Aplicações da Integral
|
|
|
- Maria de Lourdes Judite Osório de Sousa
- 9 Há anos
- Visualizações:
Transcrição
1 Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então, áre d região limitd cim por f (), io por g(), à esquerd pel ret e à direit pel ret, confor- A f () g() d. A prtir deste momento pssremos eminr s plicções do conteúdo estuddo n Unidde nterior. 7
2 Curso de Grdução em Administrção Distânci f() A g() [ ] Figur 8. - de integrção. Segue io um procedimento sistemático que podemos seguir pr estelecer fórmul, utilizndo os seguintes pssos. Psso. cim e qul limit io. Psso. e serão s scisss dos dois pontos de interseção ds curvs f () e g(). Pr tnto igul-se f () eg(), ou sej, fz f () g() e resolve-se equção resultnte em relção. Psso. curvs. Oservção f (), pels rets e e o eio, onde f () é um função contínu sendo f (), pr todo em,, conforme 8
3 Módulo A f() Figur 8. O cálculo d áre A é ddo por: A f () d, Apresentremos lguns eemplos de cálculo de áre entre dus curvs: Eemplo 8. Determinr áre d região limitd entre s curvs: f () 6 e g(). Resolução: Utilizndo o procedimento sistemático presentdo cim, temos os seguintes pssos: Psso. Esoço d região 8 6 Figur 8. 9
4 Curso de Grdução em Administrção Distânci Psso. Pr encontrr os limites de integrção,fzemos f () g(), isto é, 6 ou 6, que fornece 6 d equção cim, e, que serão os limites de integrção. Oserve, pelo 6, pr todo em,. Psso. Clculndo áre d região limitd por: f () 6 e g() em, temos : A f () g() d = 6 d 6 d 6 6 = = () = = () () = 7 7 = u.. Portnto, áre limitd por f () 6 e g() em, é 5 6 uniddes de áre. Eemplo 8. Determinr áre d região limitd por f () e g().
5 Módulo Resolução: Utilizndo o procedimento sistemático presentdo cim, temos os seguintes pssos: Psso. Esoço d região: 5 Figur 8. Psso. Pr encontrr os limites de integrção fzendo f () g(),temos, e. Assim, e. ou =. Logo, =, ou sej, Psso. A áre d região limitd por f () e g(), em, será: A f () g() d = d = ( ) ( ) = = =6 8 = = u.. Portnto, áre limitd por f () e g() em, é uniddes de áre.
6 Curso de Grdução em Administrção Distânci Eemplo 8. Determinr áre d região limitd por f () 8 e g(). Resolução: Temos os seguintes pssos: Psso. Esoço d região: Figur 8.5 Psso. Pr encontrr os limites de integrção, fzemos f () g(), isto é, 8, que fornece 8 e e. Assim, e. Psso. A áre d região limitd por f () 8 e g() será: A f () g() d 8 d = 8 d 8 = 8 ( ) 8 ( ) =
7 Módulo = = 6 = 96 = 6 u.. Portnto, áre limitd por f () 8 e g() em, é 6 uniddes de áre. Eemplo 8. Determinr áre limitd pel curv f () 5, o eio e s rets e. Resolução: Temos os seguintes pssos: Psso. Esoço d região. 5 6,5,5 Figur 8.6 Psso. Os limites de integrção são e. Psso. A áre limitd pel curv f () 5 o eio e s rets e, será:
8 Curso de Grdução em Administrção Distânci A 5d = = = = = u.. Portnto, áre limitd pel curv f () 5, o eio e s rets e é uniddes de áre. Eemplo 8.5 Encontrr áre d região limitd pel curv f () sen e pelo eio de. Resolução: Psso. Esoço d região: Figur 8.7
9 Módulo Psso. Pr determinr os limites de integrção, temos, pelo,, f () sen e no intervlo,, f () sen. Psso. A áre d região limitd pel curv f () sen, e pelo eio de té será: A sen d sen d = cos ( cos ) cos cos + cos ( cos = ( ) ( ) + ( ) = ++ =+ =+= u.. Portnto, áre d região limitd pel curv f () sen e pelo eio de té é uniddes de áre. dúvids, usque orientção junto o Eercícios propostos ) 5 Figur 8.8 5
10 Curso de Grdução em Administrção Distânci Onde f (). ) Figur 8.9 Onde f (). ) Determinr áre d região limitd por: f () e g(). ) Determinr áre d região limitd por f (), o eio e s rets e. ) Determinr áre d região limitd por f () e g(). 5) Clculr áre d região limitd por f (), o eio e s rets e. Volume de sólido de revolução 6 - centro de mss e de momento de inérci. Como é difícil determinr o volume de um sólido de form irregulr, começremos com ojetos que presentm forms simples. Incluídos nest ctegori estão os sólidos de revolução.
11 Módulo Um sólido de revolução é gerdo pel rotção de um região do pl- eio de revolução, contid no plno. Sej S o sólido gerdo pel rotção d região do plno limitd por f (), o eio, e em torno do eio. Então o volume V deste sólido é ddo por: V f () d. tes os usdos pr clculr áre de um região pln e limitd, ms = f() Figur 8. 7
12 Curso de Grdução em Administrção Distânci Figur 8. Anlogmente, qundo o eio de revolução é o eio e fronteir d região pln é dd pel curv g() e o eio entre c e d, então o volume V do sólido de revolução é ddo por d V g d. d c = g() c Figur 8. 8
13 Módulo e g funções contínus no intervlo, Sejm f e sumos que f g pr todo,. Então o volume do sólido de revolução gerdo pel rotção em torno do eio, d região limitd pels curvs f e g e s rets e é ddo por: V f g d. = f() = g() Figur 8. Figur 8. 9
14 Curso de Grdução em Administrção Distânci Eemplo 8.6 A região limitd pel curv, o eio e s rets e, sofrem um rotção em torno do eio. Encontre o volume do sólido de revolução gerdo. Resolução: = f() Figur 8.5 Temos: V f d d, uniddes de volume (u.v.). 5 Eemplo 8.7 Clcule o volume do sólido que se otém por rotção d região limitd por, e em torno do eio.
15 Módulo Resolução: =,5,5,5,5,5,5 Figur 8.6 De temos /. Logo, o volume do sólido otido pel revolução em torno do eio é ddo por V c d g d / d 5 5/ 5 u.v. Eemplo 8.8 Clcule o volume do sólido que se otém por rotção d região limitd por,, e em torno do eio.
16 Curso de Grdução em Administrção Distânci Resolução: 5 ² = = Figur 8.7 () Volume do sólido em torno do eio. Neste cso, temos V f g d 5 d d u.v.
17 Módulo Eercícios propostos ) Determine o volume do sólido de revolução gerdo pel rotção em torno do eio, de região limitd por: ),, e. ),, e. ) Determine o volume do sólido de revolução gerdo pel rotção em torno do eio, de região limitd por: ln,, e. ) Clcule o volume do sólido otido girndo cd região limitd pels curvs e rets dds em torno do eio indicdo: ),,, 5 ; em torno do eio dos. ) 5 6, ; em torno do eio dos. c),, e ; em torno do eio dos. d),, e ; em torno do eio dos.
18 Curso de Grdução em Administrção Distânci Comprimento de rco A seguir, presentremos o comprimento de rco de um curv pln em coordends crtesins. Sej f um função contínu no in- [,] f (). = ƒ() B = (,ƒ()) A = (,ƒ()) Figur 8.8 Sejm A, f () e B(, f ()) dois pontos n curv f (). Sej s o comprimento d curv AB ª f (). Então, s é ddo por s f '() d. A seguir, presentremos lguns eemplos. Eemplo 8.9 Determinr o comprimento de rco d curv,. Resolução: Temos, '.
19 Módulo Logo, s f '() d d 5 d 5 5. Portnto, o comprimento de f (), pr é dd por s 5 u.c. Eemplo 8. Clcule o comprimento do rco d curv 8 de Resolução: Temos, 8 ' 6. 8 Agor, s ' d d 6 d d ( 6) ( 6) d ( ) d ( ) 6 8 d 6 8 d u.v. 5
20 Curso de Grdução em Administrção Distânci compreendeu ests importntes e pr isto tente resolver os eercícios propostos seguir. Se ls ntes de seguir dinte. Eercícios propostos Determine o comprimento ds curvs dds por: ) ln,. ) ln de. ) 8 de. ) lnsen de 6. 5) e e de. Si Mis... Pr profundr os conteúdos orddos neste cpítulo consulte: FLEMMING, D. M.; GONÇALVES, M. B. Cálculo A: Funções, Limite, Derivção, Integrção, 5ª ed. São Pulo: Mkron Books, 99. LEITHOLD, Louis. O cálculo com geometri nlític.. ed. São Pulo: Hrr, 99. Vol.. 6
21 Módulo RESUMO do sólido de revolução, e no comprimento de rco de um curv utilizndo o sistem de coordends crtesins. 7
22 Curso de Grdução em Administrção Distânci RESPOSTAS Eercícios propostos ) ) uniddes de áre. ) 6 ) uniddes de áre. ) uniddes de áre. ) 8 uniddes de áre. 5) uniddes de áre. uniddes de áre. Eercícios propostos ) ) 57 u.v.; ) ) e6 e u.v.; 6 5 u.v. ) ) 5 u.v. ) u.v. c) u.v. d) u.v. Eercícios propostos ) 6+ ln 6,7u.c. ) ln 5 u.c. ) u.c. ) ln ln ln u.c. 5) e e u.c. 8
Assíntotas horizontais, verticais e oblíquas
Assíntots horizontis, verticis e olíqus Méricles Thdeu Moretti MTM/PPGECT/UFSC INTRODUÇÃO Dizemos que um ret é um ssíntot de um curv qundo um ponto o mover-se o longo d prte etrem d curv se proim dest
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região
Resumo com exercícios resolvidos do assunto: Aplicações da Integral
www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]
Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej
CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).
e dx dx e x + Integrais Impróprias Integrais Impróprias
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris
Como calcular a área e o perímetro de uma elipse?
Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv 8 de gosto de 14 Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm
2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.
Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,
x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,
- Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor
Apostila de Cálculo II
Antiderivd e Integrl Indefinid Um ntiderivd ou primitiv d função f no intervlo [,b] que:, é um função F, tl df d ( ) f( ) pr todo [,b] Notção de Leibniz: Outr notção empregd pr designr operção de primitivção
Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det
5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd
Vestibular Comentado - UVA/2011.1
estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo
b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp
8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é
8.1 Áreas Planas. 8.2 Comprimento de Curvas
8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região
Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.
Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde
CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds
Aplicações da Integral Simples
Chpter Aplicções d Integrl Simples. Áre de regiões plnres Sej R região limitd pelo gráfico d função = f(), s rets =, = b e o eio, sendo f() pr todo [, b]. A áre d região R é ddo pel fórmul: A = f()d. =
Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução
(9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se
Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.
Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de
- Operações com vetores:
TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre
Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij
Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,
Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos
CÁLCULO I. Denir e calcular o centroide de uma lâmina.
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr
16.4. Cálculo Vetorial. Teorema de Green
ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece
Resumo com exercícios resolvidos do assunto:
www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do
Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.
MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl
Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..
MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:
MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de
Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?
A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo
MATRIZES E DETERMINANTES
Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests
Aula 27 Integrais impróprias segunda parte Critérios de convergência
Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
Adriano Pedreira Cattai
Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos
Aula 29 Aplicações de integrais Áreas e comprimentos
Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento
Cálculo Diferencial e Integral II Prof. Ânderson Vieira
CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método
A integral definida. f (x)dx P(x) P(b) P(a)
A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo
fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:
Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017
Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,
FUNÇÃO DO 2º GRAU OU QUADRÁTICA
FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te
Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles
c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo
10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.
0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,
e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como
Análise Mtemátic I - 6/7 Y rcsen y - A unção rcos tem como domínio [, ] e como A unção rcsen tem como domínio [, ] contrdomínio,. e como Y rccos y - A unção rccos tem como domínio [, ] contrdomínio [,
TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos
Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid
Universidade Federal da Bahia
Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15
3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos
3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano
Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções
Integrais Imprópias Aula 35
Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção
Cálculo III-A Módulo 6
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir
A integral de Riemann e Aplicações Aula 28
A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações
Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x
COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:
COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()
3.18 EXERCÍCIOS pg. 112
89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu
4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe
4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
E m Física chamam-se grandezas àquelas propriedades de um sistema físico
Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.
Capítulo III INTEGRAIS DE LINHA
pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo
CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc
6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3.
6 Fich de eercícios de Cálculo pr Informátic CÁLCULO INTEGRAL 6- Determine primitiv F d função f que stisfz condição indicd, em cd um dos csos seguintes: ) f() = sin, F (π) = 3. b) f() = 3 + +, F (0) =
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2.
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo A List Eercício :Usemudnçu + ev eclculeintegrldef,) +) sen ) sobre região : + π. Solução: O esboço d
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral
Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro
