MATRIZES E DETERMINANTES
|
|
|
- Eric Zagalo Bicalho
- 9 Há anos
- Visualizações:
Transcrição
1 Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests tbels de MTRIZES. Observe o eemplo: Médis de Público ª Divisão ª Divisão ª Divisão Inglterr lemnh Espnh ** Itáli rsil Fonte: Superinteressnte Setembro Est mtriz é de ordem, pois tem linhs e coluns. Cd elemento de um mtriz é indicdo por ij, onde i é linh e j colun onde se encontr este elemento. Genericmente, um mtriz será representd d seguinte form:... n... n... n ( ij ) m n m m m... mn Eemplo: Crir mtriz ( ij ), tl que ij i² - j.
2 TIPOS ESPECIIS DE MTRIZES: Mtriz Linh: Qundo m [ -] Mtriz colun: Qundo n Mtriz Qudrd: Qundo m n Mtriz Digonl: Qundo ij se i j. Somente em mtriz qudrd Mtriz Identidde: É um mtriz digonl onde ij se ij Mtriz Trnspost: Mtriz obtid o se inverter linhs e coluns de um mtriz E: M T M IGULDDE ENTRE MTRIZES: Dus Mtrizes são iguis se todos os seus elementos correspondentes forem iguis c b d, então, b, c e d
3 OPERÇÕES COM MTRIZES dição: ( ij b ij ) mn Subtrção: ( ij b ij ) mn Ddos C ) ( ) ( C Multiplicção por Esclr: Se multiplicrmos um mtriz por um número rel qulquer, todos os elementos dess mtriz tmbém serão multiplicdos por este número: Multiplicção de Mtrizes: Ddos (ij)mn e (bij)np C c ik i *b k i *b k... in *b nk IMPORTNTE: Só podemos multiplicr por se o número de coluns de for o mesmo que o número de linhs de. Clcule e MTRIZ INVERS: Sej um mtriz qudrd de ordem n. é invers de se In. Neste cso chmremos de -. Um mtriz só é inversível se seu determinnte for diferente de. chr -
4 EXERCÍCIOS: ) Constru s seguintes Mtrizes: ) ( ij ), em que ij i j b) (b ij ), em que b ij i i c) C (c ij ), em que c ij i j ) Dd Mtriz, che T e - ) Determine, b, c e d que verifiquem: c d b ) Efetue: ) b) ) Dds s mtrizes Obtenh s mtrizes: ) b) c) T d) * ) Efetue s Multiplicções: ) ( ) b)
5 ) Determine mtriz invers ds seguintes mtrizes ) b) c) d) ) (UFRGS) Se, então ² é mtriz ) b) c) d) e) ) (PUCRS) Sendo s mtrizes e, então o produto * é igul ) [ ] b) c) d) e) ) (PUCRS) Sendo I mtriz identidde e M então mtriz X, tl que XM I é ) b) c) d) e)
6 ) (ULR) Dds s seguintes mtrizes:, e C. O vlor de ª - C é: ) b) c) d) e) ) (FEI-SP) Se é mtriz invers de, então: ) b) c) d) e) ) (PUCMG) Se e b, o vlor do produto b é? ) - b) - c) - d) - e) - ) (UFRN) Dds s mtrizes e, qul é resultdo de? ) b) c) d) e)
7 DETERMINNTES: Chmmos de determinnte de um mtriz o número rel ssocido el. Determinnte de ª ordem [ ] det Determinnte de ª ordem det * * Determinnte de ª ordem plic-se regr de Srrus det ou Determinnte de ª ordem ( est regr pode sr plicd em qulquer mtriz qudrd ) Teorem de Lplce: Um determinnte é igul à som dos produtos dos elementos de um fil qulquer pelos seus respectivos coftores. Coftor: Cof ij (-) ij *D ij, onde D ij é o determinnte d mtriz obtid ecluindo-se linh e colun do elemento ij.
8 Proprieddes dos determinntes: ) Tod mtriz qudrd que possui um linh ou colun nul tem determinnte nulo ) O determinnte de um mtriz qudrd é igul o determinnte de su mtriz trnspost ) Tod mtriz que possui dus linhs ou coluns iguis tem determinnte nulo ) O determinnte mud de sinl qundo se troc posição de dus linhs ou coluns ) Um mtriz qudrd que possui dus linhs ou coluns proporcionis tem seu determinnte nulo ) O determinnte do produto de dus mtrizes é igul o produto dos determinntes ) Multiplicndo um linh ou colun de um mtriz por um número rel K, seu determinnte fic respectivmente multiplicdo por K. ) Um mtriz qudrd que possui todos os elementos de um mesmo ldo d digonl principl iguis zero tem determinnte igul o produto dos elementos d digonl principl. EXERCÍCIOS: ) Clcule o vlor de cd um dos determinntes: ) b) c) d) e) f) g) ) Se e, então det() é: ) - b) - c) d) e) ) Dd mtriz, o determinnte d mtriz ² é igul : ) b) c) d) e) ) (UFRGS) Sendo ( ij ) mn um mtriz onde n é igul e ij i²-j, o determinnte d mtriz é: ) - b) - c) d) e)
9 ) (UFRGS) solução d equção é ) - b) - c) d) e) ) (UFRGS) O vlor do determinnte é pr todo R ) ²(² ) b) ²(² - ) c) d) e) zero ) O determinnte d mtriz sen sen cos cos é equivlente ) tg² b) sec² c) d) zero e) sen² cos² ) (PUCRS) Dds s mtrizes e, o determinnte d mtriz *b é ) - b) - c) d) e) ) (UNISINOS) O vlor de um determinnte é. Se dividirmos ª linh por e multiplicrmos ª colun por, então o novo determinnte vlerá ) b) c) d) e)
Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij
Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,
DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2
DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d
Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes
Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd
Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo
Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos
Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos
Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
Exercícios. setor Aula 25
setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7
6. ÁLGEBRA LINEAR MATRIZES
MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul
Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.
Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON [email protected] MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos
Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7
Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd
Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det
5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd
MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*
MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic
MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437
ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...
Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =
Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr
Prof. Jomar. matriz A. A mxn ou m A n
MATRIZES Prof. Jomr 1. Introdução Em mtemátic, é comum lidr com ddos relciondos dus informções. Por isso, os mtemáticos crirm s sus própris tbels, que receberm o nome de mtrizes. N verdde, s mtrizes podem
SERVIÇO PÚBLICO FEDERAL Ministério da Educação
SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:
MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2
MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )
MATRIZES: INTRODUÇÃO E NOTAÇÃO GERAL
Ru Oto de Alencr nº -9, Mrcnã/RJ - tel. -98/-98 MATRIZES: INTRODUÇÃO E NOTAÇÃO GERAL Introdução A teori ds mtrizes tem cd vez mis plicções em áres como Economi, Engenhri, Mtemátic, Físic, dentre outrs.
Denominamos matriz real do tipo m x n a toda tabela formada por m x n números reais dispostos em m linhas e n colunas. Exemplos:
CONTEÚDO PROGRMÁTICO DE RCIOCÍNIO LÓGICO - CONCURSO D POLÍCI FEDERL Estruturs lógics Lógic de rgumentção: nlogis, inferêncis, deduções e conclusões Lógic sentencil (ou proposicionl): proposições simples
MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:
MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:
Estatística e Matrizes
Esttístic e Mtrizes Introdução à Análise Multivrid Análise multivrid: De um modo gerl, refere-se todos os métodos esttísticos que simultnemente nlism múltipls medids sobre cd indivíduo ou objeto sob investigção.
Capítulo 4. Matrizes e Sistemas de Equações Lineares
------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,
NÃO existe raiz real de um número negativo se o índice do radical for par.
1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,
TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.
Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems
UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA
UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,
Matrizes e Determinantes
Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================
1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T
ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh
Vestibular Comentado - UVA/2011.1
estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo
EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9
EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é
Revisão Vetores e Matrizes
Revisão Vetores e trizes Vetores Vetores no R n R n {(x,..., x n ) tl que x,..., x n R} com s definições usuis de dição e multilicção Adição (x,..., x n ) (y,..., y n ) (x y,..., x n y n ) Vetores ultilicção
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE
MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4
A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic
Roteiro da aula. MA091 Matemática básica. Divisão e produto. Francisco A. M. Gomes. Março de 2016 4 Exercícios
Roteiro d ul MA09 Mtemátic ásic Aul Divisão. Operções com frções Frncisco A. M. Gomes UNICAMP - IMECC Mrço de 06 Divisão e frções Multiplicção e divisão de frções Som e sutrção de frções Frncisco A. M.
OPERAÇÕES ALGÉBRICAS
MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem
APONTAMENTOS ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
UNIVERSIDDE DO LGRVE ESCOL SUPERIOR DE TECNOLOGI PONTMENTOS ÁLGEBR LINER E GEOMETRI NLÍTIC (I Mtrizes) ÁRE DEPRTMENTL DE ENGENHRI CIVIL Mtrizes Índice Mtrizes Definição e generliddes Álgebr ds mtrizes
ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS
EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre
MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU
MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr
y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y
Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x
COLÉGIO OBJETIVO JÚNIOR
COLÉGIO OJETIVO JÚNIOR NOME: N. o : DT: / /0 FOLHETO DE MTEMÁTIC (V.C. E R.V.) 9. o NO Este folheto é um roteiro pr você recuperr o conteúdo trblhdo em 0. Como ele vi servir de bse pr você estudr pr s
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )
Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e
Sebenta de Álgebra Linear e Geometria Analítica
Sebent de Álgebr Liner e Geometri Anlític Pulo Jorge Afonso Alves Cpítulo 1 Mtrizes Objectivo Neste cpítulo vmos introduzir um novo conceito, o de mtriz; os diferentes tipos de mtrizes existentes; estudr
Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.
Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x
Conhecendo-se os valores aproximados dos logaritmos decimais, log = 1,114 e log = 1,176, então, o valor de log 10
MATEMÁTICA Considere os conjuntos A e B: A = { 0, 0, 0, 0,0, 0, 0} e B = {00,00,00,00,500,600,700,800,900,000}, e função f : A B, f(x) = x + 00. O conjunto imgem de f é, ) { 0, 0, 0,0,0,0,0}. ) {00,00,500,000}.
Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais
POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES
- Operações com vetores:
TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido
Disponível em: < Acesso em: 1 nov A seja igual ao oposto aditivo
RESOLUÇÃO D VLIÇÃO DE MTEMÁTIC-TIPOCONSULTEC-UNIDDE I- -EM PROFESSOR MRI NTÔNI CONCEIÇÃO GOUVEI PESQUIS: PROFESSOR WLTER PORTO - (UNEB) Disponível em: cesso em: nov
FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x
FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)
Noção intuitiva de limite
Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite
QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2
PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que
Aplicações da Integral
Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,
MATAMÁTICA MATEMÁTICA E SUAS TECNOLOGIAS SETOR I
MATAMÁTICA MATEMÁTICA E SUAS TECNOLOGIAS SETOR I ENEM211 Módulo Equção do 1º gru e problems do 1º gru Equção do 1º gru b + b =, com V = 2. Problems do 1º gru I. Ler o enuncido e identificr incógnit. II.
{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada
MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >
EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.
EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =
Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.
O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de
Álgebra Linear e Geometria Analítica. Espaços Vectoriais
Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento
Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).
9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr
1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE
Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço
Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação
Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis
TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.
Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo
Unidade 2 Geometria: ângulos
Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.
Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES
INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).
unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis
Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:
I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz
MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada.
MTEMÁTI II - Engenhris/Itti o Semestre de Prof. Murício Fri - Série de Eercícios DETERMINNTES. Determinnte de ordem onsidere o sistem liner. s incógnits são e. Multilicndo rimeir eução r s or s, segund
9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2
COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De
Eletrotécnica TEXTO Nº 7
Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos
8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3
1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções
Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i
Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos
