nπ + πn sin nπ ) sin nx ((0)) u(x, t) = F (x)g(t) ou u(x, t) = X(x)T (t). (()) De () obtemos que: u t (x, t) = F (x)g (t) ou u t (x, t) = X(x)T (t), (()) u x (x, t) = F (x)g(t) ou u x (x, t) = X (x)t (t). 4

5 Substituindo () e () em () resulta que: F (x)g (t) = 4F (x)g(t) ou X(x)T (t) = 4X (x)t (t). ((3)) Dividindo (3) por F (x)g(t) ou X(x)T (t) obtemos que: G (t) 4G(t) = F (x) = σ ou T (t) F (x) 4T (t) = X (x) = σ. ((4)) X(x) De (4) resulta que as duas equações diferenciais associadas são da forma: F (x) σf (x) = 0 G (t) 4σG(t) = 0 ((5)) ou, X (x) + σx(x) = 0 T (t) + 4σT (t) = 0 ((6)) Resumo: Autovalores: 0 e n, com n N Autofunções associadas aos autovalores acima: e cos nx, com n N b) Solucao em F (x) e G(t) Das condições de fronteira temos que u x (0, t) = 0. Então, tomando 0 = u x (o, t) = F (0)G(t) obtemos que F (0) = 0 ou G(t) = 0, para todo t > 0. Como não nos interessam soluções nulas ao aplicar o Princípio da Superposição, temos que F (0) = 0. De forma análoga a condição u x (π, t) = 0 nos leva a F (π) = 0. Considere a equação (5). Então a equação característica é da forma: m = σ = m = σ, m = σ. ((7)) De (7) e considerando a hipótese que devemos desprezar o caso em que as raízes são reais e distintas devemos estudar os casos σ = 0 e σ < 0. Seja σ = 0. Então, de (5) obtemos: 5

6 F (x) = c + c x. ((8)) De (8) resulta que: F (x) = c. ((9)) Substituindo x = 0 em (9) obtemos que: F (0) = c = c = 0, por (). ((0)) Observe que c = 0 independente se x = 0 ou x = π. Portanto: F (x) = c. (()) Seja σ < 0 e σ = λ, λ > 0. Então, de (5) obtemos: F (x) = d cos λx + d sin λx. ((4)) De (4) resulta que: F (x) = λd sin λx + λd cos λx. ((5)) Substituindo x = 0 em (5) obtemos que: F (0) = λd = d = 0, por (). ((6)) Substituindo x = π em (5) obtemos que: F (π) = λd sin λπ = sin λπ = 0, por () = λ = n, n =,,.., por (). ((7)) Substituindo o valor de d dado por (6) e o valor de λ dado por (7) em (4) resulta 6

7 que: F n (x) = d cos nx, n =,,... ((8)) b) Solucao em X(x) e T (t) Das condições de fronteira temos que u x (0, t) = 0. Então, tomando 0 = u x (o, t) = X (0)T (t) obtemos que X (0) = 0 ou T (t) = 0, para todo t > 0. Como não nos interessam soluções nulas ao aplicar o Princípio da Superposição, temos que X (0) = 0. De forma análoga a condição u x (π, t) = 0 nos leva a X (π) = 0. Considere a equação (6). Então a equação característica é da forma: m = σ = m = σ, m = σ. ((9)) De (9) e considerando a hipótese que devemos desprezar o caso em que as raízes são reais e distintas devemos estudar os casos σ = 0 e σ > 0. Seja σ = 0. Então, de (6) obtemos: X(x) = c + c x. ((30)) De (30) resulta que: X (x) = c. ((3)) Substituindo x = 0 em (3) obtemos que: X (0) = c = c = 0, por (). ((3)) Observe que c = 0 independente se x = 0 ou x = π. Portanto: X(x) = c. ((33)) Seja σ > 0 e σ = λ, λ > 0. Então, de (6) obtemos: X(x) = d cos λx + d sin λx. ((34)) 7

8 De (34) resulta que: X (x) = λd sin λx + λd cos λx. ((35)) Substituindo x = 0 em (35) obtemos que: X (0) = λd = d = 0, por (). ((36)) Substituindo x = π em (35) obtemos que: X (π) = λd sin λπ = sin λπ = 0, por () = λ = n, n =,,.., por (). ((37)) Substituindo o valor de d dado por (36) e o valor de λ dado por (37) em (34) resulta que: X n (x) = d cos nx, n =,,... ((38)) Resumo: Autovalores: 0 e n, com n N Autofunções associadas aos autovalores acima: e cos nx, com n N c) Solucao em F (x) e G(t) Considere G(t). Substituindo σ = 0 em (5) obtemos: G (t) = 0 = G(t) = k. ((39)) Substituindo σ = n em (5) obtemos: G (t) + 4n G(t) = 0 = G n (t) = k e 4nt. ((40)) 8

9 c) Solucao em X(x) e T (t) Considere T (t). Substituindo σ = 0 em (6) obtemos: T (t) = 0 = T (t) = k. ((4)) Substituindo σ = n em (6) obtemos: T (t) + 4n T (t) = 0 = T n (t) = k e 4nt. ((4)) d) Solucao em F (x)eg(t) Considere u(x, t) = F (x)g(t). Da hipótese que u(x, t) = F (x)g(t), de () e (39) obtemos que a solução de () + () associada ao autovalor σ = 0 que denotaremos por u 0 (x, t) é da forma: u 0 (x, t) = a 0, onde a 0 = c k. ((43)) Por outro lado da hipótese que u(x, t) = F (x)g(t), de (8) e (40) obtemos que a solução de () + () associada ao autovalor σ = n que denotaremos por u n (x, t) é da forma: u n (x, t) = K cos nxe 4nt. ((44)) Portanto, uma candidata a solução de (), () e (3) denotada por u(x, t) é da forma: u(x, t) = u 0 (x, t) + u n (x, t), ou equivalentemente, u(x, t) = a 0 + K cos t nxe 4n. ((45)) Substituindo t = 0 na equação (45) resulta que: 9

10 u(x, 0) = a 0 + K cos nx. ((46)) Mas, por (3) temos que: u(x, 0) = 3 cos 6x 5 cos 0x. ((47)) Comparando (46) e (47) temos então que a solução de u(x, t) de (), () e (3) não é dada por (45). Por outro lado sabemos que vale o princípio da superposição finita. Logo é verdadeiro supormos que u(x, t) é da forma: u(x, t) = a 0 + K n cos nxe 4nt. ((48)) n= Substituindo t = 0 na equação (48) resulta que: Mas, por (3) temos que: u(x, 0) = a m 0 + K n cos nx. ((49)) n= u(x, 0) = 3 cos 6x 5 cos 0x. ((50)) Comparando (49) e (50) obtemos que: a 0 +K cos x+k cos x+..+k 6 cos 6x+..+K 0 cos 0x+..K m cos mx = 3 cos 6x 5 cos 0x. Logo: a 0 = 0; n = 6 e K 6 = 3; n = 0 e K 0 = 5; n 6 e n 0 = K n = 0. ((5)) De (49) e (5) obtemos que: 0

11 u(x, t) = 3 cos 6xe 44t 5 cos 0xe 400t. ((5)) d) Solucao em F (x) e G(t) Considere u(x, t) = X(x)T (t). Da hipótese que u(x, t) = X(x)T (t), de (33) e (4) obtemos que a solução de () + () associada ao autovalor σ = 0 que denotaremos por u 0 (x, t) é da forma: u 0 (x, t) = a 0, onde a 0 = c k. ((53)) Por outro lado da hipótese que u(x, t) = X(x)T (t), de (38) e (4) obtemos que a solução de () + () associada ao autovalor σ = n que denotaremos por u n (x, t) é da forma: u n (x, t) = K cos nxe 4nt. ((54)) Portanto, uma candidata a solução de (), () e (3) denotada por u(x, t) é da forma: u(x, t) = u 0 (x, t) + u n (x, t), ou equivalentemente, u(x, t) = a 0 + K cos t nxe 4n. ((55)) Substituindo t = 0 na equação (55) resulta que: u(x, 0) = a 0 + K cos nx. ((56)) Mas, por (3) temos que: u(x, 0) = 3 cos 6x 5 cos 0x. ((57))

12 Comparando (56) e (57) temos então que a solução de u(x, t) de (), () e (3) não é dada por (55). Por outro lado sabemos que vale o princípio da superposição finita. Logo é verdadeiro supormos que u(x, t) é da forma: u(x, t) = a m 0 + K n cos nxe 4nt. ((58)) n= Substituindo t = 0 na equação (58) resulta que: Mas, por (3) temos que: u(x, 0) = a m 0 + K n cos nx. ((59)) n= u(x, 0) = 3 cos 6x 5 cos 0x. ((60)) Comparando (59) e (60) obtemos que: a 0 +K cos x+k cos x+..+k 6 cos 6x+..+K 0 cos 0x+..K m cos mx = 3 cos 6x 5 cos 0x. Logo: a 0 = 0; n = 6 e K 6 = 3; n = 0 e K 0 = 5; n 6 e n 0 = K n = 0. ((6)) De (58) e (6) obtemos que: u(x, t) = 3 cos 6xe 44t 5 cos 0xe 400t. ((6)) 4 a Questão:(valor.5) (i) Considere o problema de valor de contorno dado abaixo: (4) H (x) σh(x) = 0; 0 < x <, (5) H(0) = H() = 0.

13 De (4) temos que a equação característica é da forma: m = σ = m = σ, m = σ. Caso : Considere σ > 0. Da equação acima e de (4) obtemos: H(x) = c e σx + c e σx. Substituindo x = 0 em H(x) resulta que: H(0) = c + c = 0, por (5) = c = c. Substituindo x = em H(x) e do fato que c = c resulta: H() = c e σ c e σ = 0, por (5) = c = c e 4 σ = σ = 0 ou c = 0. Como, pela hiptese do caso, σ > 0, temos que c = 0 e daí concluímos que: H(x) = 0. ((63)) Caso : Considere σ = 0. De (4) e de que m = m = 0 obtemos: H(x) = c + c x. Substituindo x = 0 em H(x) resulta que: H(0) = c = 0, por (5). Substituindo x = em H(x) e do fato que c =0 obtemos: H() = c = 0 = c = 0, por (5). 3

14 Do exposto concluímos que: H(x) = 0. ((67)) Caso 3 : Considere σ < 0. Suponha que σ = λ, λ > 0. De (4) e de que m = λi e m = λi obtemos: H(x) = c cos λx + c sin λx. Substituindo x = 0 em H(x) resulta que: H(0) = c = 0, por (5). Substituindo x = em H(x) e do fato que c =0 obtemos: H() = c sin λ = 0, por (5) = c = 0 e ou sin λ = 0 = λ = nπ = λ = nπ. Disto resulta que se: com n N pois λ > 0 c = 0 = H(x) = 0, ((68)) sin λ = 0 = H n (x) = c sin nπ, (ii) Considere o problema de valor de contorno dado abaixo: (4) H (x) + σh(x) = 0; 0 < x <, (5) H(0) = H() = 0. De (4) temos que a equação característica é da forma: m = σ = m = σ, m = σ. Caso : Considere σ < 0. 4

15 Da equação acima e de (4) obtemos: H(x) = c e σx + c e σx. Substituindo x = 0 em H(x) resulta que: H(0) = c + c = 0, por (5) = c = c. Substituindo x = em H(x) e do fato que c = c resulta: H() = c e σ c e σ = 0, por (5) = c = c e 4 σ = σ = 0 ou c = 0. Como, pela hiptese do caso, σ > 0, temos que c = 0 e daí concluímos que: H(x) = 0. ((69)) Caso : Considere σ = 0. De (4) e de que m = m = 0 obtemos: H(x) = c + c x. Substituindo x = 0 em H(x) resulta que: H(0) = c = 0, por (5). Substituindo x = em H(x) e do fato que c =0 obtemos: H() = c = 0 = c = 0, por (5). Do exposto concluímos que: H(x) = 0. ((70)) 5

16 Caso 3 : Considere σ > 0. Suponha que σ = λ, λ > 0. De (4) e de que m = λi e m = λi obtemos: H(x) = c cos λx + c sin λx. Substituindo x = 0 em H(x) resulta que: H(0) = c = 0, por (5). Substituindo x = em H(x) e do fato que c =0 obtemos: H() = c sin λ = 0, por (5) = c = 0 e ou sin λ = 0 = λ = nπ = λ = nπ. Disto resulta que se: com n N pois λ > 0 c = 0 = H(x) = 0, ((7)) sin λ = 0 = H n (x) = c sin nπ., 6

17 7

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em. Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série

Leia mais

Questão 1: (2.5 pontos) f(x) =

Questão 1: (2.5 pontos) f(x) = Página 1 de 7 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito prim. prova unificada - Escola Politécnica / Escola de Química - 07/07/010 Questão 1: (.5 pontos Seja

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a

Leia mais

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) =

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) = Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito seg. prova unificada - Escola Politécnica / Escola de Química - 1/06/018 Questão 1: (.5 pontos) Seja f : [0,] R a função

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

Corda Elástica Presa Somente em uma das Extremidades

Corda Elástica Presa Somente em uma das Extremidades Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar

Leia mais

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A

Séries de Fourier. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 4A Séries de Fourier Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke As séries de Fourier são a ferramente básica para se representar as funções periódicas, as quais desempenham um importante

Leia mais

SEGUNDA PROVA DE EDB - TURMA M

SEGUNDA PROVA DE EDB - TURMA M SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18.

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18. Gabarito da a Prova Unificada de Cálculo IV Dezembro de a Questão: (. pts) Resolva o problema de contorno: x y 6xy + y =, x > y() =, y() = 8. Solução: Como se trata de uma equação de Euler, a solução geral

Leia mais

Equações Diferenciais B. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG

Equações Diferenciais B. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Equações Diferenciais B Prof. Paulo Cupertino de ima Departamento de Matemática - UFMG 1 Conteúdo 1 Séries de Fourier 4 1.1 Séries de Fourier de Funções Pares e Ímpares...................... 9 1. Cálculo

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

MAT-2454 Cálculo Diferencial e Integral II EP-USP

MAT-2454 Cálculo Diferencial e Integral II EP-USP MAT-454 Cálculo Diferencial e Integral II EP-USP Solução da Questão da Terceira Prova 8//06 Questão (Tipo A Valor: 3, 0 pontos). a. Determine todos os pontos da superfície de nível da função g(x, y, z)

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Departamento de Matemática da Universidade de Aveiro

Departamento de Matemática da Universidade de Aveiro Departamento de Matemática da Universidade de Aveiro ANÁLISE MATEMÁTICA II 7/8 Folha 4 - soluções: Séries de Fourier; notação complexa. Vamos mostrar que se f e g são funções periódicas de período T, fg

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante. Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

1 [35] (O jogo dos 7 erros.) Considere a equação de advecção-difusão unidimensional

1 [35] (O jogo dos 7 erros.) Considere a equação de advecção-difusão unidimensional TT1 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P1, 23 nov 212 Prof. Nelson uís Dias NOME: GABARITO Assinatura: 1 [35] (O jogo dos 7 erros.) Considere

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 A integral de Riemann subject A integral de Riemann

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013 Análise Complexa e Equações Diferenciais ō Semestre 1/13 ō Teste Versão A (Cursos: LEAN, LEMat, LMAC, MEAer, MEAmbi, MEBiom, MEBiol, MEFT, MEMec, MEQ) 5 de Maio de 13, 11h Duração: 1h 3m 1. Considere o

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier AULA DE APOIO - 1 FÍSICA MATEMÁTICA I A transformada de Fourier Assuntos da aula 1 Visão geral Motivações Linearidade e limitação uniforme 2 3 Translações, modulações, continuidade e etc. Física-Matemática.

Leia mais

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO

EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO 1 EQUAÇÕES DIFERENCIAIS PARCIAIS: ESTUDO DE CASO Bruno Claudino dos Santos, Viviane Colucci, Vitória Maria Almeida Teodoro de Oliveira, Felipe Borino Giroldo, eticia Darlla Cordeiro. Universidade Tecnológica

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais Exame - 9 de Janeiro de 8 MEC Resolução. A imagem da região { z C : Rz < e 3 8 < Iz < 8} por z e z é { z C : < z < e 3 } 4 < argz

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV o Teste do 1 o semestre de 04/05 cursos: LEAm, LEBl, LEQ, LQ, LEIC, LEM, LEMat, LEGM, LEAN e LEC

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx: NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCIAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Reflexão de Roteiro Reflexão de 1 Reflexão de Reflexão de Suponhamos, agora, que as ondas

Leia mais

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4 CAPÍTULO 9 Exercícios 9.. Ï0, x e. Seja f( x) Ìx, se x0 Ó, se 0x Temos È 0 f x dx x dx dx ( ) Í ( ) Î 0 È 0 ù an f x dx x dx dx ( ) cos Í Î ( ) cos cos ú 0 û n n n an È cos sen ù Ê cos ˆ ÎÍ n ûú Ë È 0

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

Fis-26 Lista 06 Resolução

Fis-26 Lista 06 Resolução Fis-6 Lista 6 Resolução João Paulo de Andrade Dantas Questão 1. V φ = gλ π K = π λ V φ = g K Sendo esta a velocidade de fase, podemos definir, para cada K, uma frequência ω tal que: V φ = ω K Igualando-se

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais

Álgebra Linear Equações Diferenciais Parciais Problemas de Sturm Liouville. Ney Lemke. logo

Álgebra Linear Equações Diferenciais Parciais Problemas de Sturm Liouville. Ney Lemke. logo Revisão Matemática Ney Lemke Mecânica Quântica 2011 Outline 1 Álgebra Linear 2 Equações Diferenciais Parciais 3 Problemas de Sturm Liouville Outline 1 Álgebra Linear 2 Equações Diferenciais Parciais 3

Leia mais

Resolução das equações

Resolução das equações Resolução das equações Equação de Difusão (calor) (1D) Equação de ondas (corda virante) (1D) Equação de Laplace (2D) - Difusão térmica em estado estacionário (2D e 3 D); - Função potencial de uma partícula

Leia mais

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1

Séries de Fourier. Matemática Aplicada. Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2014/2015 1 Séries de Fourier Matemática Aplicada Artur M. C. Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 14/15 1 1 versão 16 de Dezembro de 17 Conteúdo 1 Séries de Fourier...............................

Leia mais

Regras de Produto e Quociente

Regras de Produto e Quociente Regras de Produto e Quociente Aula 13 5950253 Plano da Aula Derivadas de Ordem Superior Regra de Produto Regra de Quociente Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning) Derivadas

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) =

Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março { 1 se 0 x < h f(x) = 0 se h x < 2π, Sf(x) = Segunda Lista de Exercícios de Física Matemática I Soluções (Séries de Fourier) IFUSP - 28 Março 29 Exercício Seja f : R R uma função periódica tal que { se x < h f(x) = se h x

Leia mais

Limite - Propriedades Adicionais

Limite - Propriedades Adicionais Limite - Propriedades Adicionais Juliana Pimentel juliana.pimentel@ufabc.edu.br Propriedades Adicionais do Limite Os próximos três teoremas são propriedades adicionais de limites. Teorema (Teste da Comparação)

Leia mais

TEMPO DE PROVA: 2h. y 4y +5y = g(t), y(0) = 0, y (0) = 0. 0, se 0 t < 3; 7, se t 3. g(t) = s 2 4s+5 ) (s 2) 2 +1 +2 1. f : [0,1] R x 1 x. 1 (2m+1) 2.

TEMPO DE PROVA: 2h. y 4y +5y = g(t), y(0) = 0, y (0) = 0. 0, se 0 t < 3; 7, se t 3. g(t) = s 2 4s+5 ) (s 2) 2 +1 +2 1. f : [0,1] R x 1 x. 1 (2m+1) 2. Página Instituto de Matemática - IM/UFRJ Segunda prova unificada - Escola Politécnica / Escola de Química - 25/6/25 TEMPO DE PROVA: 2h Questão : (3. pontos) Resolva o problema de valor inicial onde y 4y

Leia mais

O domínio [ 1, 1] é simétrico em relação a origem.

O domínio [ 1, 1] é simétrico em relação a origem. QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x

Leia mais

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor A Equação de Calor Uma das EDP s clássica da FísicaF sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor em um corpo sólido. s E uma aplicação mais recente é a que descreve

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Ondas ONDAS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 23 de maio de R.R.Pelá

Ondas ONDAS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 23 de maio de R.R.Pelá ONDAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Sonoras Roteiro Sonoras 1 Sonoras Sonoras Vamos considerar uma corda de comprimento L presa nas duas extremidades.

Leia mais

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função

Leia mais

Setor de Tecnologia - TC Engenharia Ambiental Prova Final. Matemática Aplicada II

Setor de Tecnologia - TC Engenharia Ambiental Prova Final. Matemática Aplicada II Universidade Federal do Paraná Matemática Aplicada II Setor de Tecnologia - TC Engenharia Ambiental 2015-1 Curitiba, 10.07.2015 Prova Final Matemática Aplicada II Tobias Bleninger Departamento de Engenharia

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE 2A - 15 DE JUNHO DE DAS 11H. Apresente e justifique todos os cálculos. dy dt = y t t ; y(1) = 1.

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE 2A - 15 DE JUNHO DE DAS 11H. Apresente e justifique todos os cálculos. dy dt = y t t ; y(1) = 1. Instituto Superior Técnico Departamento de Matemática Secção de Ágebra e Anáise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE A - 5 DE JUNHO DE 9 - DAS H ÀS :3H Apresente e justifique todos os cácuos.

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

seção transversal Figure 1: Barra Cilíndrica Maciça 1. seção transversal uniforme (a barra é perfeitamente cilíndrica e maciça);

seção transversal Figure 1: Barra Cilíndrica Maciça 1. seção transversal uniforme (a barra é perfeitamente cilíndrica e maciça); 1 Condução de Calor 1.1 Introdução Estudaremos agora o prolema de condução de calor unidimensional, onde utilizaremos como modelo uma arra cilíndrica maciça com uma distriuição inicial de temperatura dada

Leia mais

Exercícios - Propriedades Adicionais do Limite Aula 10

Exercícios - Propriedades Adicionais do Limite Aula 10 Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

CAPÍTULO 8 REGRA DA CADEIA (UM CASO PARTICULAR)

CAPÍTULO 8 REGRA DA CADEIA (UM CASO PARTICULAR) CAPÍTULO 8 REGRA DA CADEIA UM CASO PARTICULAR 81 Introdução Em Cálculo 1A, aprendemos que, para derivar a função hx x 2 3x + 2 37, o mais sensato é fazer uso da regra da cadeia A regra da cadeia que é

Leia mais

Máximos e mínimos (continuação)

Máximos e mínimos (continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

CURSO de MATEMÁTICA (Niterói) - Gabarito

CURSO de MATEMÁTICA (Niterói) - Gabarito PROAC / COSEAC. UNIVERSIDADE FEDERAL FLUMINENSE PRÓ-REITORIA DE ASSUNTOS ACADÊMICOS COSEAC-COORDENADORIA DE SELEÇÃO TRANSFERÊNCIA o semestre letivo de 007 e 1 o semestre letivo de 008 CURSO de MATEMÁTICA

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Aula 26 Separação de Variáveis e a Equação da Onda.

Aula 26 Separação de Variáveis e a Equação da Onda. Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para

Leia mais

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

Equações Diferenciais B. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG

Equações Diferenciais B. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Equações Diferenciais B Prof. Paulo Cupertino de ima Departamento de Matemática - UFMG 1 Conteúdo 1 Séries de Fourier 5 1.1 Introdução.......................................... 5 1. Funções periódicas.....................................

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

d [xy] = x arcsin x. dx + 4x

d [xy] = x arcsin x. dx + 4x Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação

Leia mais

1 [20] O problema difusivo

1 [20] O problema difusivo TEA13 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental UFPR F 1 Dez 218 Prof. Nelson Luís Dias Declaro que segui o código de ética do Curso de Engenharia Ambiental

Leia mais

Cálculo I. Lista de Exercícios Aulão P1

Cálculo I. Lista de Exercícios Aulão P1 Cálculo I Lista de Exercícios Aulão P1 Lista Resolvida no Aulão Parte I: Revisão de Matemática 1. P1 2018.1 Exercício 1 Diurno (2,0) Resolva, dê o intervalo solução e ilustre a solução sobre a reta real

Leia mais

u(0; y) = u(1; y) = u(x; 0) = 0 8 x ; se 0 x < x ; se

u(0; y) = u(1; y) = u(x; 0) = 0 8 x ; se 0 x < x ; se Instituto Tecnológico de Aeronáutica / Departamento de Matemática / o. Fund / 009. LISTA NEGRA DE MAT-4 (Apenas para auxiliar nos estudos para o exame). (i) Em cada um dos casos (edp hiperbólica, parabólica

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

8.1-Equação Linear e Homogênea de Coeficientes Constantes

8.1-Equação Linear e Homogênea de Coeficientes Constantes 8- Equações Diferenciais Lineares de 2 a Ordem e Ordem Superior As equações diferenciais lineares de ordem n são aquelas da forma: y (n) + a 1 (x) y (n 1) + a 2 (x) y (n 2) + + a n 1 (x) y + a n (x) y

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

Aula: Equações diferenciais lineares de ordem superior

Aula: Equações diferenciais lineares de ordem superior Aula: Equações diferenciais lineares de ordem superior Profa. Ariane Piovezan Entringer DMA - UFV Problema de Valor Inicial - EDO de ordem n Problema de Valor Inicial - EDO de ordem n a n (x) d n y dx

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP)

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 21/ Segunda 26/05/2014 Sylvain Bonnot (IME-USP) 2014 1 Teorema fundamental do cálculo Teorema (Teorema fundamental do cálculo, parte 1) Se f for contínua em [a, b] então a função g definida

Leia mais

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste)

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste) Exame/Teste () de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de, 8h-h (º Teste) ) [] Seja f(x) = e x a) Determine um p n polinómio interpolador de f nos nós {, }, tal que

Leia mais