Curso de Estruturas Estruturas rígidas Eldon L. Mello PhD 6.2 ESTRUTURAS RÍGIDAS VIGAS ARTICULADAS. Resgate na ilha do bananal

Tamanho: px
Começar a partir da página:

Download "Curso de Estruturas Estruturas rígidas Eldon L. Mello PhD 6.2 ESTRUTURAS RÍGIDAS VIGAS ARTICULADAS. Resgate na ilha do bananal"

Transcrição

1 Curso de Estruturs Estruturs rígids Eldon. ello h 6. ESTRUTURS RÍGIS IGS RTICUS Resgte n ilh do nnl Nosso monociclist se viu encrencdo n fmos ilh do nnl. El tem 7km de lrgur! É que s monovis ds dus mrgens terim sido destruíds por um tsunmi!. Um operção de resgte foi plnejd pelos engenheiros d ilh. Não hvi tempo pr um projeto mis detlhdo. erificrm que os dentes d i-quim estvm intctos. Se lemrrm de que dispunhm de dus vigs rígids, tmém dentds e sem peso. primeir opção foi engstá-ls em contrfortes ns dus mrgens do rio rgui. Utilizrim, então, dus lnquins dentds. ocê já foi presentdo à i-quim o ldo. diferenç é que el tem dois dentes. / C / Resistênci é o que não flt à i-quim. Nem os seus dentes! (/) / / (/) ções C equivlentes / / ntes d operção de montgem, os engenheiros fizerm um simulção pr clculr s reções ds lnquins so ção d i-quim. Inverterm os sentidos ds reções de poio d i-quim e s plicrm ns extremiddes ds lnquins. Os engenheiros denominm esss forçs de ções equivlentes. s extremiddes livres ds lnquins não sofrerão movimentos verticis (deslocmentos) porque s lnquins são rígids. Isso veio clhr porque os poios d i-quim são tmém rígidos. Com goid e o queijo n mão! O monociclist peou d i-quim pr s operções de montgem como recomend Engenhri de Segurnç. eprtmento de Engenhri Civil pág. /

2 Curso de Estruturs Estruturs rígids Eldon. ello h 6. (/) / / (/) Os engenheiros sim que s reções, s notds nos engstes, serim válids enqunto o monociclist estivesse sore i-quim - prte centrl d monovi. Qundo estivesse sore um ds lnquins, s reções serim diferentes - ms não miores que s d situção nterior. Hvim feito s seguintes simulções. Crg sore Crg sore C igs ssim rticulds são conhecids como igs Gerer, em homengem o seu idelizdor. Não se se se ele teve oportunidde de construí-ls. construíd n ilh do nnl foi Gerer.quim Gerer rígid e sem peso. (/) rótul rótul (/) Crg no vão centrl d vig Gerer.quim. / / ocê notou que i-quim e s dus lnquins formm três suconjuntos d Gerer.quim? Que técnic utilizd pr os cálculos foi mermente de estelecer s condições de equilírio em cd um dos suconjuntos? rticulções do tipo d vig Gerer são freqüentes ns estruturs de mdeir e de concreto (rmdo ou protendido). igs pré-moldds de concreto rmdo podem ser vists nos edifícios residenciis d Colin elh no cmpus d Un. São visíveis externmente. eprtmento de Engenhri Civil pág. /

3 Curso de Estruturs Estruturs rígids Eldon. ello h 6. Els podem permitir um movimento longitudinl (emor limitdo) entre trechos d vig - resistênci à forç norml poderá ser nul ou desprezd nos cálculos. Tmém, o movimento de rotção entre s seções trnsversis é prticmente livre - resistênci à flexão será muito pequen ou nul. s rótuls simolizm momento fletor resistente nulo. ocê viu que os esforços solicitntes e s reções vrim qundo o monociclist trvess ponte. ocê poderá fzer um gráfico pr cd um dos esforços solicitntes, e pr cd um ds reções tmém. Os engenheiros denominm esses gráficos de inhs de Influênci. inh de influênci d reção pr crg pssendo sore Gerer.quim C inh de influênci d reção pr crg pssendo sore Gerer.quim C inh de influênci do momento fletor no centro de C pr pssendo sore Gerer.quim C /4 Interessnte, não? Como dever-de-cs você frá, por oséquio, os gráficos dos outros esforços solicitntes e ds outrs reções. Sus expressões já estão disponíveis. ãos à or. Oportunmente, você verá que s inhs de Influênci podem ser otids vi cinemátic. Não se preocupe - será mis fácil que fzer pão-de-queijo! Todos os esforços internos e externos (reções) puderm ser inequivocmente clculdos pels plicções ds condições de equilírio estático. Estruturs rígids com ess crcterístic são denominds de estticmente determinds ou isostátics. eprtmento de Engenhri Civil pág. 3/

4 Curso de Estruturs Estruturs rígids Eldon. ello h 6. seguir, nosso monociclist frá um psseio num Gerer.quim estticmente indetermind. ejmos sus impressões. Gerer.quim- N Gerer.quim o ldo, i-quim foi suprimid. s dus lnquins form ligds por meio de um únic rticulção -C. Como n nterior, el não oferece resistênci o momento e nem o norml. Resiste pens o esforço cortnte. y x -C rticulção -C não resiste à forç norml. Isso signific que forç norml solicitnte n rticulção deverá ser nul. Em decorrênci, s reções horizontis serão nuls tmém. or ess rzão els não form representds no esquem de forçs. Emor preç mis simples que nterior, não é. s prêncis engnm! Qundo crg estiver sore rticulção -C hverá um indeterminção: quis serão s forçs cortntes em do trecho e em C do trecho C? mesm indeterminção ocorrerá qundo estiver sore um dos trechos. ej o desenlce seguir. Condições glois de equilírio estático x x Os recursos de lingugem d mdme são poderosíssimos e esclrecedores. lingugem mtricil é um desses recursos. El permite expressr determinds proprieddes que não serim possíveis ou inteligíveis no dileto (sic) lgérico. mos trduzir s dus condições lgérics de equilírio pr lingugem mtricil. Emor ess trdução não eprtmento de Engenhri Civil pág. 4/

5 Curso de Estruturs Estruturs rígids Eldon. ello h 6. sej necessári nesse cso simples, el será útil pr você ir se costumndo com notção mtricil. x y x -C = + Como mtriz é retngulr, dus linhs e qutro coluns, não é possível expressr s qutro reções em função d crg. omento resistente nulo n rticulção condição de forç norml nul n rticulção d Gerer.quim não depende d posição d crg. Já condição de momento solicitnte nulo depende d su posição. everá ser estelecid por meio de suconjuntos que interceptem rticulção. seguir vmos supor que crg estej sore o trecho. Como dever-de-cs, você considerrá sore C. x sej: x r o suconjunto indicdo, condição de momento nulo n rticulção será: y = + Um terceir linh foi crescentd pr condição de momento nulo n rticulção. mtriz é retngulr de 3 linhs e 4 coluns. ind não é possível expressr s qutro reções em função d crg. Como não há outrs proprieddes crescentr, solução será indetermind. izemos que Gerer.quim é estticmente indetermind, ou hiperestátic. Será necessário reduzir o número de reções, se quisermos encontrr um solução pr Gerer.quim. eprtmento de Engenhri Civil pág. 5/

6 Curso de Estruturs Estruturs rígids Eldon. ello h 6. eprtmento de Engenhri Civil pág. 6/ / / / / O preço foi su mutilção. O engste em teve se ser trnsformdo num poio simples. Em compensção, el ceitrá que você plique o momento no poio. Se não quiser, poderá fzê-lo igul zero. Todos os esforços internos poderão ser clculdos tmém. e estticmente indetermind, noss Gerer.quim se trnsformou num estticmente determind, ou isostátic. Como Gerer.quim é rígid, nosso monociclist nem perceeu trnsformção! E por flr em trnsformção, s relções mtriciis cim são trnsformções lineres. ocê pode escrever últim dels ssim: / / / / Ess form torn explícit superposição ds reções. s reções pr o equilírio d crg são somds às reções pr o equilírio do momento plicdo. s estruturs rígids ceitm pcificmente o princípio d superposição dos efeitos. elhor que isso... mdme permite expressr, e em função de e. s Gerer.quim terá de pgr um preço por isso! gurde e verá. y

7 Curso de Estruturs Estruturs rígids Eldon. ello h 6. Gerer.quim-3 Inesperdmente o poio cedeu. or sorte o monociclist encontrv-se sore o trecho, que permneceu intcto. Os engenheiros consttrm que o engste não sofreu nenhum dno. y -C c 3 Que os dois poios poderim resistir eventuis solicitções horizontis. Que rticulção ind não ofereci resistênci o momento solicitnte e que seu trecho sore continuou não resistir o esforço norml. reção horizontl em continurá nul e, conseqüentemente, horizontl em tmém. edirm o desnível e encontrrm o vlor c. Como os trechos d Gerer.quim são rígidos, o comprimento de C permneceu igul. O poio teve de descrever, então, um rco de círculo centrdo no eixo d rticulção. esceu verticlmente e movimentou-se horizontlmente pr dentro. Os engenheiros geotécnicos levntrm hipótese de um ruptur do solo de fundção em do tipo cunh. s, isso não vem o cso. O vlor de 3 é igul c, de modo que resultrão: sen c/ e cos 3 /. O vão d Gerer-quim foi ligeirmente reduzido e pssou ser igul. y c 3 3 Condições glois de equilírio estático Condição de momento resistente nulo em -C 3 eprtmento de Engenhri Civil pág. 7/

8 Curso de Estruturs Estruturs rígids Eldon. ello h 6. ogo, s condições estátics serão: ocê frá simulção com crg sore o trecho inclindo. ãos à or. Em tempo o que contecerá se o engste não mis resistir o momento solicitnte em? everemos resgtr imeditmente o monociclist? Gerer.quim-4 Os vãos ds três estruturs são iguis. s rticulções ns três Gerer.quins são extmente iguis. Els resistem os esforços normis e cortntes. Não resistem o momento solicitnte. Quis são os esforços internos e s reções ns três? Se s rrs d primeir pudessem sofrer encurtmento (um pseudo-gerer.quim), su geometri poderi tender pr segund? E dest pr terceir? i-quim e Gerer.quim.poli Entretenimento Gerer.quim.poli é um vig Gerer, rígid e sem peso e de form poligonl. Só existe no reino d mdme. ocê deve se lemrr de que podemos moldr um corpo rígido n form que quisermos. finl, quem é que mnd? eprtmento de Engenhri Civil pág. 8/

9 Curso de Estruturs Estruturs rígids Eldon. ello h 6. s dus vigs têm vãos iguis. Os poios são rígidos e fixos. s rticulções d Gerer.quim.poli resistem os esforços normis e cortntes. Não resistem momentos solicitntes. São muito oedientes. Sej determinr seus esforços internos e reções. c d C d i-quim: N H H H {indeterminds} N N N N H {indetermindos} 3 4 C Q 4 Q Q Q Q 3 4 C Gerer.quim.poli: 3 C H H / c N 4 Q N d / c N N N / c {tods de trção} 3 C Q Q Q Q 3 4 C 3 4 C i-quim e i-quim.poli Entretenimento i-quim.poli, é um vig i-poid, rígid e sem peso e de form poligonl. Nem é preciso dizer que el só pode ser encontrd no reino del. Há dus diferençs do entretenimento nterior: )os poios podem se movimentr livremente n horizontl. Não mis resistem às solicitções horizontis reção horizontl em é identicmente nul. trito zero! elhor que isso...)s conexões dos três trechos são rígids. Resistem qulquer cois! c d C d eprtmento de Engenhri Civil pág. 9/

10 Curso de Estruturs Estruturs rígids Eldon. ello h 6. i-quim: H H N N N3 N4 NC Q 4 Q Q Q Q 3 4 C 3 C i-quim.poli: H H N 4 N c/ d {trção} N N N Q 4 3 C Q / d Q Q Q 3 4 C 3 C i-quim.f e i-quim.poli.f Entretenimento 3 gor vmos sumeter s cois do entretenimento- um forç xil de compressão. Esse entretenimento pode ser útil pr nos dr um insight do comportmento de vigs protendids e de pilres. C 3 4 F c d 4 d F i-quim.f i-quim.poli.f i-quim.f H F N N N N N F {compressão} 3 4 C Q 4 Q Q Q Q 3 4 C 3 C eprtmento de Engenhri Civil pág. /

11 Curso de Estruturs Estruturs rígids Eldon. ello h 6. i-quim.poli.f H F N N N F {compressão} 3 C N 4 N (c F ) / d {depende} Q 4 Q ( F c) / d Q Q Q 3 4 C Fc 3 C Esses entretenimentos no reino d mdme inspirm os pesquisdores doutores n interpretção dos resultdos de ensios de vigs i-poids no reino d mdme hysique. ivertir é preciso! São poincrinos n elorção de modelos pr explicr o comportmento dos mteriis reis. Os entretenimentos são do tipo 8 ou 8. No do tipo 8 você orden que os poios rígidos sejm imoilizdos trito totl!.já no do tipo 8 você exige que sej dd lierdde totl de movimento horizontl um deles trito zero! ronto, você não pode exigir mis nd qunto os poios. oderá exigir conexões tmém do tipo 8 ou 8. Nd mis. Se os mteriis vão concordr, é outr históri. Torcerá pr que ceitem um solução intermediári do tipo 44. Torcerá pr que ceitem um interpolção, liner ou não. ever-de-cs: erificr o que contecerá qundo c tender pr zero, nos três entretenimentos. Interpolr é reltivmente seguro? or vi ds dúvids os engenheiros não rem mão dos coeficientes de segurnç. Nem ns estruturs d indústri mecânic e nem ns d construção civil. O seguro morreu de velho! Flexão pur qundo num determind seção trnsversl existe pens o momento fletor. ponte os trechos so flexão pur nos três entretenimentos. Flexão simples qundo um seção está so ção do momento fletor e d forç cortnte. ponte os trechos de flexão simples. Flexo-compressão qundo um seção está so ção do momento fletor e d forç norml de compressão. ponte os trechos de flexo-compressão (tmém denomind de compressão excêntric). eprtmento de Engenhri Civil pág. /

12 Curso de Estruturs Estruturs rígids Eldon. ello h 6. Flexo-trção qundo um seção está so ção do momento fletor e d forç norml de trção. ponte os trechos de flexo-trção (trção excêntric). eprtmento de Engenhri Civil pág. /

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço 2º. Teste de Introdução à Mecânic dos Sólidos Engenhri Mecânic 25/09/2008 25 Pontos 1ª. Questão: eterminr os digrms de esforços solicitntes d Vig i-poid com blnço bixo. 40kN 30 0 150 kn 60 kn/m 3 m 2 m

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2 Profª Gbriel Rezende Fernndes Disciplin: Análise Estruturl 2 INCÓGNITAS = ESFORÇOS HIPERESTÁTICOS (reções de poio e/ou esforços em excesso que estrutur possui) N 0 TOTAL DE INCÓGNITAS = g =gru de hiperestticidde

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II

TC 071 PONTES E ESTRUTURAS ESPECIAIS II TC 071 PONTES E ESTRUTURAS ESPECIAIS II 7ª AULA (09/09/2.010) Vmos nlisr o comportmento ds longrin e o cminhmento ds crgs trvés d estrutur em grelh, pr: ) crgs plicds n longrin em estudo, b) crgs plicds

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Estruturas e Geotécnica PROBLEMAS DE RESISTÊNCIA DOS MATERIAIS

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Estruturas e Geotécnica PROBLEMAS DE RESISTÊNCIA DOS MATERIAIS Escol Politécnic d Universidde de São Pulo Deprtmento de Engenhri de Estruturs e Geotécnic PROLEMAS DE RESISTÊNCIA DOS MATERIAIS H. ritto 008 PREFÁCIO Este texto tem finlidde de prover s disciplins PEF-0

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

ESTRUTURAS DE BETÃO ARMADO I 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA

ESTRUTURAS DE BETÃO ARMADO I 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA PROGRAMA 1.Introdução o etão rmdo 2.Bses de Projecto e Acções 3.Proprieddes dos mteriis: etão e ço 4.Durilidde 5.Estdos limite últimos de resistênci

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

C A P Í T U L O 5 Vigas sobre base elástica

C A P Í T U L O 5 Vigas sobre base elástica C Í T U L O 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d flexão simples de vigs suportds diretmente pelo terreno (que constitui, então, num poio elástico contínuo

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítulo 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d fleão simples de vigs suportds diretmente pelo terreno (ue constitui, então, num poio elástico contínuo

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo téchne educção PROVA COMENTADA Q1) RESPOSTA Dimensionmento ds rmdurs de flexão no vão e no poio d vig contínu. Vão - M 39,4 kn. m - momento fletor crcterístico k - M M 1,4 39,4 55,16 kn. m - momento fletor

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Análise de secções transversais de vigas mistas

Análise de secções transversais de vigas mistas Análise de secções trnsversis de vigs mists Análise plástic clsse 1 e 2 Análise elástic qulquer tipo de clsse Análise plástic Hipóteses de cálculo (gerl) Consider-se que existe intercção totl entre os

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

ESTRUTURAS RÍGIDAS INTRODUÇÃO. No reino de Mme. Mathématique. No mundo da Engenharia

ESTRUTURAS RÍGIDAS INTRODUÇÃO. No reino de Mme. Mathématique. No mundo da Engenharia ESTRUTURS RÍGIS INTROUÇÃO No reino de Mme. Mthémtique mdme coloc à disposição ds outrs ciêncis um vsto rsenl de recursos: números, geometris, álgers, vetores, sistems de referênci, funções, trnsformções

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos 6. Autómtos Mínimos 6 Autómtos mínimos Dd um lingugem regulr L, muitos são os utómtos determinísticos que representm. Sej A L o conjunto dos utómtos tis que (8A)(A 2A L =) L(A) =L). Os utómtos de A L não

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E MTEMÁTI NO E QUESTÕES - GEOMETRI - 9º NO - ENSINO FUNMENTL ============================================================================ 0- figur o ldo indic três lotes de terreno com

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Apresenta-se em primeiro lugar a simbologia adoptada na descrição da assemblagem de elementos finitos.

Apresenta-se em primeiro lugar a simbologia adoptada na descrição da assemblagem de elementos finitos. PÍTULO 8 SSEMLGEM DE ELEMENTOS INITOS No pítulo, foi presentdo com detlhe o cso d ssemblgem de brrs em problems unidimensionis. Neste cpítulo present-se de um modo sucinto dptção d técnic já descrit o

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura)

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura) QUESTÕES DE ROVS E TESTES (Flexão ur) (1) Estudo Dirigido 04-02 r cd um ds vigs esquemtizds bixo, com s respectivs seções trnsversis mostrds o ldo, pede-se: ) Trçr o digrm de forçs cortntes, ssinlndo os

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

operation a b result operation a b MUX result sum i2 cin cout cout cin

operation a b result operation a b MUX result sum i2 cin cout cout cin Módulo 5 Descrição e simulção em VHDL: ALU do MIPS Ojectivos Pretende-se que o luno descrev, n lingugem VHDL, circuitos comintórios reltivmente complexos, usndo, pr esse efeito, lguns mecnismos d lingugem

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas.

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas. OBMEP 011 Fse 1 Questão 1 Solução ) Primeiro notmos que é possível preencher o qudriculdo de cordo com o enuncido; um exemplo está o ldo. Oservmos gor que, qulquer que sej mneir de preencher o qudriculdo,

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos

Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos . Métodos Vrcionis plicdos o modelmento de Descontinuiddes em Gui em dois plnos. Introdução Conforme esperdo, os resultdos presentdos no Cpítulo 9 mostrrm s fortes limitções do modelo simplificdo de impedânci.

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Resolução: Questão 03

Resolução: Questão 03 005 IME MTEMÁTIC mtemátic é o lfeto com que Deus escreveu o mundo Glileu Glilei uestão 01 Dd função f ( x) = (156 x + 156 x ), demonstre que: f(x + y) + f(x - y) = f(x). f(y) Escrevendo f(x+y) e f(x-y)

Leia mais

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine: COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Física A Semiextensivo V. 2

Física A Semiextensivo V. 2 Semiextensivo V. Exercícios 0) 00 y (m) 80 50m 60 30m 0m 40 40m s (m) 0 A 0m 0 x (m) 0 0 40 60 80 00 ) s A = 0 m s A = 40 m + 30 m + 0 m + 50 m 0) C 0 m s = 50 m s = s s A s = 50 0 s = 40 m b) v m = s

Leia mais

FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA

FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA ULDDES OSWLDO RUZ ESOL SUERIOR DE QUÍMI DIÂMI ) rofessor: João Rodrigo Esclri Quintilino escl R b D figur: R 3 6 lterntiv e. x x v t t 4 x t 4t 8 m/s Se m 4 kg: R m 4 8 R 3 7 R v? v b) omo c R: b R, 9

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3. Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escol Secundári/, d Sé-Lmego Fich de Trlho de Mtemátic A Ano Lectivo 0/ Distriuição de proiliddes.º Ano Nome: N.º: Turm:. Num turm do.º no, distriuição dos lunos por idde e sexo é seguinte: Pr formr um

Leia mais