Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Tamanho: px
Começar a partir da página:

Download "Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES"

Transcrição

1 INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR... 6 TEOREMA DE LAPLACE... 6 RESPOSTAS... REFERÊNCIA BIBLIOGRÁFICA... No finl ds séries de eeríios podem preer sugestões de tividdes omplementres. Ests sugestões referem-se eeríios do livro Mtemáti de Mnoel Piv forneido pelo FNDE e dotdo pelo IFMG Cmpus Ouro Preto durnte o triênio -7. Todos os eeríios sugeridos nest postil se referem o volume. MATEMÁTICA III DETERMINANTES

2 INTRODUÇÃO Tod mtriz QUADRADA tem, ssoid el, um numero hmdo determinnte d mtriz otido por meio de operções que envolvem todos os elementos d mtriz. (Dnte, 7). A teori dos determinntes teve su origem em medos do séulo XVII, qundo erm estuddos proessos pr resolução de sistems lineres de equções. Hoje em di, emor não sejm um instrumento prátio pr resolução destes sistems, os determinntes são utilizdos, por eemplo, pr sintetizr erts epressões mtemátis omplids. DETERMINANTE DE MATRIZ DE ORDEM Sendo A um mtriz de ordem determind por A = [], por definição, o determinnte de A é igul o número, ou sej, em um mtriz de um únio elemento, o determinnte ssoido el será o próprio elemento. Dds s mtrizes A = [] e B = [-] podemos dizer que det A = e que det B = -. DETERMINANTE DE MATRIZ DE ORDEM No so de mtrizes qudrds de ordem dois, lulmos seu determinnte fzendo o produto dos termos d digonl prinipl menos o produto dos termos d digonl seundári., Assim, dd mtriz A, indimos seu determinnte por det A ou E.: Enontre o determinnte d 7 mtriz A. Resolução: CASSIO VIDIGAL IFMG CAMPUS OURO PRETO

3 E.: Determine de modo que o determinnte d mtriz B sej igul 8. Resolução: Respost: = 6 8 O determinnte de M é o número: detm Afim de que possmos oter tl determinnte de form mis práti, vmos onheer regr de Srrus. ) Repetimos o ldo d mtriz, s dus primeirs oluns. ) Os termos preedidos pelo sinl + (mis) são otidos multiplindo-se os termos d digonl prinipl e seguir multiplindo os termos ds digonis que estão nest mesm direção. ) Os termos preedidos pelo sinl - (menos) são otidos multiplindo-se os termos d digonl seundári e seguir multiplindo os termos ds digonis que estão nest mesm direção DETERMINANTE DE MATRIZ DE ORDEM Consideremos gor mtriz de ordem dd por M. d) o determinnte é otido prtir d som dos 6 vlores enontrdos. MATEMÁTICA III DETERMINANTES

4 Clulr o determinnte d mtriz B Resolução: detb detb =6 Eiste um outr form mis práti de memorizr Regr de Srrus. Consiste em ompnhr os minhos indidos seguir sem neessidde de repetir s dus primeirs oluns. Apesr de ser um pouo mis rápid, eige stnte tenção. Oserve: Os termos preedidos do sinl de + (mis) são otidos multiplindo-se os elementos segundo s trjetóris indids. Já pr oter os termos preedidos do sinl de (menos) devemos seguir ests trjetóris: Oserve que o resultdo otido em d trjetóri é etmente o mesmo dqueles que enontrmos em d digonl n regr vist nteriormente. CASSIO VIDIGAL IFMG CAMPUS OURO PRETO

5 ) Clule os determinntes: ) ) sen os os sen ) sen os os sen ) 7 ) ) Clule os determinntes: log log ) ) Clule os determinntes: sen os ) sen y os y ) m m m m m MATEMÁTICA III DETERMINANTES

6 CASSIO VIDIGAL 6 IFMG CAMPUS OURO PRETO ) Determine tl que: ) ) ) Clulr os determinntes seguir: ) ) ) 7

7 MATEMÁTICA III 7 DETERMINANTES 6) Clulr os determinntes: ) ) ) n m 7) Determine tl que: ) ) )

8 8) Determinr tl que. P: Fils Iguis. Se os elementos orrespondentes de dus linhs ou dus oluns de um mtriz qudrd forem iguis, seu determinnte será igul zero. E.: pois ª e ª oluns são iguis. ATIVIDADES COMPLEMENTARES Pág. Eeríio PROPRIEDADES DOS DETERMINANTES P: Fil de Zeros. Se todos os elementos de um linh ou olun de um mtriz qudrd forem iguis zero, seu determinnte será nulo. E.: E.: 7 E.: 7 k k Pois ª e ª linhs são iguis. P: Fils Proporionis. Se um mtriz qudrd possui dus linhs ou dus oluns proporionis, seu determinnte será nulo. E.: 7 6 Pois ª linh é igul o produto dos termos d ª linh por. 7 E.: 8 pois ª olun é 7 vezes primeir. CASSIO VIDIGAL 8 IFMG CAMPUS OURO PRETO

9 P: Multiplição de um fil por um onstnte. Se todos os elementos de um linh ou um olun de um mtriz qudrd são multiplidos por um mesmo número rel k então seu determinnte fi multiplido por k. E.: A det A = Multiplindo todos os termos d segund olun por : A ' 9 det A = 6 6 Multiplindo todos os termos d ª linh de A por : 8 6 A " det A =. P: Multiplição de mtriz por um número rel. Se um mtriz qudrd de ordem n é multiplid por um número rel k, o seu determinnte fi multiplido por k n. P6: Determinnte d trnspost: O determinnte de um mtriz qudrd é igul o determinnte de su trnspost. E.: E.: A A t B B t det A t det A detb detb t P7: Tro de fils prlels: Se trormos de posição dus linhs ou dus oluns de um mtriz qudrd, o determinnte d nov mtriz otid é oposto o determinnte d mtriz originl. E.: A det A A deta E.: A e B Note que, de A pr B form trods de posição primeir om segund linhs. Temos que det A e detb. MATEMÁTICA III 9 DETERMINANTES

10 P8: Mtriz tringulr. O determinnte de um mtriz tringulr é otido multiplindo-se todos os termos d digonl prinipl. E.: A E.: B 7 8 det A detb P9: Teorem de Binet. Sendo A e B dus mtrizes qudrds de mesm ordem e AB mtriz produto, então o determinnte de AB é igul o determinnte de A vezes o determinnte de B. E.: A 9 B 7 AB det A detb det A detb 9 det AB P: Teorem de Joi Sej A um mtriz qudrd. Se multiplirmos todos os elementos de um linh ou olun pelo mesmo número e somrmos os resultdos os elementos orrespondentes de outr linh ou olun, formndo um outr mtriz B, então det A = det B. A det A Vmos multiplir os termos d primeir linh por e somr os termos orrespondentes d ª linh: B det 8 B. Note que det A detb. P: Determinnte d invers. Sendo A um mtriz qudrd invertível, e A - su invers, então det A. det A Sendo A e su invers A - indids io, oserve seus determinntes já enontrdos: A det A A det A CASSIO VIDIGAL IFMG CAMPUS OURO PRETO

11 Oserve que det A, ou sej, det A um determinnte é o inverso do outro. REGRA DE CHIÓ A Regr de Chió onsiste em plir lgums operções de form reduzir s dimensões de um mtriz e, ssim, filitr o álulo do determinnte porém el é muito práti se o elemento for igul. Se tl termo for diferente de, plimos um ou mis proprieddes (já vists) fim de tornr =. Clule o determinnte d mtriz 6 9 M. Resolução: Vmos seguir os três pssos indidos.. Sig os pssos d Regr de Chió e, em seguid, vej su plição no eemplo.. Sendo =, suprime-se primeir linh e primeir olun.. De d elemento restnte, sutri-se o produto dos dois termos suprimidos, n linh e olun desse elemento restnte.. Com os resultdos ds sutrções, otém-se um mtriz um ordem menor que nterior porém om mesmo determinnte... Oserve o eemplo seguir pr entender d pssgem. MATEMÁTICA III DETERMINANTES

12 CASSIO VIDIGAL IFMG CAMPUS OURO PRETO A mtriz tem o mesmo determinnte que mtriz 9 6 entretnto, por ser um ordem menor, é mis fáil lulr o determinnte e podemos fzê-lo utilizndo regr de Srrus. 9) Enontre o vlor do determinnte d mtriz A. (Di: Use o Teorem de Joi multiplindo segund olun por e somndo à primeir olun. Assim, voê terá =. Depois plique regr de Chió. N mtriz otid, troque de posição ª om ª linh e plique novmente Chió. Voê hegrá num mtriz de ª ordem e enontrrá o determinnte pel regr de Srrus)

13 MATEMÁTICA III DETERMINANTES ) Determine n equção 6 ) Clule os determinntes seguir: ) )

14 CASSIO VIDIGAL IFMG CAMPUS OURO PRETO ) d) e) d f)

15 MENOR COMPLEMENTAR Sendo A um mtriz qudrd de ordem n, denomin-se menor omplementr de A pelo elemento ij, o determinnte Dij ssoido mtriz qudrd que se otém de A o suprimir linh i e olun j onde está o elemento ij. Esse determinnte é hmdo de Dij. ) Clule o MENOR COMPLEMENTAR de d um dos 9 6 termos d mtriz K. 8 Sendo mtriz A 6, temos: ) menor omplementr de A pelo termo : Vmos eliminr segund linh e primeir olun. Assim, temos que D... ) Menor omplementr de A pelo termo. D MATEMÁTICA III DETERMINANTES

16 COFATOR Sendo A um mtriz qudrd de ordem n, denomin-se oftor de um elemento ij o número rel ij A D onde Dij é o menor ij ij omplementr de A pelo termo ij. ) Clule os oftores de d um dos 6 9 termos d mtriz K. 8 Sendo mtriz A 6, temos: ) oftor de A pelo termo : A D (not: Est mtriz A é mesm do eemplo d págin nterior e D já hvi sido luldo) ) oftor de A pelo termo. A D 7 7 TEOREMA DE LAPLACE O determinnte ssoido um mtriz qudrd A de ordem n é o número que se otém pel som dos produtos de d termo de um fil qulquer pelos seus respetivos oftores. Assim, pr lulr o determinnte de um mtriz qudrd qulquer, devemos esolher um linh ou olun, seguir enontrmos d um de seus oftores. Multiplimos d oftor pelo seu termo orrespondente e sommos estes produtos. CASSIO VIDIGAL 6 IFMG CAMPUS OURO PRETO

17 Aompnhe o eemplo. Sendo A, podemos lulr prtir dos oftores de qulquer de sus fils.. Vmos fzer prtir d ª linh e seguir, prtir d ª olun pr verifirmos se os resultdos otidos oinidem. det A. A prtir d primeir linh temos que det A A A A Oserve que, em mos os sos, det A. Esse vlor será enontrdo em qulquer fil esolhid e voê pode verifir isto. É importnte destr que, nest segund esolh, espeifimente no produto A não hvi neessidde de lulr A pois, omo, o produto seri. Devido isto, qundo vmos lulr determinntes usndo o teorem de Lple, é interessnte que esolhmos um fil onde há um grnde quntidde de zeros, ssim, reduziremos quntidde de álulos. A A 6 6 A Assim, temos que: 8 8 det A A A A 6 8. Agor, prtir d tereir olun: det A A A A A A A 8 8 det A A A A 8 MATEMÁTICA III 7 DETERMINANTES

18 CASSIO VIDIGAL 8 IFMG CAMPUS OURO PRETO ) Clule os determinntes seguir preferenilmente utilizndo o Teorem de Lple: ) 6 A ) B ) 6 C d) D

19 MATEMÁTICA III 9 DETERMINANTES e) E f) 7 F g) 6 G

20 CASSIO VIDIGAL IFMG CAMPUS OURO PRETO h) H ) Provr que d d

21 6) Clule o determinnte sen sen y sen z os os y os z 8) Clule os determinntes: 7 ) ) Resolver equção MATEMÁTICA III DETERMINANTES

22 ) ) d d d Neste link, voê pode essr um doumento om outrs informções sore Determinntes e tmém sore nosso próimo onteúdo Sistems Lineres Com o seu elulr, use o qr-ode o ldo: CASSIO VIDIGAL IFMG CAMPUS OURO PRETO

23 RESPOSTAS ) ) ) - ) 6 - ) A=- A=- A=- A=6 A= A=- A= A=- A=-6 ) ) sen y ) ) ) ) ) ) 6 sen os log ou ) ou ) m ) ) ) -9 ) - 6) ) ) ) m 8n 6 7) ) ) ou ) ou 8) 9) -9 ) ) ) 8 ) ) - d) -7 e) d f) ) D=- D= D=- D=-6 D= D= D= D= D=-6 detb ) ) det A ) ) d) detd e) dete 7 f) detf 8 g) det G h) deth det C ) Demonstrção sen y sen y z 6) senz 7) S, 8) ) 6 ) ) d d d REFERÊNCIA BIBLIOGRÁFICA DANTE, Luiz Roerto; Mtemáti, Volume dois. São Pulo, Ati,. IEZZI, Gelson e outros; Mtemáti, Volume únio. São Pulo, Atul,. IEZZI, Gelson e outros; Fundmentos d Mtemáti Elementr, Volume. São Pulo, Atul, ª edição, 977. MATEMÁTICA III DETERMINANTES

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada.

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada. MTEMÁTI II - Engenhris/Itti o Semestre de Prof. Murício Fri - Série de Eercícios DETERMINNTES. Determinnte de ordem onsidere o sistem liner. s incógnits são e. Multilicndo rimeir eução r s or s, segund

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Resoluções de Atividades

Resoluções de Atividades VOLU 1 GOTRI Resoluções de tividdes Sumário pítulo 1 Rzão e proporção...1 pítulo Teorem de Tles.... pítulo Teorem d issetriz etern... pítulo Semelhnç... pítulo Teorem d issetriz intern... pítulo 1 Rzão

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

II Números reais: inteiros, racionais e irracionais 26

II Números reais: inteiros, racionais e irracionais 26 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 2009-25 Sumário II Números reis: inteiros, rionis e irrionis 26 2 Operções, ioms e proprieddes dos reis 26 2. As operções Som e Produto

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então:

da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então: Dfinição S ( i Dtrminnts um mtri qudrd d ordm n sor o orpo dos ris ssoimos um slr d R hmdo dtrminnt d omo sndo som d todos os trmos d form ond os t ( k k índis k i s ds oluns ssumm tods s rrumçõs possívis

Leia mais

Método Ferraz Maahs Solução para sistema de Equações.

Método Ferraz Maahs Solução para sistema de Equações. Método Ferrz Mhs Solução pr sistem de Equções. Helinton Chrles Mhs Ru: Erio Neumnn, número 33 Cruzeiro São Bento do Sul SC Telefone: 473635 68 Emil: helinton.mhs@gmil.om Cludinei Rodrigues Ferrz Ru: Juselino

Leia mais

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações: (9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do

Leia mais

II Números reais: inteiros, racionais e irracionais 27

II Números reais: inteiros, racionais e irracionais 27 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 200-2 26 Sumário II Números reis: inteiros, rionis e irrionis 27 2 Operções, ioms e proprieddes dos reis 27 2. As operções Som e Produto

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Sebenta de Álgebra Linear e Geometria Analítica

Sebenta de Álgebra Linear e Geometria Analítica Sebent de Álgebr Liner e Geometri Anlític Pulo Jorge Afonso Alves Cpítulo 1 Mtrizes Objectivo Neste cpítulo vmos introduzir um novo conceito, o de mtriz; os diferentes tipos de mtrizes existentes; estudr

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

MESTRADO EM CONTROLADORIA E CONTABILIDADE Turma de Belo Horizonte MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE ÁLGEBRA MATRICIAL

MESTRADO EM CONTROLADORIA E CONTABILIDADE Turma de Belo Horizonte MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE ÁLGEBRA MATRICIAL MESTRADO EM CONTROLADORIA E CONTABILIDADE Turm de Belo Horizonte MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Professor: L João Corrr Alun: Náli de Arújo Sntos ÁLGEBRA MATRICIAL Ojetivos do Aprendizdo

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene UFF/GMA - Mtemáti Bási I - Prte II Nots de ul - Mrlene - 20-6 Sumário II Números reis - operções e ordenção 7 2 Operções, ioms e proprieddes dos reis 7 2. As operções Som e Produto e os Aioms Algérios..................

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a Pros. Soorro Rngel UESP-SJRP, Soni Poltreniere UESP-uru Reerenis: Liner Progrmg - : Introdution, Dntzig. G.b. e Tpp,M.. -, Springer, ; Liner Progrmg - V. Chvátl, 8; Pesquis Operionl - Arenles e outros,.

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

Estatística e Matrizes

Estatística e Matrizes Esttístic e Mtrizes Introdução à Análise Multivrid Análise multivrid: De um modo gerl, refere-se todos os métodos esttísticos que simultnemente nlism múltipls medids sobre cd indivíduo ou objeto sob investigção.

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais

Mania de Pitágoras Euclides Rosa

Mania de Pitágoras Euclides Rosa Texto omplementr Mni de Pitágors Eulides Ros MTEMÁTI 1 Mtemáti ssunto: Geometri Mni de Pitágors Elish Sott Loomis, professor de Mtemáti em levelnd, Ohio (Estdos Unidos), er relmente um pixondo pelo teorem

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Aula 20 Hipérbole. Objetivos

Aula 20 Hipérbole. Objetivos MÓDULO 1 - AULA 20 Aul 20 Hipérbole Objetivos Descrever hipérbole como um lugr geométrico. Determinr su equção reduzid no sistem de coordends com origem no ponto médio entre os focos e eixo x como o eixo

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais