u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

Tamanho: px
Começar a partir da página:

Download "u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma"

Transcrição

1 Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento. Em geral, vamos considerar a situação em que as faces laterais estão isoladas, de modo que só pode entrar ou sair calor através das extermidades x = ou x =. Devido à hipótese de que a seção lateral é pequena em relação ao comprimento, vamos supor que em cada instante t todos os pontos da seção de abscissa x estão à mesma temperatura ux, t). Utilisando-se as leis da condução do calor, pode-se provar que a função de duas variáveis ux, t) satisfaz a EDP u t = c u xx, ) que é chamada de equação do calor. A constante positiva c em ) depende da condutibilidade térmica e do calor específico do material do qual a barra é construída. Tipos de condição de fronteira. i) Extremidade mantida a uma temperatura prescrita: Se por exemplo, a extremidade x = é mantida permanentemente à temperatura u = a, temos u, t) = a, para todo t >. ii) Extremidade isolada: O fluxo de calor através de uma seção de coordenada x da barra depende, além das propriedades de condutividade térmica e calor específico do material de que é feita a barra, do gradiente de temperatura em x. Quanto mais rapidamente a temperatura varia em relação a x, mais energia térmica cruza através da seção. Isto é, o fluxo de calor através da seção de coordenada x é diretamente proporcional a u x x, t). Se, por exemplo, a extremidade x = é mantida isolada, significa que o fluxo de calor através dela é. Portanto, matematicamente o fato de que a extremidade x = está isolada se expressa pela condição u x, t) =. Exemplo. Resolva o problema abaixo, representando transmissão de calor em uma barra em que uma extremidade é mantida isolada e outra a uma temperatura prescrita. u t = c u xx < x <, < t < + ) u x, t) = u, t) = < t < + ) ux, ) = < x < ) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução ux, t) da forma ux, t) = ϕx)ψt). ) Substituindo ) na equação do calor, temos Por divisão podemos separar as variáveis: ϕx)ψ t) = c ϕ x)ψt). ψ t) c ψt) = ϕ x) ϕx). 3) O lado esquerdo de 3) depende apenas de t ao passo que a lado direito depende apenas de x. Portanto a única maneira de serem iguais é sendo a função constante, conforme já vimos.

2 Poderíamos justificar isto dizendo que o lado esquerdo de 3) não depende de x. Mas por ser igual ao lado direito, também não depende de t. ogo não depende de nenuma das variáveis, isto é, é constante. Assim, ψ t) c ψt) = ϕ x) ϕx) = λ = const. Obtemos, assim, duas EDO s independentes, ψ t) = λc ψt) 4) ϕ x) = λϕx) 5) Para aplicar as condições de fronteira, primeiro notamos que de ) obtemos u x x, t) = ϕ x)ψt). Portanto, a condição u x, t) =, isto é, u x, t) = ϕ )ψt) =, nos diz que ou ϕ ) = 6) ψt) =, para todo t. Na eventualidade de ψt) = para todo t, teríamos ux, t) = para todo x e para todo t. Esta é a solução trivial e não estamos interessados nela. O que queremos é encontrar as soluções não triviais para fazer a superposição delas. Analogamente, da condição de fronteira u, t) = segue que ϕ) = 7) Dentre as duas equações diferenciais 4) e 5), começamos com 5), pois para a função ϕx) temos informações adicionais. Vamos estudar o problema de valor de fronteira { ϕ x) = λϕx) 8) ϕ ) =, ϕ) = Note que a incógnita no problema 8) é um par, uma função ϕx) e um número λ. A equação diferencial do problema 8) tem como equação característica k λ = k é a variável da equação característica). Caso : λ >. Então λ = µ, com µ >. Neste caso a equação característica é k µ = e, portanto, tem raízes reais k = ±µ. Então, as soluções da EDO são ϕx) = Ae µx + Be µx. Temos que ϕ x) = µ Ae µx Be µx). Aplicando a condição de fronteira 6), temos = ϕ ) = µ A B). Como µ, pois é positivo, temos A B, ou seja, A = B e ϕx) = A e µx + e µx). Segue que aplicando a condição de fronteira 7), temos = ϕ) = A e µ + e µ).

3 Como e µ + e µ >, segue que A = e, portanto, ϕx) = é a solução trivial. Caso : λ =. Neste caso, em 8) a EDO fica ϕ x) =. Então, ϕ x) = A. Da condição de foronteira 6) segue que A =. ogo, ϕ x) = e ϕx) = B. A condição de fronteira ϕ) = nos diz que B =. Obtemos que ϕx) = é a solução trivial. Caso 3: λ <. Então λ = µ, com µ >. Neste caso a equação característica k + µ = tem raízes complexas k = ±iµ. As soluções da EDO são ϕx) = A cos µx + B sen µx. Aplicando as condições de fronteira, obtemos = ϕ ) = Bµ. Como µ, então B = e ϕx) = A cos µx. Também = ϕ) = A cos µ. ogo A = ou cos µ =. Se A =, então ϕx) = é a solução trivial. Portanto, para obtermos solução não trivial devemos ter cos µ =, ou seja, µ da forma µ = ) π, com n inteiro. Como µ >, então µ = ) π, com n =,,, 3,... Concluímos que as soluções não triviais de 8) são as funções ϕ n x) = A n cos ), com n =,,, 3,... 9) com os λ correspondentes dados por λ n = ) π. ) Substituindo este valor de λ na equação diferencial 4), obtemos a EDO de a ordem cuja solução geral é Multiplicando as funções 9) e ), obtemos c ψ t) + )π ) ψt) =, ψ n t) = D n e c ) π t. ) u n x, t) = A n e c ) π t cos ), n =,,, 3,... ) A constante D n foi incorporada à constante A n. Note que as funções ) satisfazem a equação do calor e as condições de fronteira, quaisquer que sejam as constantes D n e E n. Ainda não levamos em conta a condição inicial. Antes disto, fazemos a superposição das funções dadas por ), obtendo ux, t) = u n x, t) = A n e c ) π t cos ). 3) A idéia agora é ajustar a constantes A n para que a função dada por 3) satisfaça também a condição inicial. 3

4 Fazendo t = em 3), temos fx) = ux, ) = n= A n cos ), 4) onde fx) é a função constante fx) =. Note que a expansão 4) não é exatamente uma série de Fourier para uma função f : [, ] R, por causa do fator em lugar de n. Por isto, para analisar como podemos obter os coeficientes A n, precisamos fazer um parênteses para introduzir dois novos sistemas ortogonais de funções. Observação. As funções { cos em [, ]. ) n =,,, 3,... } constituem um sistema ortogonal De maneira análoga ao que já fizemos antes, utilizando a identidade cos a cos b = [ ] cosa + b) + cosa b), é fácil verificar que cos ) cos m + ) dx =, se n m, se n = m 5) Isto mostra a ortogonalidade do sistema de funções que estamos considerando. De acordo com o estudo que fizemos de ortogonalidade, para expandir uma função f : [, ] R na forma os coeficientes vão ser dados por fx) = A n = A n cos ) fx) cos ), 6) dx. 7). Analogamente, as funções { sen um sistema ortogonal em [, ] e sen ) ) sen n =,,, 3,... } em [, ] também constituem m + ) dx =, se n m Isto possibilita que se possa expandir uma função f : [, ] R na forma os coeficientes são dados por fx) = B n = B n sen ) fx) sen ) 4, se n = m 8). 9) dx. )

5 Em alguns problemas, dependendo das condições de fronteira vamos precisar usar a expansão 9). Fechando o parênteses, voltamos a 4) no problema que estamos resolvendo. Utilizando a expansão 6) para a função fx) =, A n = Segue que fx) cos ) A n = dx = cos ) dx = ) sen )π )π = )n )π. Substituindo em 3), obtemos, finalmente, que a solução é ux, t) = ) n e )π c ) π t cos ) )π sen ). ). Exemplo. Resolva o problema u t = c u xx ) u, t) = a, u, t) = ux, ) = Neste caso a extremidade x = está sendo mantida a uma temperatura que não é. Esta é uma condição de fronteira não homogênea. Por esta razão o método de separação de variáveis não pode ser aplicado diretamente, pois se somarmos funções satisfazendo a condição u, t) = a, a soma não vai satisfazer esta condição. A condição de fronteira u, t) = a só poderia ser usada depois de fazermos a superposição. Devido à dificuldade apontada acima, o método de separação de variáveis só se aplica quando tanto a equação diferencial quanto as condições de fronteira são homogêneas. Vamos transformar o problema ) em um novo problema que envolva condições de fronteira homogêneas. Começamos procurando uma função simples que satisfaça as condições de fronteira do problema ). Por exemplo, hx, t) = a ax satisfaz h, t) = a e h, t) = e tem a vantagem de depender apenas de x. Para u solução de ), seja v = u h. Então, u = v + h e, portanto, u t = v t, u x = v x + h x = v x a e u xx = v xx. Portanto, v é solução do problema v t = c v xx ) v, t) =, v, t) = vx, ) = ax a O plano agora é encontrar v resolvendo o problema ) por separação de variáveis e então obter u como u = v + h. Não continuaremos aqui, pois a resolução do problema ) por separação de variáveis é análoga a outros exemplos já feitos. 5

6 Exemplo 3. Resolva o problema u t = c u xx + γ < x <, < t < + ) ) u, t) =, u x, t) = < t < + ) ux, ) = < x < ) Este problema representa a difusão de calor em uma barra ao longo da qual uma fonte externa comunica calor a uma taxa constante e cujos extremos são mantidos um deles à tempreratura u = e o outro isolado. A equação diferencial u t c u xx = γ é não homogêna. Para ele não vale o princípio de superposição. O método de separação de variáveis não pode ser aplicado diretamente pois a soma de soluções não é solução. Vamos transformar o problema ) em um novo problema que envolva uma equação diferencial homogênea e condições de fronteira também homogêneas. Começamos procurando uma função simples que satisfaça a equação diferencial não homogênea do problema ). Por exemplo, vamos tentar encontrar uma função wx, t) = wx), dependendo só de x, que satisfaça a equção diferencial e as condições de fronteira. Devemos ter { c w + γ = w) = w ) = Note que a solução wx, t) tem um significado físico. Por não depender do tempo, ela representa a situação de equilíbrio que a barra atinge depois de passado um tempo muito grande. Temos w x) = γ c, w x) = γx c + A, wx) = γx + Ax + B. c Para que w) = w ) =, é necessário que B = e A = γ c. Então, wx) = γx c + γx c. Seja v = u w. Para o operador diferencial linear u) = u t c u xx, temos Portanto, u) = γ e w) = γ. v) = u) w) = γ γ =. ogo v) =, isto é, v satisfaz a equação usual do calor. Vejamos qual é a condição inicial satisfeita por v. Temos vx, ) = ux, ) wx, ) = wx) = γx c γx c. Finalmente, juntando todas essas informações, temos que v satisfaz o problema v t = c v xx ) v, t) =, v x, t) = vx, ) = γx c γx c A ideia agora é encontrar v resolvendo o problema ) por separação de variáveis e então obter u como u = v + w. O problema ) pode ser resolvido por separação de variáveis. A resolução é muito parecida com a do Exemplo. 6

7 Começamos procurando uma solução vx, t) da forma vx, t) = ϕx)ψt). Em vez do problema 8), vamos ter o problema { ϕ x) = λϕx) ) ϕ) =, ϕ ) = Como no Exemplo, concluímos que as soluções não triviais de ) são as funções ϕ n x) = A n sen ), com n =,,, 3,... 3) com os λ correspondentes dados por Como no Exemplo, encontramos λ n = ) π. 4) ψ n t) = D n e c ) π t. 5) De 3) e 5), obtemos v n x, t) = A n e c ) π t sen ), n =,,, 3,... 6) e, por superposição, vx, t) = v n x, t) = A n e c ) π t sen ) Aplicamos agora a condição inicial. Fazendo t = em 7), temos γx c γx c = v, t) = A n sen ) x ). 7). 8) Note que 8) é a expansão que corresponde a 9) na Observação, acima. Temos, de acordo com ), que A n = γx c γx ) c sen ) dx. Calculando a integral, obtemos Substituindo em 7) encontramos, finalmente, vx, t) = γ c π 3 γ A n = c π 3 ) 3. Finalmente, a solução do problema original ) é ux, t) = vx, t) + wx) = γx c + γx c + γ c π 3 ) 3 e c ) π t sen ). ) 3 e c ) π t sen ). 7

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.

Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante. Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

Seção 29 Ortogonalidade das funções de Bessel Membrana circular

Seção 29 Ortogonalidade das funções de Bessel Membrana circular Seção 9 Ortogonalidade das funções de Bessel Membrana circular Vamos considerar o problema de determinar vibrações livres de uma membrana presa pelo bordo tambor), conhecidos o deslocamento e a velocidade

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x, Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Questão 1: (2.5 pontos) f(x) =

Questão 1: (2.5 pontos) f(x) = Página 1 de 7 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito prim. prova unificada - Escola Politécnica / Escola de Química - 07/07/010 Questão 1: (.5 pontos Seja

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

36 a Aula AMIV LEAN, LEC Apontamentos

36 a Aula AMIV LEAN, LEC Apontamentos 36 a Aula 004113 AMIV EAN, EC Apontamentos (RicardoCoutinho@mathistutlpt) 361 Equação do Calor não homogénea Considere-se o problema do calor numa barra de comprimento ecomconstante dedifusão térmica k,

Leia mais

33 a Aula AMIV LEAN, LEC Apontamentos

33 a Aula AMIV LEAN, LEC Apontamentos 33 a Aula 24.12.3 AMIV EAN, EC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 33.1 Soluções da equação do calor sem restrições. De acordo com leis gerais da teoria do calor temos a seguinte equação que

Leia mais

SEGUNDA PROVA DE EDB - TURMA M

SEGUNDA PROVA DE EDB - TURMA M SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV o Teste do 1 o semestre de 04/05 cursos: LEAm, LEBl, LEQ, LQ, LEIC, LEM, LEMat, LEGM, LEAN e LEC

Leia mais

d [xy] = x arcsin x. dx + 4x

d [xy] = x arcsin x. dx + 4x Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação

Leia mais

Integração por frações parciais - Parte 1

Integração por frações parciais - Parte 1 Universidade de Brasília Departamento de Matemática Cálculo Integração por frações parciais - Parte Neste pequeno texto vamos desenvolver algumas ideias para integrar funções racionais, isto é, funções

Leia mais

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em. Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série

Leia mais

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18.

x 2 y 6xy + 10y = 0, x > 0 y(1) = 1, y(2) = 18. Gabarito da a Prova Unificada de Cálculo IV Dezembro de a Questão: (. pts) Resolva o problema de contorno: x y 6xy + y =, x > y() =, y() = 8. Solução: Como se trata de uma equação de Euler, a solução geral

Leia mais

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

Capítulo 8 Equações Diferenciais Parciais

Capítulo 8 Equações Diferenciais Parciais Capítulo 8 Equações Diferenciais Parciais Equação de Onda Transversal em Uma Dimensão Seja uma onda se propagando em 1 dimensão na direção. A deflexão dessa onda é descrita por uma função de 2 variáveis.

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

38 a Aula AMIV LEAN, LEC Apontamentos

38 a Aula AMIV LEAN, LEC Apontamentos 38 a ula 2004.12.17 MIV LEN, LEC pontamentos (Ricardo.Coutinho@math.ist.utl.pt) 38.1 Equilíbrio da equação do calor e da equação das ondas Quer na equação do calor u t = k lap u, quer na equação das ondas

Leia mais

u(0; y) = u(1; y) = u(x; 0) = 0 8 x ; se 0 x < x ; se

u(0; y) = u(1; y) = u(x; 0) = 0 8 x ; se 0 x < x ; se Instituto Tecnológico de Aeronáutica / Departamento de Matemática / o. Fund / 009. LISTA NEGRA DE MAT-4 (Apenas para auxiliar nos estudos para o exame). (i) Em cada um dos casos (edp hiperbólica, parabólica

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

Seção 10: Redução de ordem de EDOLH s de 2 a ordem se for conhecida uma solução não trivial

Seção 10: Redução de ordem de EDOLH s de 2 a ordem se for conhecida uma solução não trivial Seção 0: Redução de ordem de EDOLH s de a ordem se for conhecida uma solução não trivial Método de D Alembert Se for conhecida uma solução não trivial de uma EDOLH de a ordem, empregando o método de D

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

ORDINÁRIAS. Víctor Arturo Martínez León

ORDINÁRIAS. Víctor Arturo Martínez León INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Víctor Arturo Martínez León September 3, 2017 Súmario 1 Equações diferenciais lineares de primeira ordem 2 2 Equações diferenciais lineares de segundo ordem

Leia mais

de Coeficientes Constantes

de Coeficientes Constantes Seção 12: Equações Diferenciais Lineares não Homogêneas de Coeficientes Constantes O objetivo desta seção é estudar as equações lineares não homogêneas de coeficientes constantes No entanto, a versão do

Leia mais

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012

Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem. 22 de outubro de 2012 Métodos Matemáticos 2012/2 Notas de Aula Equações Diferencias IV Equações Diferencias Lineares de Segunda Ordem A C Tort 22 de outubro de 2012 Uma equação diferencial ordinária linear de segunda ordem

Leia mais

*** Escolha e resolva 4 das 6 questões! *** *** Justifique TODAS as suas respostas! *** + µ(x, y)sen(89x + π) 0 φ 6 (x, y) + µ 6 (x, y) 1.

*** Escolha e resolva 4 das 6 questões! *** *** Justifique TODAS as suas respostas! *** + µ(x, y)sen(89x + π) 0 φ 6 (x, y) + µ 6 (x, y) 1. USP/ICMC/SMA - Gabarito da 1 a Prova de Cálculo II - SMA- 11/10/006 Professora: Márcia Federson *** Escolha e resolva das 6 questões! *** *** Justifique TODAS as suas respostas! *** Questão 1 Sejam φ :

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

8.1-Equação Linear e Homogênea de Coeficientes Constantes

8.1-Equação Linear e Homogênea de Coeficientes Constantes 8- Equações Diferenciais Lineares de 2 a Ordem e Ordem Superior As equações diferenciais lineares de ordem n são aquelas da forma: y (n) + a 1 (x) y (n 1) + a 2 (x) y (n 2) + + a n 1 (x) y + a n (x) y

Leia mais

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor A Equação de Calor Uma das EDP s clássica da FísicaF sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor em um corpo sólido. s E uma aplicação mais recente é a que descreve

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes:

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: caso não Homogêneo Vamos estudar as equações da forma: ay + by + cy = G(x), onde G(x) é uma função polinomial, exponencial,

Leia mais

Corda Elástica Presa Somente em uma das Extremidades

Corda Elástica Presa Somente em uma das Extremidades Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar

Leia mais

Conceitos Básicos. Capítulo 1 EQUAÇÕES DIFERENCIAIS. Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas.

Conceitos Básicos. Capítulo 1 EQUAÇÕES DIFERENCIAIS. Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. Capítulo 1 Conceitos Básicos EQUAÇÕES DIFERENCIAIS Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. Exemplo 1.1 Algumas equações diferenciais envolvendo a função

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE 2A - 15 DE JUNHO DE DAS 11H. Apresente e justifique todos os cálculos. dy dt = y t t ; y(1) = 1.

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE 2A - 15 DE JUNHO DE DAS 11H. Apresente e justifique todos os cálculos. dy dt = y t t ; y(1) = 1. Instituto Superior Técnico Departamento de Matemática Secção de Ágebra e Anáise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE A - 5 DE JUNHO DE 9 - DAS H ÀS :3H Apresente e justifique todos os cácuos.

Leia mais

O poço de potencial finito

O poço de potencial finito O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Física IV Escola Politécnica PR 22 de fevereiro de 2018

Física IV Escola Politécnica PR 22 de fevereiro de 2018 Física IV - 4323204 Escola Politécnica - 2017 PR 22 de fevereiro de 2018 Questão 1 Duas naves espaciais A e B de mesmo comprimento próprio 0 viajam em sentidos opostos, ambas com a mesma velocidade escalar

Leia mais

Aula 26 Separação de Variáveis e a Equação da Onda.

Aula 26 Separação de Variáveis e a Equação da Onda. Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013

Análise Complexa e Equações Diferenciais 2 ō Semestre 2012/2013 Análise Complexa e Equações Diferenciais ō Semestre 1/13 ō Teste Versão A (Cursos: LEAN, LEMat, LMAC, MEAer, MEAmbi, MEBiom, MEBiol, MEFT, MEMec, MEQ) 5 de Maio de 13, 11h Duração: 1h 3m 1. Considere o

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução Unidimensional, em Regime Permanente com Geração Interna de Calor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica

Leia mais

Equações Diferenciais com Derivadas Parciais

Equações Diferenciais com Derivadas Parciais 1/13 Equações Diferenciais com Derivadas Parciais Chamam-se equações principais da física matemática às seguintes equações diferenciais com derivadas parciais de segunda ordem: 2/13 2 u t 2 = a 2 2 u x

Leia mais

Equações diferenciais com derivadas parciais

Equações diferenciais com derivadas parciais Equações diferenciais p. 1/49 Equações diferenciais com derivadas parciais Alexander Plakhov e Luís Descalço Universidade de Aveiro Equações diferenciais p. 2/49 Equações e separação das variáveis Equações

Leia mais

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) =

TEMPO DE PROVA: 2h30. 1 se 0 x < 1, 0 se 1 x 2. f(x) = Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC48 Gabarito seg. prova unificada - Escola Politécnica / Escola de Química - 1/06/018 Questão 1: (.5 pontos) Seja f : [0,] R a função

Leia mais

EQUAÇÕES ÀS DIFERENÇAS ORDINÁRIAS LINEARES

EQUAÇÕES ÀS DIFERENÇAS ORDINÁRIAS LINEARES EQUAÇÕES ÀS DIFERENÇAS ORDINÁRIAS LINEARES Na disciplina de Análise Matemática, em geral no final do segundo semestre do primeiro ano dos cursos de licenciatura em Economia, Gestão e Engenharia, é usual

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 18: Concavidade. Teste da Segunda Derivada. Denir concavidade do gráco de uma função; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 18: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade do gráco de uma função; Denir ponto de

Leia mais

Notas de Aula - Espaços Vetoriais I

Notas de Aula - Espaços Vetoriais I Notas de Aula - Espaços Vetoriais I 1 O espaço vetorial R 2 A definição de espaço vetorial que veremos adiante faz uso da ideia de operações definidas sobre um conjunto. Iniciaremos nosso estudo explorando

Leia mais

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais.

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. 1 LIVRO Máximos e Mínimos 1 AULA META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. OBJETIVOS Maximizar e/ou minimizar função de duas variáveis a valores reais.

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Capítulo 4 Séries de Fourier

Capítulo 4 Séries de Fourier Capítulo 4 Séries de Fourier Dizemos que representamos uma função real ela se expressa na série em série de Fourier quando os coeficientes são chamados de coeficientes de Fourier. Claro, a série de Fourier

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais