Desenvolvimento. Em coordenadas esféricas:

Tamanho: px
Começar a partir da página:

Download "Desenvolvimento. Em coordenadas esféricas:"

Transcrição

1 Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas: 1

2 2

3 3

4 Somando: Obtém-se: Em coordenadas esféricas. 4

5 Solução da Equação da Onda em Coordenadas Esféricas Usando o método da separação de variáveis: Dividindo toda a equação por temos: 5

6 Como esperamos que a solução varie harmonicamente com o tempo, fazemos: Multiplicando a equação por : Multiplicando a equação por : Multiplicando a equação por : 6

7 Como é periódica de período Multiplicando a equação por : Dividindo a equação por : Fazendo uma mudança de variável Substituindo em 7

8 Sob esta forma, esta equação lembra a equação de Legendre: Para explorar esta semelhança, faremos uma segunda mudança de variável. 8

9 Substituindo em : Portanto, se fizermos esta equação será satisfeita pelas -ésima derivada de voltando à equação em R. 9

10 Fazendo x=mr e R(r) Y(x) Substituindo na equação 10

11 Comparando com a equação de Bessel modificada: Como inteiro inteiro A solução é do tipo: 11

12 (*) Agora consideremos uma função já conhecida denominada Harmônica esférica e seja: O autovalor λ será determinado pela segunda equação *Y( ) deve ser finito para 0 ϕ π e para 0 θ 2π+, e teremos funções características Y λ(ϕ,θ) correspondentes a estes auto autovalores. Então, toda a função ψ k poderá ser descrita por uma superposição do tipo ψ k (r) = C λ R λ (r)y λ (ϕ,θ). Observação: A soma em relação a λ deve ser considerada simbólica, pois ainda não exploramos a natureza do espectro de λ: se é continuo ou discreto, se há ou não degenerescências. Para determinarmos os valores permissíveis de λ, completamos a separeção de variáveis, fazendo Y( ϕ, θ) = Θ(ϕ)Φ(θ). Isso conduz às equações, 12

13 Que já resolvemos. Sabemos que o espectro de λ 1 é discreto, e consta de λ 1 = -m²(m = 0,1,2,...), e as funções características podem ser definidas como segue. Para m=0, e para m 0 Φ 0 (θ) = 1, cos mθ Φ m (θ) = ou sen mθ Estas funções são ortogonais entre si e suas integrais de normalização são É conveniente agora termos estas funções características normalizadas de modo a terem norma 1, multiplicando-as por constantes apropriadas de maneira que todas as integrais de normalização sejam iguais à unidade. Esta condição define as funções normalizadas Φ 0 (θ) = (m =0), Φ m (+) (θ) = Φ m (-) (θ) = (m 0), onde os símbolos (+) e (-) nos lembram que estas funções são pares ou ímpares com relação à mudança θ - θ. No que concerne às funções Θ, sabemos que o espectro de λ é também discreto, com: λ = - l ( l + 1 ) ( l = 0,1,2,3,...) 13

14 Mas para que um m dado, devemos ter l m. As soluções da equação em Θ são as funções de Legrendre associadas P l m (cos ϕ). É conveniente normalizá-las para também terem norma um, definindo Θ l m (cos ϕ) = P l m (cos ϕ), de maneira que ϕ = Deveria agora estar claro que a equação dos autovalores Possui os autovalores λ = - l (l + 1) (l = 0,1,2,...), Que são, contudo, degenerados (exceto se l=0), pois para cada valor fixo de l temos várias funções características, ou seja E assim, sucessivamente, até Assim, cada valor de l corresponde a (2l+1) funções características distintas, e assim exibe uma degenerescência de ordem (2l+1). 14

15 Definimos agora as soluções fundamentais da EDP( satisfeitas as condições de contorno apropriadas) Por meio das fórmulas (m 0) Estas soluções podem ser chamadas de harmônicas esféricas (na definição clássica). Segue-se que a série de Ψ k (r) do tipo ] Deveria, em realidade, ser da forma Suponha que r seja fixo; então torna-se uma função somente de e estamos lidando com uma expressão do tipo 15

16 Este desenvolvimento em série é válido para uma função arbitrária sujeita a condições usuais semelhantes ás exigidas para as séries de Fourier, séries de Fourier- Legendre, séries de Fourier-Bessel e outras. Os coeficientes do desenvolvimento são obtidos multiplicando pela harmônica esférica correspondente e pelo fator, e integrando em relação aos ângulos: Portanto verificamos a solução formal de ( ): 16

17 Conclusão Podemos concluir que as soluções satisfazem a equação da onda e podemos resolver inúmeros problemas com combinações de condição de contorno diferentes. Estes resultados nos permitem presumir o comportamento de uma onda esférica no espaçotempo. Referências: Notas de aula, solução da equação da onda esférica A. S. De Assis Teoria do Eletromagnetismo Vol 1, Kleber Daum Machado, editora UEPG, Ponta Grossa, Mathematical Physics Eugene Butkov, Addison-Wesley, New York,

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas.

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas. Equação das Ondas Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas. O aspecto essencial da propagação de uma é que esta consiste numa perturbação

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

SOLUÇÃO DA EQUAÇÃO DA ONDA EM COORDENADAS ESFÉRICAS E DEDUÇÃO DO OPERADOR LAPLACIANO EM COORDENADAS ESFÉRICAS

SOLUÇÃO DA EQUAÇÃO DA ONDA EM COORDENADAS ESFÉRICAS E DEDUÇÃO DO OPERADOR LAPLACIANO EM COORDENADAS ESFÉRICAS SOLUÇÃO DA EQUAÇÃO DA ONDA EM COORDENADAS ESFÉRICAS E DEDUÇÃO DO OPERADOR LAPLACIANO EM COORDENADAS ESFÉRICAS Jean Alves Rodrigues Fernandes 1 Rafael Caveari Gomes 2 Érick de Oliveira Miranda 3 João Flávio

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

Lista 2 de CF368 - Eletromagnetismo I

Lista 2 de CF368 - Eletromagnetismo I Lista 2 de CF368 - Eletromagnetismo I Fabio Iareke 28 de setembro de 203 Exercícios propostos pelo prof. Ricardo Luiz Viana , retirados de []. Capítulo 3 3-

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Momento Angular. 8.1 Álgebra do Momento Angular

Momento Angular. 8.1 Álgebra do Momento Angular Capítulo 8 Momento Angular Neste capítulo vamos estudar os autovalores e autovetores do momento angular. Este problema também pode ser analisado com o uso do método de operadores, o que faremos na primeira

Leia mais

Equações Parciais Em Coordenadas Esféricas

Equações Parciais Em Coordenadas Esféricas Equações Parciais Em Coordenadas Esféricas Lucas Nobrega Natã Gomes David de Mattos Pereira João Paulo Carvalho Corrêa Ricardo Wertes Motta UFF Depto. de Matemática Aplicada Métodos Matemáticos Aplicados

Leia mais

Capítulo 8 Equações Diferenciais Parciais

Capítulo 8 Equações Diferenciais Parciais Capítulo 8 Equações Diferenciais Parciais Equação de Onda Transversal em Uma Dimensão Seja uma onda se propagando em 1 dimensão na direção. A deflexão dessa onda é descrita por uma função de 2 variáveis.

Leia mais

Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo

Lista Considere um oscilador harmonico tridimencional com o potencial, resolve a Equação de Schrödinger independente no tempo Lista 8. Considere um oscilador harmonico tridimencional com o potencial, V = m 2 ( ω 2 x x 2 + ω 2 yy 2 + ω 2 zz 2), onde ω x, ω y e ω z representam as frequências deste oscilador (clássico) nas direções,

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger

Leia mais

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora

Leia mais

Séries de Fourier. Victor Rios Silva

Séries de Fourier. Victor Rios Silva Séries de Fourier Victor Rios Silva victorrios@live.com Universidade Federal Fluminense (UFF) Instituto de Matemática (IM) Departamento de Matemática Aplicada (GMA) Rua Mário Santos Braga, S/N Valonguinho

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

Lista de Exercícios 5

Lista de Exercícios 5 FFI5 Física-Matemática II Lista de Eercícios 5 Seja Φ a distribuição definida por Φ[f] := f (n) (a), n N, a R, onde f representa uma função teste qualquer e f (n) (a) sua n-ésima derivada calculada em

Leia mais

Os Postulados da Mecânica Quântica

Os Postulados da Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o

Leia mais

O ÁTOMO DE HIDROGÊNIO

O ÁTOMO DE HIDROGÊNIO O ÁTOMO DE HIDROGÊNIO Alessandra de Souza Barbosa 04 de dezembro de 013 O átomo de hidrogênio Alessandra de Souza Barbosa CF37 - Mecânica Quântica I /36 Sistema de duas particulas um elétron e um próton;

Leia mais

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) =

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = SEGUNDA PROVA - F789 NOME: RA:. Considere uma partícula de spin. Seja S seu spin e L seu momento angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = r, ± Ψ na base r, ± de autoestados

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012 Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem A C Tort 22 de outubro de 2012 Uma equação diferencial ordinária linear de segunda ordem

Leia mais

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido ÁTOMO DE HIDROGÊNIO Primeiro sistema tratado quanticamente por Schrödinger Modelo de Bohr Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento

Leia mais

O ÁTOMO DE HIDROGÊNIO

O ÁTOMO DE HIDROGÊNIO FÍSICA PARA ENGENHARIA ELÉTRICA José Fernando Fragalli Departamento de Física Udesc/Joinville O ÁTOMO DE HIDROGÊNIO A elegância, a riqueza, a complexidade e a diversidade dos fenômenos naturais que decorrem

Leia mais

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

1 O Átomo de Hidrogênio

1 O Átomo de Hidrogênio O modelo de Bohr para o átomo de hidrogênio, embora forneça valores corretos para as energias dos estados atômicos e do espectro da radiação emitida, não pode ser correto do ponto de vista da mecânica

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

EAC-082: Geodésia Física. Aula 5 Teoria do Potencial e PVCG

EAC-082: Geodésia Física. Aula 5 Teoria do Potencial e PVCG EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 5 Teoria do Potencial e PVCG https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/55 Potencial Gravitacional Vimos anteriormente

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro

P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro P3 de Cálculo a Várias Variáveis I MAT 62 23.2 Data: 23 de novembro Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 3. 2 2. 3 3. Teste 2. Total. Instruções Mantenha seu celular desligado

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Questão 1: (2.5 pontos) f(x) =

Questão 1: (2.5 pontos) f(x) = Página 1 de 7 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito prim. prova unificada - Escola Politécnica / Escola de Química - 07/07/010 Questão 1: (.5 pontos Seja

Leia mais

ANÁLISE DE SINAIS DINÂMICOS

ANÁLISE DE SINAIS DINÂMICOS ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

2 Animação com Harmônicos de Variedade

2 Animação com Harmônicos de Variedade 2 Animação com Harmônicos de Variedade Hoje em dia, podemos encontrar vários métodos de visualização de música, porém muito poucos relacionam a música à deformações (ou até movimentos rígidos) de modelos

Leia mais

Universidade Estadual de Santa Cruz

Universidade Estadual de Santa Cruz Universidade Estadual de Santa Cruz PROFÍSICA Programa de Pós-graduação em Física Seleção 2009. Prova Escrita 2/0/2009 Candidato (nome legível): - Esta prova consta de oito questões distribuídas da seguinte

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

38 a Aula AMIV LEAN, LEC Apontamentos

38 a Aula AMIV LEAN, LEC Apontamentos 38 a ula 2004.12.17 MIV LEN, LEC pontamentos (Ricardo.Coutinho@math.ist.utl.pt) 38.1 Equilíbrio da equação do calor e da equação das ondas Quer na equação do calor u t = k lap u, quer na equação das ondas

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x, Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente

Leia mais

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo

Leia mais

O oscilador harmônico simples quântico

O oscilador harmônico simples quântico 1 / 18 O oscilador harmônico simples quântico Prof. Dr. Vicente Pereira de Barros Instituto Federal de Educação Ciência e Tecnologia de São Paulo - Campus Itapetininga 29/05/2014 2 / 18 Introdução Introdução

Leia mais

Álgebra Linear I - Aula 3. Roteiro

Álgebra Linear I - Aula 3. Roteiro Álgebra Linear I - Aula 3 1. Produto escalar. Ângulos. 2. Desigualdade triangular. Roteiro 1 Produto escalar Considere dois vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3. O produto escalar

Leia mais

Tranformada de Fourier. Guillermo Cámara-Chávez

Tranformada de Fourier. Guillermo Cámara-Chávez Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

Capítulo 4 Séries de Fourier

Capítulo 4 Séries de Fourier Capítulo 4 Séries de Fourier Dizemos que representamos uma função real ela se expressa na série em série de Fourier quando os coeficientes são chamados de coeficientes de Fourier. Claro, a série de Fourier

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO

SÉRIES DE FOURIER. Felipe do Carmo Amorim. Fernando Soares Alves. Marcelo da Rocha Lopes. Engenharia Mecânica RESUMO SÉRIES DE FOURIER Felipe do Carmo Amorim Fernando Soares Alves Marcelo da Rocha Lopes Engenharia Mecânica RESUMO Apresentam-se no artigo que segue os conceitos sobre função periódica, séries trigonométricas,

Leia mais

FUNDAMENTOS DE CONTROLE - EEL 7531

FUNDAMENTOS DE CONTROLE - EEL 7531 Soluções periódicas e ciclos limite Funções descritivas FUNDAMENTOS DE CONTROLE - EEL 7531 Professor: Aguinaldo S. e Silva LABSPOT-EEL-UFSC 9 de junho de 2015 Professor: Aguinaldo S. e Silva FUNDAMENTOS

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de junho de 2014 CAPÍTULO 5 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 5.1- Introdução 5.2- Equação

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais Séries de Fourier Série de Fourier Qualquer função periódica f(t) pode ser representada por uma

Leia mais

O oscilador Harmônico forçado ( Nastase 7 e 8, Ramond 2.3)

O oscilador Harmônico forçado ( Nastase 7 e 8, Ramond 2.3) Teoria Quântica de Campos I 70 Usaremos, com muito mais frequência, uma outra definição para conectado - querendo dizer que o diagrama conecta todos os pontos externos entre si. Nesta nova definição, os

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais

Leia mais

Aula 26 Separação de Variáveis e a Equação da Onda.

Aula 26 Separação de Variáveis e a Equação da Onda. Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Seção 29 Ortogonalidade das funções de Bessel Membrana circular

Seção 29 Ortogonalidade das funções de Bessel Membrana circular Seção 9 Ortogonalidade das funções de Bessel Membrana circular Vamos considerar o problema de determinar vibrações livres de uma membrana presa pelo bordo tambor), conhecidos o deslocamento e a velocidade

Leia mais

ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq.

ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq. Notas sobre Funções de Green FMA 43 Prof. Luís Raul Weber Abramo Departamento de Física Matemática Instituto de Física USP Introdução geral às funções de Green A função de Green (G. Green, c. 828) é uma

Leia mais

As séries de fourier tem como objetivo representar uma função periódica como uma soma de

As séries de fourier tem como objetivo representar uma função periódica como uma soma de Métodos Matemáticos Séries de Fourier Pedro Henrique do Nascimento de Luzia Engenharia Elétrica da Universidade Federal Fluminense phnl_vr@hotmail.com Resumo A fórmula geral para uma série de fourier é:.

Leia mais

3.1 Introdução... 69

3.1 Introdução... 69 Sumário Prefácio Agradecimentos xi xvii 1 EDOs de primeira ordem 1 1.1 Introdução.............................. 1 1.2 Existência e unicidade de soluções................. 6 1.3 A equação linear..........................

Leia mais

Mecânica Clássica 1 - Lista de natal - Ho Ho Ho Professor: Gabriel T. Landi

Mecânica Clássica 1 - Lista de natal - Ho Ho Ho Professor: Gabriel T. Landi Mecânica Clássica 1 - Lista de natal - Ho Ho Ho Professor: Gabriel T. Landi O campo vetorial 1 Aquecimento: quadri-potencial e os campos elétrico e magnético O objeto fundamental do eletromagnetismo é

Leia mais

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante. Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da

Leia mais

Algebra Linear. 1. Funções de Matriz Quadrada 1.1. Teorema de Cayley-Hamilton. pag.1 Teoria de Sistemas Lineares Aula 8. c Reinaldo M.

Algebra Linear. 1. Funções de Matriz Quadrada 1.1. Teorema de Cayley-Hamilton. pag.1 Teoria de Sistemas Lineares Aula 8. c Reinaldo M. Algebra Linear 1. 1.1. Teorema de Cayley-Hamilton pag.1 Teoria de Sistemas Lineares Aula 8 Considere A R n n associada a transformação linear f : R n R n Polinômios de matriz quadrada Para k positivo e

Leia mais

Representação grande

Representação grande Capítulo 5 Representação grande canônica 5.1 Introdução Distribuição de probabilidades Vimos no Capítulo 1 que um sistema constituído por partículas que interagem por meio de forças conservativas em contato

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Unidimensionais Equação de Unidimensionais Harmônicas em cordas Roteiro Unidimensionais Equação

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

Breve Revisão de Mecânica

Breve Revisão de Mecânica Capítulo 1 Breve Revisão de Mecânica Quântica Seguimos as secções 5.1 a 5.3 do Griffiths [1] e a secção 1.1 do meu texto de Introdução à Teoria de Campo []. É assumido como pré-requisito o conhecimento

Leia mais

Quantização do Campo Escalar por Path Integrals

Quantização do Campo Escalar por Path Integrals Teoria Quântica de Campos I 91 Quantização do Campo Escalar por Path Integrals (Nastase 9, Peskin 9.2, Ryder 6.1 a 6.5, Ramond 3.1 e 3.2) Usaremos as idéias das últimas 20 página para quantizar o campo

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples. Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas:

Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas: Teoria Quântica de Campos II 13 ( eq. 13.1 ) Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: ( eq. 13.2 ) Paremos aqui um momento para notar duas coisas: (1) As equações 10.1

Leia mais

Aula 25 Técnicas de integração Aula de exercícios

Aula 25 Técnicas de integração Aula de exercícios MÓDULO - AULA 5 Aula 5 Técnicas de integração Aula de exercícios Objetivo Conhecer uma nova série de exemplos nos quais diferentes técnicas de integração são utilizadas. Nesta aula, você verá uma série

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente.

13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente. 1 LIVRO Regra da Cadeia e Derivação Implícita 13 AULA META Derivar funções compostas e funções definidas implicitamente. OBJETIVOS Estender os conceitos da regra da cadeia e da derivação implícita de funções

Leia mais

Não serão aceitas respostas sem justificativa:

Não serão aceitas respostas sem justificativa: Primeira Prova de Conceitos de Mecânica Quântica -(,5) Uma partícula de massa m encontra-se no estado ψ(x,t)= A exp[ω(mx /ħ+it)], onde A e a são constantes reais e positivas. a- Normalize ψ(x,t); b- Calcule

Leia mais

Física dos Átomos e Moléculas a) O problema do átomo de hidrogénio O Docente Regente: Prof. Doutor Rogério Uthui

Física dos Átomos e Moléculas a) O problema do átomo de hidrogénio O Docente Regente: Prof. Doutor Rogério Uthui FÍSICA MODERNA Aula 6a: Física dos Átomos e Moléculas a) O problema do átomo de hidrogénio O Docente Regente: Prof. Doutor Rogério Uthui Tema 5: Física dos átomos e moléculas 5.1. Átomo de hidrogénio;

Leia mais

Aula-07 - Física de Materiais - 29/08/2005. Continuação da formação das Faixas de Energia em um Sólido.

Aula-07 - Física de Materiais - 29/08/2005. Continuação da formação das Faixas de Energia em um Sólido. Aula-07 - Física de Materiais - 29/08/2005 Continuação da formação das Faixas de Energia em um Sólido. A Molécula Infinita. Agora vamos fazer um tratamento de uma molécula não gigante, mas infinita! E

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples. Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de janeiro de 2009 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

Física Quântica. Aula 10: Equação de Schrödinger em Coordenadas Esféricas, Átomo de Hidrogênio. Pieter Westera

Física Quântica. Aula 10: Equação de Schrödinger em Coordenadas Esféricas, Átomo de Hidrogênio. Pieter Westera Física Quântica Aula 10: Equação de Schrödinger em Coordenadas Esféricas, Átomo de Hidrogênio Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html A Equação

Leia mais

Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional

Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional Caio Vaz Rímoli Resumo: Partículas Livres não relativísticas estão entre os sistemas mais básicos e mais

Leia mais