Capacidade térmica de sólidos

Tamanho: px
Começar a partir da página:

Download "Capacidade térmica de sólidos"

Transcrição

1 Capítulo 5 Capacidade térmica de sólidos 1 Relação de dispersão As excitações elementares num sólido correspondem a ondas elásticas. Para exemplificar, considere uma cadeia de N átomos ligados por molas e dispostas ao longo do eixo-x. Suponha que uma onda longitudinal se propague ao longo da cadeia. Se considerarmos condições periódicas de contorno, isto é, se o último átomo estiver ligado ao primeiro, então os comprimentos de onda permitidos são dados por λ = L/n onde L é o comprimento da cadeia e n é um número inteiro. Assim a componente k do vetor de onda é dado por k = 2π L n (1) onde agora permitimos que n tome os valores, ±1, ±2,... Os valores negativos correspondem a ondas se propagando na direção negativa do eixo-x. Seja a o espaçamento entre as posições de equilíbrio de dois átomos vizinhos, isto é, a = L/N onde N é o número de átomos na cadeia. É importante notar que é impossível haver propagação de uma onda com comprimento de onda menor do que 2a. Portanto devemos ter k π/a. Os valores permitidos para n são pois N 2 + 1, N 2 + 2,..., 2, 1,, +1, +2,..., N 2 1, N 2 (2) e correspondem a N valores que por sua vez coincide com o número de graus de liberdade do sistema. 1

2 Vamos determinar a relação entre a frequência ω e k para uma cadeia de átomos idênticos de massa m. Denotamos por x l a posição do l-ésimo átomo relativamente à sua posição de equilíbrio. Suponha que os átomos sucessivos na cadeia estejam ligados por molas de constante α. Então, a equação do movimento é m d2 x l dt 2 = α(x l+1 2x l + x l 1 ) (3) onde x N+1 = x 1. Supondo uma solução da forma então ou Definindo ω = x l = A exp{i(kal ωt)} (4) mω 2 = α(e ika 2 + e ika ) (5) mω 2 = α(2 sin ka 2 )2 (6) α/m, obtemos a relação de dispersão ω = 2ω sin k a 2 A condição de contorno periódica x N+1 = x 1 implica (7) e ikan = 1 ou kan = n (8) de modo que os possíveis valores de k são aqueles dados pela relação (1) pois an = L. Para comprimentos de onda longos, isto é, para ka << 1, a relação de dispersão se torna linear ω = ω a k (9) ou ω = v k (1) onde v = aω = a α/m é a velocidade de propagação da onda. 2

3 2 Densidade de orbitais Vamos considerar agora o caso de um sólido, isto é, um cristal cúbico. A relação de dispersão será complicada. Entretanto, podemos fazer a seguinte aproximação ω k = v k (11) onde v é a velocidade ( média ) do som no cristal. Com essa aproximação obtemos a relação ǫ k = hω k = v h k (12) que corresponde à quantização das ondas elásticas no sólido, isto é, aos fônons. Procedendo de forma análoga ao que foi feito co capítulo anterior obtemos a seguinte expressão para o número de orbitais com energia entre e x N(x) = π( x v h )3 ( 2π L ) 3 (13) onde o fator 3 é devido aos três modos de vibração de uma onda elástica num sólido, dois transversais e um logitudinal. A partir de N(x) = V 2π 2 x 3 v 3 h 3 (14) obtemos a densidade de estados G(x) = dn(x)/dx dada por G(x) = 3V 2π 2 x 2 v 3 h 3 (15) É importante notar que não é possivel existir orbitais correspondentes a energias ǫ k = v h k altas pois nesse caso o comprimento de onda λ = 2π/ k seria muito pequeno e portanto menor do que o espaçamento entre os átomos. Devemos pois limitar ǫ k a valores menores do que por exemplo um certo ǫ D a ser determinado. Equivalentemente podemos impor que G(x) = para x > ǫ D. A densidade de estados definida por (15) e por essa restrição constitui a densidade de estado do chamado modelo de Debye. A energia de corte ǫ D é calculada impondo que o número total de orbitais seja igual ao número de graus de liberdade do sistema. Se denotarmos por N 3

4 o número de átomos do sistema então o número de graus de liberdade será 3N. Por outro lado, o número total de orbitais será ǫd G(x)dx = N(ǫ D ) = 3N (16) de onde obtemos V ǫ 3 D 2π 2 3 = 3N (17) v3 h Ou seja, a energia de Debye é dada por ǫ D = hv(6π 2 ρ) 1/3 (18) onde ρ = N/V é a densidade de átomos, o número de átomos por unidade de volume. A relação entre a densidade usual ρ (massa por unidade de volume) de um sólido e ρ é ρ = ρ /m A onde m A é a massa de um átomo. 3 Capacidade térmica Usando a densidade de orbitais do modelo de Debye podemos calcular a energia interna U que é dada por ou U = ǫd U = 3V 1 2π 2 v 3 h 3 xg(x)f(x)dx (19) ǫd Fazendo a mudança de variavel ξ = βx, temos U = 3V (k B T) 4 βǫd 2π 2 v 3 h 3 x 3 dx (2) e βx 1 ξ 3 dξ (21) e ξ 1 Note que a integral depende da temperatura através de βǫ D. Vamos considerar agora of regimes de altas e baixas temperaturas. Para baixas temperaturas, isto é, para k B T << ǫ D ou βǫ D >> 1 (22) 4

5 a integral pode ser extendida até o infinito de modo que U = V 3 2π 2 (k B T) 4 v 3 h 3 ξ 3 dξ (23) e ξ 1 ou seja U = V π2 k 4 T 4 1 v 3 h 3 (24) Desse resultado obtemos a capacidade térmica C = U/ T dada por C = V 2π2 kbt v 3 h 3 (25) ou seja, a baixas temperaturas a capacidade térmica é proporcional a T 3. Se definirmos a temperatura de Debye T D por T D = ǫ D /k B então podemos escrever a expressão (25) na seguinte forma ( ) C = 12π4 T 3 5 Nk B (26) T D Vamos considerar agora o regime de altas temperaturas, isto é, βǫ D << 1. Nesse caso a variável ξ que aparece na integral da expressão (21) são tais que ξ << 1 e portanto podemos aproxomar o integrando por ξ 2. Dessa forma U = 3V (k B T) 4 2π 2 v 3 h 3 ou, tendo em vista a equação (17), de onde obtemos βǫd ξ 2 dξ = V 2π 2 ǫ 3 D v 3 h 3k BT (27) U = 3Nk B T (28) C = 3Nk (29) que é o resultado clássico (lei de Dulong-Petit), resultado esperado para altas temperaturas. A tabela abaixo mostra as temperaturas de Debye para várias substâncias obtidas a partir das medidas da capacidade térmica a baixas temperaturas e a partir das constantes elásticas. substância T D (cap. term.) T D (const. elast.) NaCl KCl Ag Zn

6 Exercícios - 5 1) O modelo de Einstein para a capacidade térmica de sólidos corresponde a uma coleção de 3N osciladores harmônicos de mesma frequência ω E. Isto significa que a densidade de orbitais G(x) é dada por G(x) = 3Nδ(x hω E ) Determine a capacidade térmica C desse modelo e faça um esboço de C versus T. Ache o comportamento de C para altas e baixas temperaturas. 2) Obtenha a densidade de orbitais de um sólido bidimensional usando o modelo de Debye. A partir dela determine a capacidade térmica a altas e baixas temperaturas. Repita o exercício para o caso de um solido unidimensional. 3) Considere a cadeia linear de N átomos, cada um com massa m, ligados por molas de constante α. A relação de dispersão para ondas se propagando ao longo da cadeia é dada por ω k = 2ω sin k a 2 onde ω = α/m e π < ka π. Mostre que a densidade de orbitais G(x) é dada por G(ǫ) = N 2 1 π ǫ 2 ǫ 2 onde ǫ = 2 hω. Mostre também que ǫ efetuando explicitamente a integral. G(ǫ)dǫ = N 6

7 4) A partir da densidade de orbitais obtida no exercício anterior determine a capacidade térmica da cadeia nos casos de altas e baixas temperaturas. Nesse último caso aproxime a densidade de orbitais por G(ǫ) = 2N/πǫ. 5) A relação de dispersão para mágnons é dada por ǫ k = Ak 2 = A(k 2 x + k 2 y + k 2 z) onde A é uma constante. Ache a densidade de orbitais G(ǫ) na aproximação de Debye e faça um gráfico de G(ǫ) versus ǫ. Determine a capacidade térmica a baixas temperaturas. 7

Capítulo Ondas elásticas

Capítulo Ondas elásticas Capítulo 4 Sólidos 4.1 Ondas elásticas Fônons Um sólido é constituído por um grande número de átomos ligados por forças de coesão de vários tipos. Diferentemente do que ocorre num gás, em que as moléculas

Leia mais

06 - VIBRAÇÕES DA REDE CRISTALINA: FÔNONS

06 - VIBRAÇÕES DA REDE CRISTALINA: FÔNONS 06 - VIBRAÇÕES DA REDE CRISTALINA: FÔNONS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro do Capítulo: Vibrações da Rede Cristalina Modelo Clássico das Vibrações

Leia mais

8 de dezembro de 2009

8 de dezembro de 2009 Capítulo 3 Gás de fótons 8 de dezembro de 29 1 Lei de Planck Fótons Neste capítulo examinamos as propriedades térmicas da radiação eletromagnética em uma cavidade. A análise das equações de Maxwell nos

Leia mais

Gás de elétrons livres. Introdução à Mecânica Estatística 29/10/2009

Gás de elétrons livres. Introdução à Mecânica Estatística 29/10/2009 Gás de elétrons livres Introdução à Mecânica Estatística 9/10/009 1 Distribuição de Fermi-Dirac Distribuição de Fermi-Dirac ou f ( ) 1 ( ) e 1 também chamada função de Fermi 1 kt B Exemplo: elétrons em

Leia mais

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 11 de Dezembro de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Gás de elétrons livres

Gás de elétrons livres Capítulo 6 Gás de elétrons livres 8 de dezembro de 29 1 Estados eletrônicos Metais Os metais possuem propriedades singulares quando comparados com outros tipos de sólidos. Possuem ductibilidade, maleabilidade

Leia mais

Gás de elétrons livres

Gás de elétrons livres Capítulo 6 Gás de elétrons livres 1 Densidade de orbitais Considere um elétron livre confinado numa região cúbica de lado L. Utilizando condições periódicas de contorno, os estados eletrônicos são descritos

Leia mais

Gases reais. ρ(γ) = ρ(q 1,q 2,...,q 3N,p 1,p 2,...,p 3N ) (1)

Gases reais. ρ(γ) = ρ(q 1,q 2,...,q 3N,p 1,p 2,...,p 3N ) (1) Capítulo 7 Gases reais 1 Distribuição canônica Diferentemente do que foi feito nos capítulos anteriores vamos considerar agora sistemas de partículas interagentes. Por exemplo, um gás composto de N moléculas

Leia mais

Teste 2 / Exame parte-ii FES MEFT

Teste 2 / Exame parte-ii FES MEFT Teste / Exame parte-ii FES MEFT 7 de Junho de 04, h30 Duração: h30 Prof. Responsável: Eduardo V. Castro Atenção: É permitido o uso de calculadora, mas não de outros dispositivos com esta aplicação (telemóveis,

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Ondas Estacionárias em Cordas

Ondas Estacionárias em Cordas Ondas Estacionárias em Cordas 1. Introdução As cordas estão presentes em vários instrumentos musicais, como o piano, violão, violino e violoncelo. Para cada tipo de instrumento as cordas irão vibrar por

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 4 Ref. Butkov, cap. 8, seção 8.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 4 Ref. Butkov, cap. 8, seção 8.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 4 Ref. Butkov, cap. 8, seção 8.4 Equação da Difusão Um problema importante para vários ramos da Física é saber como

Leia mais

Gás de elétrons livres

Gás de elétrons livres Capítulo 6 Gás de elétrons livres 6.1 Estados eletrônicos Metais Os metais possuem propriedades singulares quando comparados com outros tipos de sólidos. Possuem ductibilidade, maleabilidade e apresentam

Leia mais

UniposRio FÍSICA. Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro. 10 de junho de Nome (legível):

UniposRio FÍSICA. Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro. 10 de junho de Nome (legível): UniposRio FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 10 de junho de 2010 Nome (legível): Assinatura : Leia atentamente as oito (8) questões a seguir e responda nas folhas

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 2016-2017 5 a Série 1. Considere o movimento de uma partícula, no caso unidimensional, em que esta é sujeita a um potencial que é nulo na região x a e innito em x > a. Num determinado

Leia mais

Física IV - FAP2204 Escola Politécnica GABARITO DA PS 15 de dezembro de 2009

Física IV - FAP2204 Escola Politécnica GABARITO DA PS 15 de dezembro de 2009 PS Física IV - FAP2204 Escola Politécnica - 2009 GABARITO DA PS 15 de dezembro de 2009 Questão 1 Considere os campos elétrico E = (0,E y,0) e magnético B = (0,0,B z ) onde E y (x,t) = A e a(x ct) e B z

Leia mais

Vibrações em Rede. CF086 - Introdução a Física do Estado Sólido 1

Vibrações em Rede. CF086 - Introdução a Física do Estado Sólido 1 Vibrações em Rede CF086 - Introdução a Física do Estado Sólido 1 Ideias Iniciais A hipótese de rede estática não permite obter várias propriedades importantes de sólidos. Assim, é preciso relaxar esse

Leia mais

Problemas de Física Estatística e Termodinâmica

Problemas de Física Estatística e Termodinâmica 1 Problemas de Física Estatística e Termodinâmica Todas as grandezas físicas se supõem expressas no Sistema Internacional de Unidades. 1. Uma variável aleatória y pode tomar valores no conjunto {1,2,3,4,5}

Leia mais

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco Exercícios do capítulo 1 (páginas 24 e 25) Questão 1.1 Uma fonte luminosa emite uma potência igual a 3mW.

Leia mais

Exame de Ingresso na Pós-graduação

Exame de Ingresso na Pós-graduação Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 09 de Junho de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3 (três)

Leia mais

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário

Leia mais

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico)

Formalismo microcanônico ( ensemble microcanônico) Formalismo canônico ( ensemble canônico) Formalismo microcanônico ( ensemble microcanônico) sist(j) estado j f j = Ω j Ω Formalismo canônico ( ensemble canônico) reservatório de temperatura tot res sistema f j = Ω res+sist(j) Ω tot sist(j) Física

Leia mais

Exame de Seleça o. Doutorado em Física. 1º Semestre de ª Prova 15/02/2017. Mecânica Estatística e Eletromagnetismo

Exame de Seleça o. Doutorado em Física. 1º Semestre de ª Prova 15/02/2017. Mecânica Estatística e Eletromagnetismo UNIVERSIDADE FEDERAL DO MARANHÃO FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 São Luís Maranhão CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleça

Leia mais

Físicos reescrevem a estória bíblica da criação na forma

Físicos reescrevem a estória bíblica da criação na forma INÍCIO DO SÉCULO XX Pilares Mecânica (Newton) Eletromagnetismo (Maxwell) Físicos reescrevem a estória bíblica da criação na forma No início Ele criou os céus e a terra - F = G mm r 2 = ma e Ele disse,

Leia mais

Capítulo 18 Movimento ondulatório

Capítulo 18 Movimento ondulatório Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Ondas Estacionárias em uma Corda

Ondas Estacionárias em uma Corda Ondas Estacionárias em uma Corda INTRODUÇÃO Ondas estacionárias em uma corda finita Em uma corda uniforme de densidade linear de massa, submetida a uma tensão T, a velocidade de propagação v de um pulso

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Representação grande

Representação grande Capítulo 5 Representação grande canônica 5.1 Introdução Distribuição de probabilidades Vimos no Capítulo 1 que um sistema constituído por partículas que interagem por meio de forças conservativas em contato

Leia mais

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba]

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba] [z7ba] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um em cada

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 12 ESTATÍSTICA QUÂNTICA Primeira Edição junho de 2005 CAPÍTULO 12 ESTATÍSTICA QUÂNTICA ÍNDICE 12-1- Introdução 12.2- Indistinguibilidade

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

Física de Semicondutores. Sexta aula FÔNONS

Física de Semicondutores. Sexta aula FÔNONS Física de Semicondutores Sexta aula FÔNONS Resumo das aulas anteriores Cálculo dos auto-estados e auto-energias dos elétrons em um semicondutor é complicado, devido ao grande número de átomos. Simetria

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Prof. Oscar 2º. Semestre de 2013

Prof. Oscar 2º. Semestre de 2013 Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

Segunda série de exercícios Mecânica Estatística - IFUSP - 23/8/2010

Segunda série de exercícios Mecânica Estatística - IFUSP - 23/8/2010 Segunda série de exercícios Mecânica Estatística - IFUSP - 23/8/2010 1- Obtenha uma expressão para o volume de uma hiperesfera de raio R num espaço de d dimensões. Utilize esta expressão para calcular

Leia mais

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi

Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi Mecânica Estatística - Exercícios do EUF Professor: Gabriel T. Landi (2016-2) Sólido cristalino Num modelo para um sólido cristalino podemos supor que os N átomos sejam equivalentes a 3N osciladores harmônicos

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente

Leia mais

Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2019 Exame de Conhecimentos em Física. Caderno de respostas

Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2019 Exame de Conhecimentos em Física. Caderno de respostas 1 Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2019 Exame de Conhecimentos em Física Caderno de respostas Questão Alternativas (a) (b) (c) (d) (e) 01 X 02 X 03 X 04 X 05 X 06 X 07 X 08

Leia mais

Potenciais cisalhados em mecânica

Potenciais cisalhados em mecânica Potenciais cisalhados em mecânica clássica e mecânica quântica Carlos Farina Instituto de Física - UFRJ Mestrado Profissional em Ensino de Física Instituto de Física - UFRJ (16 de abril de 2013) Roteiro

Leia mais

Termodinâmica II - FMT 259

Termodinâmica II - FMT 259 Termodinâmica II - FMT 259 Diurno e Noturno, primeiro semestre de 2010 Lista 4 GABARITO (revisado em 22/04/10 1. (a Calcule o expoente adiabático γ = C p /C v para um gás a uma temperatura elevada, sabendo-se

Leia mais

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1 Universidade de São Paulo em São Carlos 9514 Mecânica Quântica Aplicada Prova 1 Nome: Questão 1: Sistema de dois níveis (3 pontos) Considere um sistema de dois estados 1 e ortonormais H do sistema seja

Leia mais

Física para Engenharia II

Física para Engenharia II Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 adsantos@if.usp.br

Leia mais

6. Mecânica Quântica

6. Mecânica Quântica 6. Mecânica Quântica Sumário A função de onda A equação de Schrödinger Partícula em uma caixa Poço de potencial Barreira de potencial e o efeito túnel Oscilador harmônico A função de onda Ψ descreve uma

Leia mais

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J). FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s

Leia mais

4 e 6/Maio/2016 Aulas 17 e 18

4 e 6/Maio/2016 Aulas 17 e 18 9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Física da Matéria Condensada - GFI 04129

Física da Matéria Condensada - GFI 04129 Física da Matéria Condensada - GFI 04129 Antonio T. Costa I semestre, 2007 Programa 1 A estrutura eletrônica de sólidos cristalinos a O que é um sólido cristalino b Comportamento do elétron num sólido

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 06 Respostas esperadas Parte Estas são sugestões de possíveis respostas. Outras possibilidades também podem ser consideradas

Leia mais

O oscilador harmônico simples quântico

O oscilador harmônico simples quântico 1 / 18 O oscilador harmônico simples quântico Prof. Dr. Vicente Pereira de Barros Instituto Federal de Educação Ciência e Tecnologia de São Paulo - Campus Itapetininga 29/05/2014 2 / 18 Introdução Introdução

Leia mais

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético

2.2.1 Efeito Hall e Magnetoresistência Condutividade Elétrica AC Corrente Elétrica em um Campo Magnético Conteúdo 1 Revisão de Física Moderna 1 1.1 Equação de Schrödinger; Autoestados e Valores Esperados.. 1 1.2 O Poço de Potencial Innito:Quantização da Energia.............................. 7 1.3 O Oscilador

Leia mais

Capítulo 4 O Oscilador Amortecido

Capítulo 4 O Oscilador Amortecido Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional

Leia mais

b) (0,5) Supondo agora que µ é uma função linear de x e que µ = µ 0 para x = 0 e µ = µ L para x = L. Obter µ(x) para o intervalo 0 x L.

b) (0,5) Supondo agora que µ é uma função linear de x e que µ = µ 0 para x = 0 e µ = µ L para x = L. Obter µ(x) para o intervalo 0 x L. Problemas 1) (2,5) Um bloco de massa m = 0, 05 kg, apoiado sobre uma mesa horizontal sem atrito, está ligado à extremidade de uma mola de constante elástica k = 20 N/m. Este conjunto está imerso em um

Leia mais

INTEGRAIS IMPRÓPRIAS

INTEGRAIS IMPRÓPRIAS Teoria INTEGRAIS IMPRÓPRIAS Intervalos Infinitos: Seja f integrável em [a, t], para todo t > a. Definimos + a f(x)dx = lim t + t a f(x)dx. Tal limite denomina-se integral imprópria de f estendida ao intervalo

Leia mais

Universidade Estadual de Santa Cruz

Universidade Estadual de Santa Cruz Universidade Estadual de Santa Cruz PROFÍSICA Programa de Pós-graduação em Física Seleção 2009. Prova Escrita 2/0/2009 Candidato (nome legível): - Esta prova consta de oito questões distribuídas da seguinte

Leia mais

Complementos de Fluidos

Complementos de Fluidos Complementos de Fluidos A consequência mais visível da viscosidade de um fluido é o seu perfil de velocidades no interior de um tubo: Ver nota 1 A equação de Bernoulli é, então, substituída pela expressão:

Leia mais

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019 Física III - 43303 Escola Politécnica - 019 GABARITO DA P3 13 de junho de 019 Questão 1 Considere um fio infinito transportando uma corrente elétrica I(t = I 0 cos(ωt ao longo do eixo x e uma espira quadrada

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

Ondas e Dispersão. Escola de Inverno de Matemática Jorge Drumond Silva. Departamento de Matemática Instituto Superior Técnico

Ondas e Dispersão. Escola de Inverno de Matemática Jorge Drumond Silva. Departamento de Matemática Instituto Superior Técnico Ondas e Dispersão Escola de Inverno de Matemática 2015 Jorge Drumond Silva Departamento de Matemática Instituto Superior Técnico jsilva@math.ist.utl.pt 1 Ondas 2 3 4 Ondas de Choque 5 Interacção e Interferência

Leia mais

2 Propagação de ondas elásticas em cilindros

2 Propagação de ondas elásticas em cilindros 2 Propagação de ondas elásticas em cilindros 2.1 Elastodinâmica Linear As equações que governam o movimento de um corpo sólido, elástico e isotrópico são: τ ij,j + ρf i = ρ ü i (2-1) τ ij = λ ε kk δ ij

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas das versıes de m ltipla escolha: 16A7: (1) C; () D; (3) C; (4) D; 3A33: (1) C; () B; (3) C; (4) E; E7Hx: (1) C; () B; (3) B; (4) C; 11F: (1) A;

Leia mais

Óptica 2/2007. Propagação da luz por diversos meios. Fowles Cap. 6, Saleh & Teich Cap. 5 e 6

Óptica 2/2007. Propagação da luz por diversos meios. Fowles Cap. 6, Saleh & Teich Cap. 5 e 6 Óptica 2/2007 Propagação da luz por diversos meios Fowles Cap. 6, Saleh & Teich Cap. 5 e 6 Sumário Equações de Maxwell Tipos de meios Equação de onda Absorpção e dispersão Propagação por meios anisotrópicos

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012

Universidade Estadual de Santa Cruz (UESC) Segunda prova de seleção para ingresso em 2012/2. Nome: Data: 13/08/2012 Universidade Estadual de Santa Cruz (UESC) Programa de Pós-Graduação em Física Segunda prova de seleção para ingresso em 2012/2 Nome: Data: 13/08/2012 1 Seção A: Mecânica Clássica Uma nave espacial cilíndrica,

Leia mais

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples Oscilador Harmônico 8 - Oscilador Harmônico Mecânica Quântica Em Física, o oscilador harmônico é qualquer sistema que apresenta movimento oscilatório, de forma harmônica, em torno de um ponto de equilíbrio.

Leia mais

Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2

Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2 Mecânica Analítica Dinâmica Hamiltoniana Licenciatura em Física Prof. Nelson Luiz Reyes Marques Princípio de Hamilton O caminho real que uma partícula percorre entre dois pontos 1 e 2 em um dado intervalo

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

Teoria clássica das vibrações. Cap 22 ASHCROFT- MERMIN Cap 4 KITTEL

Teoria clássica das vibrações. Cap 22 ASHCROFT- MERMIN Cap 4 KITTEL Teoia clássica das vibações Cap ASHCOFT- MEMIN Cap 4 KITTEL Hoje: Falhas do modelo da ede estática tica Teoia clássica do cistal hamônico Calo específico de um cistal clássico Lei de Dulong-Petit Teoia

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Primeira Edição junho de 2005 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Introdução 2.2- Corpo

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 11 MOLÉCULAS Primeira Edição junho de 2005 CAPÍTULO 11 MOLÉCULAS ÍNDICE 11-1- Introdução 11.2- Ligação por Tunelamento e a Molécula

Leia mais

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana Ondas transversas: pulsos numa corda, mola, etc. Ondas longitudinais: mola, som, etc. Diferentes tipos

Leia mais

Física Quântica. Aula 8: Potenciais Simples II: Oscilador Harmônico, Degrau de Potencial. Pieter Westera

Física Quântica. Aula 8: Potenciais Simples II: Oscilador Harmônico, Degrau de Potencial. Pieter Westera Física Quântica Aula 8: Potenciais Simples : Oscilador Harmônico, Degrau de Potencial Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html Receita de Bolo

Leia mais

Exame Unificado das Pós-graduações em Física EUF

Exame Unificado das Pós-graduações em Física EUF Exame Unificado das Pós-graduações em Física EUF º Semestre/01 Parte 1 4/04/01 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova constitui

Leia mais

ONDAS : Oscilação. Onda & Meio. MEIO : onde a onda se propaga. água. ondas na água. corda. ondas em cordas. luz. vácuo. som

ONDAS : Oscilação. Onda & Meio. MEIO : onde a onda se propaga. água. ondas na água. corda. ondas em cordas. luz. vácuo. som ONDAS : Oscilação MEIO : onde a onda se propaga Onda & Meio ondas na água ondas em cordas luz som água corda vácuo ar ONDAS : SÓ transporta energia NÃO transporta matéria http://www.glenbrook.k12.il.us/gbssci/phys/mmedia/waves/lw.html

Leia mais

F ısica Estat ıstica Mecˆanica Estat ıstica Cl assica

F ısica Estat ıstica Mecˆanica Estat ıstica Cl assica UFPel O método estatístico: a teoria de ensemble Um exemplo simples Espaço amostral (ensemble) Lançamento de 2 dados (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)

Leia mais

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) =

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = SEGUNDA PROVA - F789 NOME: RA:. Considere uma partícula de spin. Seja S seu spin e L seu momento angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = r, ± Ψ na base r, ± de autoestados

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

Física estatística. Fotões e a radiação do corpo negro MEFT, IST

Física estatística. Fotões e a radiação do corpo negro MEFT, IST Física estatística Fotões e a radiação do corpo negro MEFT, IST A scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENO OSCILAÓRIO Força proporcional ao deslocamento Movimento periódico ou oscilatório Conservação da energia mecânica Movimento harmónico simples MOVIMENO HARMÓNICO SIMPLES (MHS) Um movimento diz-se

Leia mais

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Limites no infinito Exercício 1: Calcule os seguintes limites (a) (b) (c) (d) ( 1 lim 10 x + x +

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I PROF.: KAIO DUTRA Tipos de Ondas As ondas podem ser de três tipos principais: Ondas Mecânicas: São governadas pelas leis de Newton e existem apenas

Leia mais

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:

Leia mais

Lista de problemas da área I

Lista de problemas da área I Lista de problemas da área I 1. Superfície e volume no espaço de fase: Com as definições usuais de superfície no espaço de fase Γ(E,V,N) e volume Σ(E,V,N), se é uma pequena faixa de energias tal quee H(p,q)

Leia mais

Módulo de elasticidade aproximado de alguns sólidos em unidades de Pa

Módulo de elasticidade aproximado de alguns sólidos em unidades de Pa Formulário: Oscilador*Simples* m d 2 x dt = kx!!!!!!!!!!!!! x(t ) = Acos(ω t +ϕ ) ω 2 2 0 0 = k / m L d 2 θ dt = gθ 2!!!!!!!!!!!!!!! θ(t ) = θ cos(ωt +ϕ ) max Ω2 = g / L! Oscilador*Amortecido * m d 2 x

Leia mais

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ).

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ). A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = (τ sen θ). Aqui assumimos que θ

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

Exemplo do Uso da Integração: O valor médio de uma função contínua

Exemplo do Uso da Integração: O valor médio de uma função contínua Exemplo do Uso da Integração: O valor médio de uma função contínua Um problema muito comum em biologia consiste em determinar o valor médio de alguma grandeza que varia continuamente. Alguns exemplos são

Leia mais

Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária

Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Para algumas situações-problema, cuja formulação matemática envolve equações diferenciais, é possível

Leia mais

= 1, kg. m protão. ħ = 1, J s

= 1, kg. m protão. ħ = 1, J s Oscilador harmónico O conceito de oscilador harmónico pode ser usado para descrever moléculas. Por exemplo, a molécula de H apresenta níveis de energia igualmente espaçados, separados por 8,7.10-0 J. Admitindo

Leia mais

MODOS NORMAIS de vibração. mola e peso barbante

MODOS NORMAIS de vibração. mola e peso barbante MODOS NORMAIS de vibração mola e peso barbante MODOS NORMAIS de vibração de uma corda (aula Ondas3 de Fis. 2) f/2 3f/2 5f/2 7f/2 f 2f 3f 4f https://www.youtube.com/watch?v=v_kopeob1ke A matemática... y

Leia mais

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia

Leia mais