Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Tamanho: px
Começar a partir da página:

Download "Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3"

Transcrição

1 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

2 Equações de Poisson e Laplace Vimos na aula passada o método de separação de variáveis aplicado ao caso da equação da onda na corda, que é um problema essencialmente bidimensional. Veremos, agora, como surgem EDP em problemas tridimensionais. Vamos iniciar essa discussão estudando o caso do potencial eletrostático.

3 Vamos recordar uma das equações de Maxwell (Lei de Faraday, unidades SI) Portanto, no caso estático, o termo do campo magnético H se anula, implicando em: onde E nesta equação corresponde ao campo eletrostático, ou seja, o campo elétrico independente do tempo.

4 Todo campo de rotacional nulo pode ser escrito como o gradiente de uma função escalar. No caso do campo eletrostático essa função escalar é chamada de potencial eletrostático φ e relação entre eles é definida como (o sinal é convencional) Vamos, agora, lembrar de outra equação de Maxwell (Lei de Gauss), para o vácuo:

5 Substituindo a expressão do potencial φ em termos do campo eletrostático E na Lei de Gauss, encontramos onde é o operador Laplaciano. Em coordenadas Cartesianas, temos:

6 Portanto, o Laplaciano em coordenadas Cartesianas é Para uma revisão dos operadores grad, div, rot e, veja a seção 1.8 (cap. 1) do Butkov. A equação obtida para o potencial eletrostático é conhecida como equação de Poisson.

7 Em geral, a equação de Poisson é do tipo onde r = (x, y, z) é o vetor posição. O caso particular em que, ou seja, é a chamada equação de Laplace. Essa é a equação para o potencial eletrostático na ausência de cargas, ou seja, ρ = 0.

8 As equações de Poisson e Laplace são muito importantes na eletrostática, pois permitem calcular o potencial φ, a partir do qual podese calcular o campo elétrico E. Exemplo: Equação de Laplace num problema com simetria cilíndrica. Considere um cilindro metálico muito longo e oco, de raio a, cortado ao meio ao longo de seu eixo, formando duas calhas. 2a

9 As duas calhas são isoladas uma da outra, mantendo a forma cilíndrica do conjunto. As calhas são submetidas aos potenciais +V e V. Determine o potencial e o campo elétricos dentro do cilindro. Solução O problema envolve a equação de Laplace, já que não há cargas dentro do cilindro.

10 Devido à simetria cilíndrica do problema, não é conveniente usar as coordenadas Cartesianas, mas sim as coordenadas cilíndricas (r, θ, z)

11 Seria fácil resolver a equação de Laplace em coordenadas Cartesianas, porém seria difícil ajustar essa solução às condições de contorno do problema, que acompanham sua simetria. Inicialmente vamos notar que, como o cilindro é muito longo, a solução deve ser independente da coordenada z, ou seja Isto é, estamos desprezando os efeitos de borda.

12 Além disso, note que o potencial deve satisfazer às seguintes condições de contorno

13 Aplicando o divergente sobre o gradiente, ambos em coordenadas cilíndricas, obtém-se o operador Laplaciano nessas coordenadas Para uma revisão desses operadores veja, p. ex., o cap. 1 do Griffiths (eletro). Para uma abordagem de sistemas de coordenadas curvilíneas gerais, veja a seção 1.9 do Butkov.

14 Assim, a equação de Laplace a ser resolvida é Como o potencial φ não depende de z, o último termo da equação acima é identicamente nulo, ou seja:

15 Para resolver esta equação, vamos usar o método de separação de variáveis, aplicado anteriormente ao problema da corda vibrante. Neste caso, vamos supor que Desta forma, a EDP para r e θ reduz-se a duas equações diferenciais ordinárias: e onde λ é a constante de separação de variáveis

16 a ser determinada. Temos, agora, que resolver cada uma dessas EDOs. Vamos começar pela equação para, que é a mais simples. De fato, essa equação é idêntica a que resolvemos para a corda vibrante, tanto para x, como para t. Lá, as soluções poderiam ser exponenciais reais, senos e cossenos, ou uma função linear, dependendo se λ >, < ou = 0.

17 O que determina a forma da solução (e o sinal de λ ) são as condições de contorno. Quais são as condições de contorno para? A condição sobre periódica, isto é Θ(θ+2π) = Θ(θ) é que ela deve ser já que, após uma volta completa em θ, o potencial φ e a função devem coincidir com seus valores iniciais.

18 Assim, a única solução admissível para é uma combinação linear de senos e cossenos, e portanto λ deve ser negativo, ou seja, podemos escrever, onde m é um número real a ser determinado. Logo, as soluções para são Porém, a condição de periodicidade, Θ(θ+2π) = Θ(θ), restringe os valores possíveis de m para m = 0, 1, 2, 3,... (zero inclusive).

19 OBS.: Note que a solução acima com m = 0 corresponde à que é uma constante e, naturalmente, obedece à condição de periodicidade. A função periódica mais simples é uma função constante!

20 Vamos, agora, estudar a solução da equação radial, usando os valores de, encontrados na solução da equação angular: Essa equação é conhecida como a equação diferencial de Euler. Ela pode ser resolvida por vários métodos, como, por exemplo, o método de Frobenius.

21 Usando este método, para m 0, encontram-se as soluções e cuja validade podemos verificar facilmente por substituição direta na equação diferencial. Para m = 0, as duas soluções acima reduzem-se a uma constante. Para encontrar a segunda solução, neste caso, pode-se usar o método de Frobenius generalizado. Assim, encontram-se as soluções C = constante e

22 Antes de considerar a solução completa para vamos verificar se as soluções obtidas para R(r) são fisicamente aceitáveis ou não. A região no centro do cilindro dada por r = 0 não contém cargas, portanto o potencial φ deve ser bem comportado lá. Porém, as soluções e são singulares em r = 0 e portanto não são fisicamente aceitáveis.

23 Dessa forma, as soluções aceitáveis para R(r) são e C = constante regulares em r = 0. Combinando as soluções em r e θ, e usando o princípio da superposição encontramos, Resta, agora, impor as condições de contorno sobre essa solução.

24 A condição de contorno que a solução encontrada deve satisfazer é Fazendo r = a na solução encontrada, então, impomos que Logo, este é um problema típico de séries de Fourier, onde queremos encontrar os coeficientes = e = dessa série.

25 Vamos lembrar que, para uma série de Fourier da forma os coeficientes e são dados por

26 Voltando ao nosso problema, note que a função f(θ), correspondente à condição de contorno, é uma função ímpar em θ. Logo, os coeficientes A serão identicamente nulos:

27 Por outro lado, os coeficientes são dados por (m = 1, 2, 3,...) Calculando esta integral, encontramos [ ] Portanto, os termos com m = par são nulos, enquanto os m = ímpares dão

28 (m = 1, 3, 5,...) Assim, a solução para o potencial eletrostático fica O campo elétrico E pode ser calculado a partir deste resultado usando a relação

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

Capítulo 8 Equações Diferenciais Parciais

Capítulo 8 Equações Diferenciais Parciais Capítulo 8 Equações Diferenciais Parciais Equação de Onda Transversal em Uma Dimensão Seja uma onda se propagando em 1 dimensão na direção. A deflexão dessa onda é descrita por uma função de 2 variáveis.

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 4 Ref. Butkov, cap. 8, seção 8.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 4 Ref. Butkov, cap. 8, seção 8.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 4 Ref. Butkov, cap. 8, seção 8.4 Equação da Difusão Um problema importante para vários ramos da Física é saber como

Leia mais

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Prof. Alex G. Dias Prof. Alysson F. Ferrari Solução de problemas eletrostáticos via Equação de Laplace Especicada a distribuição

Leia mais

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Problema 1: Capacitor preenchido com dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Considere um capacitor de placas paralelas,

Leia mais

Prefácio 11. Lista de Figuras 15. Lista de Tabelas 19

Prefácio 11. Lista de Figuras 15. Lista de Tabelas 19 Sumário Prefácio 11 Lista de Figuras 15 Lista de Tabelas 19 8 Transformada de Laplace 21 8.1 Definições Iniciais.............................. 21 8.2 Propriedades da Transformada de Laplace................

Leia mais

Cálculo Diferencial e Integral de Campos Vetoriais

Cálculo Diferencial e Integral de Campos Vetoriais Capítulo 1 Cálculo Diferencial e Integral de Campos Vetoriais Conteúdo 1.1 Breve Interlúdio........................... 8 1.2 Noções básicas de campo escalar e vetorial........... 9 1.3 Divergência de um

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

3.1 Introdução... 69

3.1 Introdução... 69 Sumário Prefácio Agradecimentos xi xvii 1 EDOs de primeira ordem 1 1.1 Introdução.............................. 1 1.2 Existência e unicidade de soluções................. 6 1.3 A equação linear..........................

Leia mais

Eletromagnetismo II. 5 a Aula. Professor Alvaro Vannucci. nucci

Eletromagnetismo II. 5 a Aula. Professor Alvaro Vannucci. nucci Eletromagnetismo II 5 a Aula Professor Alvaro Vannucci nucci Na aula passada, das Equações de Maxwell,, vimos: 1 o ) Conservação de Energia n da = S S ( E H ) ˆ (Vetor de Poynting) 1 + + H B E D V dv t

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 7 Trabalho realizado em um campo eletrostático Suponhamos que numa região do espaço exista um campo elétrico E. Qual

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais retardados e dipolo de Hertz (Introdução) (Capítulo 11 Páginas 395a 400) (Capítulo 14 Páginas 511

Leia mais

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

Seção 29 Ortogonalidade das funções de Bessel Membrana circular

Seção 29 Ortogonalidade das funções de Bessel Membrana circular Seção 9 Ortogonalidade das funções de Bessel Membrana circular Vamos considerar o problema de determinar vibrações livres de uma membrana presa pelo bordo tambor), conhecidos o deslocamento e a velocidade

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2 Eletromagnetismo I Prof. Dr. R.M.O Galvão - 1 Semestre 2015 Preparo: Diego Oliveira Aula 2 Na aula passada recordamos as equações de Maxwell e as condições de contorno que os campos D, E, B e H devem satisfazer

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS

Leia mais

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens Fundamentos da Eletrostática Aula 3 Descontinuidades no Campo Elétrico & Método das Imagens Prof. Alex G. Dias Prof. Alysson F. Ferrari Descontinuidades no campo elétrico Uma observação a ser feita uando

Leia mais

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas.

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas. Equação das Ondas Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas. O aspecto essencial da propagação de uma é que esta consiste numa perturbação

Leia mais

Funções Hiperbólicas:

Funções Hiperbólicas: Funções Hiperbólicas: Estas funções são parecidas as funções trigonométricas e possuem muitas aplicações como veremos ao longo da disciplina. Definiremos primeiro as funções seno hiperbólico e cosseno

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss Linhas de Força Fundamentos da Eletrostática Aula 6 Mais sobre o campo elétrico e a lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Vimos na última aula a denição do campo elétrico E (r), F (r)

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Resolução das equações

Resolução das equações Resolução das equações Equação de Difusão (calor) (1D) Equação de ondas (corda virante) (1D) Equação de Laplace (2D) - Difusão térmica em estado estacionário (2D e 3 D); - Função potencial de uma partícula

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais escalar e vetorial magnéticos (Capítulo 7 Páginas 210 a 216) Potencial Escalar Vm Potencial Vetorial

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

Aula 12. Eletromagnetismo I. Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5)

Aula 12. Eletromagnetismo I. Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5) Eletromagnetismo I Prof. Dr..M.O Galvão - 2 emestre 204 Preparo: Diego Oliveira Aula 2 Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5) Como visto no curso de Física Básica, o campo

Leia mais

Problema de Dirichlet no Círculo e em Regiões Circulares

Problema de Dirichlet no Círculo e em Regiões Circulares Problema de Dirichlet no Círculo e em Regiões Circulares Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 1 a Lista de Exercıćios egundo emestre de 2008 Prof. A C Tort Exercıćio 1 O operador nabla Começamos definindo o operador

Leia mais

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho.

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Eletricidade e Magnetismo - IME Potencial Elétrico Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Energia Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Equipamentos

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

Conceitos Matemáticos & Notações

Conceitos Matemáticos & Notações Conceitos Matemáticos & Notações Apêndice A: Notações - x,δx: uma pequena mudança em x - t : a derivada parcial em relação a t mantendo as outras variáveis fixadas d - : a derivada no tempo de uma quantidade

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO 012 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA PLANO DE ENSINO Código MAT Nome 01012 Métodos Aplicados de Matemática II Créditos/horas-aula

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 10 Campo Elétrico na Matéria Até agora discutimos eletrostática no vácuo, ou na presença de condutores perfeitos,

Leia mais

= ρ (N.1) A+ 1 c 2 φ. 2 φ 1 2 φ

= ρ (N.1) A+ 1 c 2 φ. 2 φ 1 2 φ Apêndice N Solução Geral da Equação de Ondas Eletromagnéticas No caso geral em que há presença de densidades de cargas ρ e correntes j, vimos que os potenciais eletromagnéticos φ, A satisfazem as Eqs.

Leia mais

Antenas e Propagação. Artur Andrade Moura.

Antenas e Propagação. Artur Andrade Moura. 1 Antenas e Propagação Artur Andrade Moura amoura@fe.up.pt 2 Equações de Maxwell e Relações Constitutivas Forma diferencial no domínio do tempo Lei de Faraday Equações de Maxwell Lei de Ampére Lei de Gauss

Leia mais

PLANO DE CURSO (Res. CEPE nº 144/98) CENTRO DE CIÊNCIAS EXATAS Departamento de Física 2013 CÓDIGO Turmas NOME 2FIS /2000 ELETROMAGNETISMO I

PLANO DE CURSO (Res. CEPE nº 144/98) CENTRO DE CIÊNCIAS EXATAS Departamento de Física 2013 CÓDIGO Turmas NOME 2FIS /2000 ELETROMAGNETISMO I Centro de Ciências Exatas Departamento de Física Ano Letivo - 2013 PLANO DE CURSO (Res. CEPE nº 144/98) CENTRO DE CIÊNCIAS EXATAS ANO LETIVO Departamento de Física 2013 CÓDIGO Turmas NOME 2FIS031 1000/2000

Leia mais

Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico

Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari O Vetor Deslocamento Denimos na aula passada o vetor deslocamento D (r) = ε 0 E (r) + P (r).

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62 Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

Física III-A /1 Lista 3: Potencial Elétrico

Física III-A /1 Lista 3: Potencial Elétrico Física III-A - 2018/1 Lista 3: Potencial Elétrico Prof. Marcos Menezes 1. Qual é a diferença de potencial necessária para acelerar um elétron do repouso até uma velocidade igual a 40% da velocidade da

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4 Eletromagnetismo I Prof. Ricardo Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 4 Equações de Maxwell O livro texto inicia a apresentação de Eletromagnetismo pela Eletrostática. No entanto, antes

Leia mais

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada. Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Equação do Calor. Felipe do Carmo Amorim. Engenharia Mecânica. RESUMO

Equação do Calor. Felipe do Carmo Amorim. Engenharia Mecânica. RESUMO Felipe do Carmo Amorim Engenharia Mecânica felipeamorim@vm.uff.br Equação do Calor RESUMO O fenômeno da condução de calor através de um cilindro pode ser analisado matematicamente por meio do uso de equações

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 153 17 EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO A formulação completa das equações de Maxwell só será possível quando estudarmos os campos eletromagnéticos variáveis no tempo. Por enquanto,

Leia mais

2 Propagação de ondas elásticas em cilindros

2 Propagação de ondas elásticas em cilindros 2 Propagação de ondas elásticas em cilindros 2.1 Elastodinâmica Linear As equações que governam o movimento de um corpo sólido, elástico e isotrópico são: τ ij,j + ρf i = ρ ü i (2-1) τ ij = λ ε kk δ ij

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Equações Diferenciais Parciais Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Equações Diferenciais Parciais Uma equação diferencial parcial (EDP) é uma equação envolvendo uma ou mais

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas

Leia mais

Prefácio... i Prólogo... iii Constantes Físicas... vi

Prefácio... i Prólogo... iii Constantes Físicas... vi Índice Prefácio... i Prólogo... iii Constantes Físicas... vi 1 - Introdução Matemática 1.1 - Sistemas de Coordenadas... 1 1.2 - Operadores Diferenciais 1.2.1 - Operador gradiente... 6 1.2.2 - Operador

Leia mais

Eletromagnetismo II. 4 a Aula. Professor Alvaro Vannucci. nucci

Eletromagnetismo II. 4 a Aula. Professor Alvaro Vannucci. nucci Eletromagnetismo II 4 a Aula Professor Alvaro Vannucci nucci Na aula passada vimos... Potência MédiaM dia (Circuito RLC) P 0 = ω = 1 I 0ε0 cos Ressonância: 1 LC θ Fator de Qualidade: Fator de Potência

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Fluxo de um vetor através de uma superfície e circuitação de um vetor ao longo de um caminho fechado

Fluxo de um vetor através de uma superfície e circuitação de um vetor ao longo de um caminho fechado Fluxo de um vetor através de uma superfície e circuitação de um vetor ao longo de um caminho fechado Propriedades de um campo vetorial: O fluxo de qualquer função vetorial e a circuitação dessa função

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Seção 27: Pontos Singulares Método de Frobenius

Seção 27: Pontos Singulares Método de Frobenius Seção 27: Pontos Singulares Método de Frobenius Definição. Seja x 0 um ponto singular para a equação diferencial y + P x y + Qx y = 0. Dizemos que x 0 é um ponto singular regular se P x é analítica em

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. mai/0 São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 112 do Pozar) Geometria e Condições de Contorno Solução geral para Modos TE Solução geral para Modos TM 31/05/17 2 Cabo Coaxial Vamos considerar os campos de um cabo

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:

Leia mais

Lista 6: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Divergente e Rotacional de Campos Vetoriais

Lista 6: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Divergente e Rotacional de Campos Vetoriais Lista 6: CDCI Turmas: AEMN e BEMN Prof. Alexandre Alves Universidade São Judas Tadeu Divergente e Rotacional de Campos Vetoriais Exercício : Calcule a divergência e o rotacional dos seguintes campos vetoriais:

Leia mais

Equações Diferenciais Parciais.

Equações Diferenciais Parciais. EDP p.1/23 Equações Diferenciais Parciais. Margarete Oliveira Domingues PGMET/INPE Definições Básicas EDP p.2/23 EDP p.3/23 EDP Uma equação de derivadas parciais ou EDP é uma equação envolvendo duas ou

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

O ÁTOMO DE HIDROGÊNIO

O ÁTOMO DE HIDROGÊNIO O ÁTOMO DE HIDROGÊNIO Alessandra de Souza Barbosa 04 de dezembro de 013 O átomo de hidrogênio Alessandra de Souza Barbosa CF37 - Mecânica Quântica I /36 Sistema de duas particulas um elétron e um próton;

Leia mais

Física III para a Poli

Física III para a Poli 4323203 Física III para a Poli Uma seleta de exercícios resolvidos Cálculo de alguns campos elétricos Exemplo 1: Fio finito uniformemente carregado Considere que uma carga Q está uniformemente distribuída

Leia mais

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Coordenadas Curvilíneas Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Até agora, usamos sempre o sistema de coordenadas cartesiano, ou seja: dados três eixos

Leia mais

EAC-082: Geodésia Física. Aula 4: Teoria do Potencial

EAC-082: Geodésia Física. Aula 4: Teoria do Potencial EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 4: Teoria do Potencial https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/27 Campo da Gravidade Vimos anteriormente que: m 2 =m

Leia mais

Segunda Lista - Lei de Gauss

Segunda Lista - Lei de Gauss Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =

Leia mais

Momento Angular. 8.1 Álgebra do Momento Angular

Momento Angular. 8.1 Álgebra do Momento Angular Capítulo 8 Momento Angular Neste capítulo vamos estudar os autovalores e autovetores do momento angular. Este problema também pode ser analisado com o uso do método de operadores, o que faremos na primeira

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. out/ São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto todas

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Estrutura Atômica - Prof. J. D. Ayala - 1 -

Estrutura Atômica - Prof. J. D. Ayala - 1 - Estrutura Atômica - Prof. J. D. Ayala - 1-1.1 - MODELO ATÔMICO PLANETÁRIO Supondo que o elétron tem uma massa m, desprezível em relação ao núcleo, cuja carga é Ze. Neste caso o núcleo permanecerá em repouso

Leia mais