étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Tamanho: px
Começar a partir da página:

Download "étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA"

Transcrição

1 étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO 216

2 1. Conceitos fundmentis Conteúdo 2. Métodos diretos pr resolução de SL: Métodos pr resolução de SL tringulres Método de eliminção de Guss Método de decomposição LU Decomposição de Cholesky Decomposição espectrl 3. Inversão de mtrizes trvés de métodos diretos 4. Métodos itertivos pr resolução de SL Método itertivo de Jcobi Richrdson Método itertivo de Guss Seidel 5. Análise de erros n solução de SL 6. Cálculo de utovlores e utovetores 2

3 Introdução A solução de um sistem de equções lineres lgébrics é um dos processos numéricos mis utilizdos pr simulr situções reis. É um etp fundmentl n solução de problems que envolvem por exemplo: Equções diferenciis prciis Otimizção Regressão Sistems não lineres Equções integris É muito importnte escolh e implementção de um método eficiente pr solução do SL devido principlmente d dois ftores: Esforço computcionl requerido (tempo/memóri) Precisão dos resultdos Um equção é liner se cd termo contém não mis do que um vriável e cd vriável prece n primeir potênci. 3

4 4

5 Mtriz é um conjunto de elementos dispostos em form retngulr. O tmnho de um mtriz é determindo pelo seu número de linhs e coluns. Um mtriz com m linhs e n coluns é dit m x n. Os elementos podem ser números, expressões ou outrs mtrizes. Os elementos de um mtriz são delimitdos por colchetes ou prênteses e são referencidos por dois índices, o primeiro indic linh e o segundo colun. 5

6 Forms de Mtrizes: Mtrizes com determindos formtos e elementos frequentes: m n d mn d d d Colun A(mx1): Nul: A(mxn) ij =, i, j Digonl: A(mxn) d ij =, ij Identidde: A(mxn) e ij =1, i=j e e ij =, ij Linh A(1xn): 6

7 Forms de Mtrizes: Dens: (5x5) Esprs: (5x5) Simétric d ij = d ji, i,j A=A T mn m m d dm d d d d d d d d mn n n n d d d d d d d d d d Tringulr inferior: A(mxn) d ij =, i<j Tringulr superior: A(mxn) d ij =, i>j

8 Operções Mtriciis: Trnsposição: A T A Adição/Subtrção: (Mtrizes devem ter s mesms dimensões) B A B A B A Um mtriz complex é Hermitin se el é igul os seu complexo cinjugdo trnsposto. 8

9 Operções Mtriciis: Conceitos Fundmentis Multiplicção por esclr: (result em mtriz de mesm dimensão) 2 A A Multiplicção por mtriz: (o número de coluns de A(m 1 xp) deve ser igul o número de linhs de B(pxn 2 ) sendo AxB=C(m 1 xn 2 ): C ij p k 1 ik b kj, i 1,2,..., m1 j 1,2,..., n 2 A B AB

10 Operções Mtriciis: Conceitos Fundmentis Produto interno e externo: multiplicção de vetores que result em um esclr ou um mtriz. 1

11 Operções Mtriciis: Conceitos Fundmentis Determinnte: Um mtriz qudrd de ordem n tem um número ssocido chmdo determinnte: A A A det( A) det( A) det( A) Se det(a) = mtriz é singulr (não tem invers). 11

12 Operções Mtriciis: Posto Conceitos Fundmentis Um conjunto de vetores {v 1, v 2,...,v n } é dito linermente dependente se existirem esclres 1, 2,..., n não todos nulos, tis que: v v nv n Os vetores v 1, v 2,...,v n são linermente independentes se iguldde é verificd somente pr todos os esclres 1, 2,..., n nulos. Posto de um mtriz A é o número máximo de vetores linh ou colun de A que são linermente independentes. Linhs 2 e 4 obtids pel combinção liner ds linhs 1 e 3: L2=L1+L3 L4=2L1-L3 Posto(A)=2. 12

13 Operções Mtriciis: Conceitos Fundmentis Trço: O trço de um mtriz qudrd é definido como som dos elementos d su digonl principl. trço A n i1 ii 13

14 Operções Mtriciis: Conceitos Fundmentis Invers: A invers de um mtriz qudrd A de ordem n A -1 é: Sendo I n mtriz identidde de ordem n. Observ-se que lei comuttiv existe pr o produto de um mtriz por su invers. 14

15 Operções Mtriciis: Conceitos Fundmentis Algums operções: Se, então e 15

16 Autovlores e Autovetores: Sej mtriz: Tl que: A Mtriz A possui um utovlor = 2 e um correspondente utovetor v = [1 2] T. Tmbém e verdde pr = 4 e v = [2 3] T. A mtriz de ordem n possui n utovlores e n utovetores. Relção fundmentl: Av v 16

17 Autovlores e Autovetores: O problem do utovlor é encontrr solução não trivil (não nul) do sistem homogêneo: A I v Teorem: Se M for um mtriz de ordem n, então o sistem homogêneo My = tem solução não trivil se, e somente se, M for singulr. Pelo teorem e sbendo que um mtriz singulr tem determinnte nulo então: det A I 17

18 Autovlores e Autovetores: Exemplo: 1 = 2 e 2 = 4 18

19 Autovlores e Autovetores: Polinômio Crcterístico: O Polinômio D n () de gru n é o polinômio crcterísticos de A. Os n zeros i são utovlores de A. Expndindo o determinnte pr n = 3 tem-se: 19

20 Autovlores e Autovetores: Polinômio Crcterístico: Relções de Girrd (relções entre rízes e coeficientes de um equção lgébric): 2

21 Autovlores e Autovetores: Dus importntes proprieddes são obtids: Som dos elementos d digonl principl é igul som dos utovlores: Determinnte de um mtriz é igul o produto dos seus utovlores: Isso mostr que um mtriz singulr tem, no mínimo, um utovlor nulo. 21

22 Autovlores e Autovetores: Exemplo: Um mtriz com elementos reis tem seu polinômio crcterístico com coeficientes reis. Um mtriz com elementos reis tem utovlores reis e/ou complexos conjugdos em pres. 22

23 Autovlores e Autovetores: Exemplo: Clculr os utovlores d mtriz: Polinômio crcterístico: Zeros do polinômio crcterístico: O processo de clculr os utovlores por intermédio d determinção dos zeros do polinômio crcterístico, pesr de ser simples, é ineficiente em termos computcionis. Existem outros métodos mis eficientes. 23

24 Autovlores e Autovetores: Outrs Proprieddes dos Autovlores: 1. Considerndo que det(a) = det(a T ), então os utovlores de A, representdos por (A), são iguis (A T ). 2. Se A for um mtriz tringulr de ordem n: det(a- I)=( 11 - )( 22 - )... ( nn - ) = Logo os utovlores de um mtriz tringulr ou digonl são iguis os elementos d digonl principl. 3. O posto de mtriz qudrd e igul o numero de utovlores não nulos. 24

25 Autovlores e Autovetores: Outrs Proprieddes dos Autovlores: 4. Se i são os utovlores de A, então i -1 são os utovlores de A -1 por porque : 25

26 Norms: Conceitos Fundmentis É o termo utilizdo pr expressr mgnitude (número rel não negtivo) de um vetor ou de mtriz. O conceito de norm é estreitmente ligdo o de comprimento do vetor. As norms vetoriis são definids em termos d norm-p. Assim pr um vetor x de tmnho n tem-se: Norm-1 ou norm de som de mgnitudes 26

27 Norms: Norm-2 ou norm Euclidin Norm- ou norm de máxim mgnitude 27

28 Norms: Condições ds norms vetoriis: Um Norm vetoril é um função que ssoci um numero rel cd vetor e que stisfz s condições: e se, e somente se, são vetores e é um esclr 28

29 Norms: Exemplo: Clculr s norms 1, 2 e do vetor: 29

30 Norms: Conceitos Fundmentis Norms mtriciis: Norm-1 ou norm de som máxim de colun Norm- ou norm de som máxim de linh Norm de Frobenius 3

31 Norms: Norm-2 ou norm espectrl mx é o mior utovlor de A em modulo mx e o mior vlor singulr de A, ou sej, riz qudrd do mior utovlor em modulo d mtriz A T A). 31

32 Norms: Condições ds norms mtriciis: e se, e somente se, A e B são mtrizes de mesm ordem e k e um esclr. 32

33 Norms: Exemplo: Clculr s norms 1,, F e 2 d mtriz: 33

34 Sistems de equções lineres: Conjunto de m equções polinomiis com n vriáveis x i de gru 1: Form mtricil: Ou simplesmente Ax = b, onde A é mtriz dos coeficientes, x é o vetor solução e b é o vetor dos termos independentes. Se A for um mtriz qudrd (nxn) não singulr: Ax = b A -1 Ax = A -1 b x = A -1 b. 34

35 Sistems de equções lineres: Clssificção dos SL segundo form d mtriz de coeficientes: Sistem sobredetermindo: tem-se mis equções do que incógnits, ou sej, A(mxn) m n e posto(a)=n. Sistem subdetermindo: existem mis incógnits do que equções, ou sej, m < n e posto(a) = m. Sistem não tem solução ou existe um número infinito de soluções que stisfç Ax=b. Situção mis comum é qundo m = n, mtriz de coeficientes é qudrd. Resolver o sistem é encontrr s n incógnits que stisfçm s n equções. 35

36 Sistems de equções lineres: Clssificção dos SL segundo o número de soluções: O número de soluções depende do determinnte d mtriz dos coeficientes. Únic solução: det(a). Geometricmente, solução de um sistem liner de ordem n é um ponto no n comum os n hiperplnos descritos por cd um ds n equções, ou sej, o ponto que stisfz simultnemente às n equções. Por exemplo: Vetor solução x é interseção dos três plnos descritos por cd um ds três equções. X =[5 1 1] T e det(a) =

37 Sistems de equções lineres: 37

38 Sistems de equções lineres: Infinits soluções: det(a) =. No exemplo seguir o sistem dmite infinits soluções um pr cd vlor de. Geometricmente no sistem com det(a) =, os três plnos se interceptm em um linh ret: 38

39 Sistems de equções lineres: 39

40 Sistems de equções lineres: Sem solução: det(a) =. Neste cso geometricmente no sistem com det(a) =, os três plnos nunc se interceptm simultnemente, ou sej, o sistem não dmite solução: 4

41 Sistems de equções lineres: 41

42 Sistems de equções lineres: Solução: Existem dus grndes clsses de métodos pr resolução de sistems lineres: Métodos diretos: solução obtid com número finito de operções ritmétics. Exemplos de métodos diretos: Sistems tringulres Eliminção de Guss Decomposição LU Decomposição de Cholesky Métodos itertivos: solução ext obtid somente com número infinito de operções, é estbelecido um erro ceitável. 42

43 Sistems de equções lineres: Solução: Os métodos diretos, em princípio, desprezndo os erros de rredondmento, produzem um solução, se houver, em um número finito de operções ritmétics. Um método itertivo, por outro ldo, requerer, em gerl, um número infinito de operções ritmétics pr produzir solução ext. Assim, um método itertivo tem um erro de truncmento e o direto não tem. Por outro ldo, em sistems de grnde porte os erros de rredondmento de um método direto podem tornr solução sem significdo, enqunto que nos métodos itertivos os erros de rredondmento não se cumulm. Entretnto, mbos são úteis, tem vntgens e limitções. 43

44 Sistems de equções lineres: Sistems equivlentes: São sistems de equções lineres que possuem o mesmo vetor solução: 44

45 Métodos diretos pr resolução de SL São queles que pós um número finito de operções fornecem solução ext do sistem, menos dos erros de rredondmentos. 45

46 Sistems Tringulres Em sistems tringulres s soluções são fcilmente obtids. Sistem tringulr inferior: Solução obtid vi substituições sucessivs: 46

47 Generlizndo: Sistems Tringulres Esquemticmente: 47

48 Sistems Tringulres Exemplo: Clculr solução do sistem tringulr inferior: 48

49 Sistems Tringulres Sistem tringulr superior: Solução obtid vi substituições sucessivs: 49

50 Continundo: Sistems Tringulres Esquemticmente: 5

51 Sistems Tringulres Exemplo Clculr solução do sistem tringulr inferior: Os elementos x são obtidos em ordem revers. 51

52 Referencis Bibliográfics 1. Aderito Luis Mrtins Arujo, Anlise Numeric Engenhris Mecânic e de Mteriis. 2. Frederico Ferreir Cmpos Filho, Algoritmos Numéricos. 52

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Estatística e Matrizes

Estatística e Matrizes Esttístic e Mtrizes Introdução à Análise Multivrid Análise multivrid: De um modo gerl, refere-se todos os métodos esttísticos que simultnemente nlism múltipls medids sobre cd indivíduo ou objeto sob investigção.

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Capítulo 4. Matrizes e Sistemas de Equações Lineares

Capítulo 4. Matrizes e Sistemas de Equações Lineares ------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Aula 6: Determinantes

Aula 6: Determinantes Aul 6: Determinntes GAN-Álg iner- G 8 Prof An Mri uz F do Amrl Determinntes Relembrndo Vimos que: Se A é x e det(a) então existe A - ; Se existe A - então o sistem liner Axb tem solução únic (x A - b)

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições.

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições. DETERMINANTES INTRODUÇÃO Funções determinnte, são funções reis de um vriável mtricil, o que signific que ssocim um número rel (X) um mtriz qudrd X Sus plicções envolvem crcterizção de mtriz invertível,

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m )

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m ) INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF m.. INTRODUÇÃO O propósito deste texto é presentr conceitução básic d álgebr em Cmpos de Glois. A bordgem usd pr presentção deste ssunto é descritiv e com vários

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa Algebr Liner Boldrini/Cost/Figueiredo/Wetzler Objetivo: Clculr determinntes pelo desenvolvimento de Lplce Inverter Mtrizes Conceito Representção Proprieddes Desenvolvimento de Lplce Mtriz Adjunt e Mtriz

Leia mais

Revisão Vetores e Matrizes

Revisão Vetores e Matrizes Revisão Vetores e trizes Vetores Vetores no R n R n {(x,..., x n ) tl que x,..., x n R} com s definições usuis de dição e multilicção Adição (x,..., x n ) (y,..., y n ) (x y,..., x n y n ) Vetores ultilicção

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel CCI- ) Rízes de Sistems Lineres Eliminção de Guss, Guss-Jordn, Decomposição LU, Guss-Jcobi, Guss-Seidel CCI- Introdução Métodos diretos Regr de Crmer Eliminção de Guss Guss-Jordn Resíduos e Condicionmento

Leia mais

Formas Lineares, Bilineares e Quadráticas

Formas Lineares, Bilineares e Quadráticas Forms Lineres Bilineres e Qudrátics Considere V um R-espço vetoril n-dimensionl Forms Lineres Qulquer trnsformção liner d form f : V R é denomind um funcionl liner ou form liner Eemplos: f : R R tl que

Leia mais

20/07/15. Matemática Aplicada à Economia LES 201

20/07/15. Matemática Aplicada à Economia LES 201 Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

MATEMÁTICA II - Engenharias/Itatiba MATRIZES

MATEMÁTICA II - Engenharias/Itatiba MATRIZES MTEMÁTI II - Engenhris/Ittib o Semestre de 9 Prof Murício Fbbri -9 Série de Eercícios MTRIZES Um mtriz de dimensões m n é um conjunto ordendo de mn elementos, disostos em um grde retngulr de m linhs e

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Aula 9. Sistemas de Equações Lineares Parte 2

Aula 9. Sistemas de Equações Lineares Parte 2 CÁLCULO NUMÉRICO Aul 9 Sistems de Equções Lineres Prte FATORAÇÃO LU Cálculo Numérico /6 FATORAÇÃO LU Um ftorção LU de um dd mtriz qudrd é dd por: onde L é tringulr inferior e U é tringulr superior. Eemplo:

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

MATAMÁTICA MATEMÁTICA E SUAS TECNOLOGIAS SETOR I

MATAMÁTICA MATEMÁTICA E SUAS TECNOLOGIAS SETOR I MATAMÁTICA MATEMÁTICA E SUAS TECNOLOGIAS SETOR I ENEM211 Módulo Equção do 1º gru e problems do 1º gru Equção do 1º gru b + b =, com V = 2. Problems do 1º gru I. Ler o enuncido e identificr incógnit. II.

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Uso da linguagem R para análise de dados em ecologia

Uso da linguagem R para análise de dados em ecologia Uso d lingugem R pr nálise de ddos em ecologi Objetivo d ul Demonstrr função ed.shpe() e Apresentr noções básics de álgebr liner e mostrr como el se relcion à nálise de ddos. EDA Shpe Função presentd no

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I Estruturs de Sistems Discretos Luís Clds de Oliveir Digrm de Blocos As equções às diferençs podem ser representds num digrm de locos com símolos pr:. Representções gráfics ds equções às diferençs som de

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

Sebenta de Álgebra Linear e Geometria Analítica

Sebenta de Álgebra Linear e Geometria Analítica Sebent de Álgebr Liner e Geometri Anlític Pulo Jorge Afonso Alves Cpítulo 1 Mtrizes Objectivo Neste cpítulo vmos introduzir um novo conceito, o de mtriz; os diferentes tipos de mtrizes existentes; estudr

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Grandezas escalares e grandezas vetoriais. São grandezas que ficam completamente definidas por um valor numérico, com ou sem unidades.

Grandezas escalares e grandezas vetoriais. São grandezas que ficam completamente definidas por um valor numérico, com ou sem unidades. Sumário Unidde I MECÂNICA 1- Mecânic d prtícul Cinemátic e dinâmic d prtícul em movimentos mis do que um dimensão Operções com vetores. Grndezs esclres e grndezs vetoriis Grndezs Esclres: São grndezs que

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Matemática para CG. Soraia Raupp Musse

Matemática para CG. Soraia Raupp Musse Mtemátic pr CG Sori Rupp Musse Sumário Introdução Revisão Mtemátic Vetores Mtries Introdução Em CG, trlh-se com ojetos definidos em um mundo 3D Todos os ojetos têm form, posição e orientção Precismos de

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa Fculdde de Economi d Universidde Nov de isbo pontmentos Cálculo II ist 7.1 Forms Qudrátics; Conjunto Convexo; Função Convex 1. Form qudrátic de n vriáveis reis (Q): Polinómio de º gru de n vriáveis reis

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2.

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2. Mtemátic I Elordo por Prof. Gerson Lchtermcher, Ph.D. Prof. Rodrigo Leone, D.Sc. Seção Colorção Prof. Wlter Pulette Versão 009-1 ADM 01004 Mtemátic I Prof. d Disciplin Luiz Gonzg Dmsceno, M. Sc. Seção

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2 Introdução o Cálculo Numérico 25 List de Exercícios 2 Observção importnte: Resolv o proplem pr o di d prov com função f(x) = cos(πx/2) e não com f(x) = sin(πx)! Problem 1. Sejm {x i, y i } n i= números

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1 Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais