Resolução: Questão 03
|
|
|
- Stella Alencar Madureira
- 8 Há anos
- Visualizações:
Transcrição
1 005 IME MTEMÁTIC mtemátic é o lfeto com que Deus escreveu o mundo Glileu Glilei uestão 01 Dd função f ( x) = (156 x x ), demonstre que: f(x + y) + f(x - y) = f(x). f(y) Escrevendo f(x+y) e f(x-y) temos: f ( x + y) = f ( x y) = (156 (156 x+ y x y x y x+ y ) (I) ) (II) Sendo que de (I) e (II) encontrmos: f(x + y)+ f(x y)= 156 x+ y x y x y x+ y =. (156 x x ). (156 y y ) = f ( x ) f ( y ) c.q.d. uestão 0 O sistem de segurnç de um cs utiliz um tecldo numérico, conforme ilustrdo n figur. Um ldrão oserv de longe e percee que: senh utilizd possui 4 dígitos; o primeiro e o último dígitos encontrm-se num mesm linh; o segundo e o terceiro dígitos encontrm-se n linh imeditmente superior. Clcule o número de senhs que deverão ser experimentds pelo ldrão pr que com certez ele consig entrr n cs Tecldo numérico
2 nlisemos cd cso usndo o princípio fundmentl d contgem: Cso 1: O primeiro e último dígitos iguis e iguis zero = 9 csos 0 7, 8 ou 9 7, 8 ou 9 0 Cso : O primeiro e último dígitos escolhidos n 3ª linh: = 81 csos 7, 8 ou 9 4, 5 ou 5 4, 5 ou 6 7, 8 ou 9 Cso 3: O primeiro e último dígitos escolhidos n ª linh: 81 csos, nlogmente o cso. Totl de csos = = 171. Sejm,, c e d números reis positivos e diferentes de 1. Sendo que log d, log d e log c d são termos consecutivos de um progressão ritmétic, demonstre que: uestão 03 Com os termos d (log d, log d e log c d) podemos escrever: c = ( c) log d log d = log d + log c d, e fzendo um mudnç de se: ssim, relção c = d log logd logd = + log 1 log c 1 logc+ 1 logc+ log = 1 + = =, que result : log log c log c log c log c =, e dí: log log c log c = log. (log c), ou ind: log c log = log ( c ), que lev c log = ( c ).. No entnto, foi pedido que c = log ( c ) d, pr isso devemos ter =d: log d (c) não é verddeir pr,, c e d reis positivos e diferentes de 1.
3 uestão 04 Determine o vlor ds rízes comuns ds equções x 4 x 3 11x + 18x + 18 = 0 e x 4 1x 3 44x 3x 5 = 0. Testndo rízes inteirs n primeir equção: (x) = x 4 x 3 11x + 18x + 18 = 0 (3) 4 (3) 3 11(3) + 18(3) + 18 = 0 3 é riz. Ftorndo pelo dispositivo de riot-riffini: (x) = (x-3).(x 3 + x 8x 6) (-3) 3 + (-3) 8(-3) 6 = 0-3 é riz de x 3 + x 8x 6. E, ftorndo novmente: (x) = (x-3).(x+3).(x x ) Clculndo s rízes de x x = 0, vem: x = 1 ± 3 or fim, sustituindo s rízes encontrds cim em x 4 1x 3 44x 3x 5 = 0 (3) 4 1.(3) 3 44.(3) 3.(3) 5 0 (-3) 4 1.( 3) 3 44.( 3) 3.( 3) 5 0 (1 + 3 ) 4 1.(1+ 3 ) 3 44.(1+ 3 ) 3.(1+ 3 ) 5 0 (1 3 ) 4 1.(1 3 ) 3 44.(1 3 ) 3.(1 3 ) 5 0 Nenhum ds rízes d 1ª equção é tmém riz d ª, logo não existe riz comum. Resolv equção sen 11x + cos 3x + 3 sen 3x = 0. uestão 05. sen 11x + cos 3 x + 3 sen 3 x = 0 sen 11 x + 1 cos 3 x + 3 sen 3 x = 0 sen 11 x + sen 6 π cos 3 x + sen 3 x cos 6 π = 0 π sen 11x + sen 3x + = 0, e ftorndo: 6 3
4 π. sen 7x + 1. cos x π 4 = 0. De onde vem: 1 π π π π kπ 7x + =k π ou 4x = + kπ S= x R/ x = + ou π kπ x = +, k Z 48 4 uestão 06 Considere um triângulo C de áre S. Mrc-se o ponto sore o ldo C tl que / C = q, e o ponto sore o ldo C de mneir que / C = r. s cevins e encontrm-se em T, conforme ilustrdo n figur. Determine áre do triângulo T em função de S, q e r. T C x.q K T K/q W W/r r.y y x C Sej K áre pedid e W áre do Δ T : SC 1 = S 1+ r e SC 1 = S 1+ q Logo: K W S K + + = q r 1+ r K W S + W + = q r 1+ q e 1+ q 1 S. K +. W = q r 1+ r 1 1+ r S K +. W = q r 1+ q K = q. S ( 1 + q).( q+ r+ qr. ) 4
5 uestão 07 Considere um elipse de focos F e F, e M um ponto qulquer dess curv. Trç-se por M dus secntes MF e interceptm elipse em e, respectivmente. Demonstre que som ( MF/ F) + ( MF'/ F' ') é constnte. Sugestão: clcule inicilmente som (1/ MF) + (1/ F). MF ' que Oserve figur d elipse, M F F c c pós rotção introduz-se um mudnç dos eixos coordendos, ou sej: Elipse: x + y = 1 x + y = Fzendo x = xey= ytemos x + y = (circunferênci de rio ) Fzendo rotção d elipse té que su projeção sej um circunferênci de rio : Y M( x,y) F c R F c X pós rotção introduz-se um mudnç dos eixos coordendos, ou sej: Elipse: x + y = 1 x + y = Fzendo X = x e Y = y, temos: X + Y =, circunferênci de rio. 5
6 Lemrndo que rzão entre medids lineres permnece constnte e fzendo potênci de ponto n circunferênci temos: 4 c. c. MF. F =. + = 4 c. c. MF '. F ' ' = +. = MF MF ' MF MF' + = + = 4 ( MF + MF ' ) = F F ' ' MF. F MF'. F'. c c x+ + y + x + y = 4 c + + = 4 x y ( + ) c c + + = 4 x y c + = 4 (ue é constnte). c.q.d. uestão 08 Sejm, e c s rízes do polinômio p(x) = x 3 + rx t, onde r e t são números reis não nulos. ) Determine o vlor d expressão c 3 em função de r e t. ) Demonstre que S n+1 + r.s n-1 t.s n = 0 pr todo número nturl n, onde S k = k + k + c k pr qulquer número nturl k.. Ddo o polinômio (x) = x 3 + 0x + rx t, vmos escrever s Relções de Girrd: c = = 0 1 r + c + c = = r 1 ( t) c = = t 1 E dels temos, ( + + c) 3 =0 3, que pode ser escrito d form: c 3 + 3( + + c + c + c + c ) + 6c = 0 Ou, ftorndo: c 3 +3[(+) + c(+c) + c(+c)] + 6c = 0 E, sustituindo conforme primeir relção: c 3 + [( c) + c( ) + c( )] + 6c = c 3 = 3c = 3t. ind ds relções de Girrd em p(x) temos: + c +c = r c = t (I) (II) Sendo S k = k + k + c k, podemos fzer k = n, e com isso, sustituindo devidmente temos: 6
7 S n+1 + rs n 1 ts n = S k+1 + rs k 1 ts k- = k. + k. + c k k k k k k k c c.c + r + + t + + c c E, gor, sustituindo (I) e (II), temos: k + k + cc k k k k c k k k k c k k c + + c + c + c + + c c c k c k k + + c = ( k + k + c k )( + + c) = 0 c c.q.d. uestão 09 Clcule o determinnte d mtriz n x n em função de, onde é um número rel tl que n coluns n linhs Sej D o determinnte pedido, D = Sustituindo linh pel su som com o produto d linh 1 por + 1 : D = E, gor, sustituindo linh 3 pel su som com o produto d linh por ( 1) + : D =
8 E, procedendo d mesm form té n-ésim linh, temos: D = n n n ( ) ( ) ( ) ( ) ( ) n n ( ) n ( ) = = n+ 1 (( ) ) n+ n n = = 1... Sendo ssim: D = n+ 1 1 uestão 10 Considere os pontos e sore fces djcentes de um cuo. Um formig percorre, sore superfície do cuo, menor distânci entre e, cruzndo rest C em M e rest CD em N, conforme ilustrdo n figur ixo. É ddo que os pontos,, M e N são coplnres. ) Demonstre que MN é perpendiculr C.. ) Clcule áre d seção do cuo determind pelo plno que contém, e M em função de C = e M =. M N C D. I. Como formig percorre o cminho mínimo, qundo figur está plnificd temos M = θ e ND = 90 - θ. Se, M, N e são coplnres, então M e N encontrm-se em R. ind no ΔRMC temos MC=x e no ΔRNC temos CN = y. Sendo ssim, RC = x. tg θ e y = RC.tg θ, ou sej, y = x.tg θ. De onde só vle x = y se θ = II. or outro ldo, no ΔMNC temos, Tg θ = CN/CM = RC. Tg θ/rc. Tg (90 - θ). Então, tg (90 - θ) = 1 θ = Logo, de I e II concluímos que x = y. 8
9 M R x C y N 90 0 D. Considerndo MN perpendiculr C, terímos os seguintes cortes d figur: F G M C G N D H T F G M C N ( ) T S ( ) O E D H O M ( ) N Deles tirmos, 3 S = ( + ) 3 ( ) 3 S = + ( ) 9
10 Comentários O IME mnteve su trdição. prov possui conteúdos distriuídos de form homogêne, com questões em dois níveis: médio e difícil. Um prov em que o cndidto tem que demonstrr sus hiliddes com os cálculos e cpcidde de inter-relcionr conteúdos diferentes. prov é long, como de costume, em que o cndidto deve selecionr s questões que ele fz em pouco tempo, deixndo s miores e de mesmo peso, pr o finl. Todo o conteúdo cordo nels foi trlhdo em sl com nossos lunos, de form que só coue eles orgnizção dos ddos e dissertção e/ou escolh do cminho correto. Incidênci de ssuntos: rogressões otêncis/logrítmos Trigonometri Conjuntos/Funções nálise Comintóri olinômios 18% Determinntes Geometri 8% rofessores : Mrcelo Mores Mnim erndelli Colorres: Mnfredo Rodrigo Lcerd Digitção e Digrmção Diego erndelli Márci Smper rojeto Gráfico Frederico ueno ssistente Editoril Diego erndelli Supervisão Editoril Rodrigo erndelli Copyright Olimpo004 Resolução Comentd ds provs do IME poderá ser otid diretmente no OLIMO ré-vestiulr, ou pelo telefone (6)
IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:
IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três
Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.
O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de
3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença
Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,
Resumo com exercícios resolvidos do assunto: Aplicações da Integral
www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A
Questão 02. Determine o valor da excentricidade da cônica dada pela equação. Questão 03
IME "A mtemátic é o lfeto com que Deus escreveu o mundo" Glileu Glilei Questão A se de um prism reto ABCA BC é um triângulo com o ldo AB igul o ldo AC. O vlor do segmento CD vle x, onde D é o ponto médio
5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:
MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics
Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes:
Questão 01 O polinômio P ( ) 10 0 81 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do polinômio. p ( ) 10 0 81 z bi z bi 1 z bi z ( ) bi z rel
as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:
(9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do
4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.
EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.
António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro
Matemática B Extensivo V. 8
Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,
Questão 02. são raízes da equação. Os números reais positivos x. b (natural), a IR. x ax a b x, sendo IN. (real) e 1. log
Questão 0 O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic ( PA ) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric PG, de rzão q, com q e r IN (nturl
Adriano Pedreira Cattai
Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos
Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação
Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
Matemática B Superintensivo
GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen
( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.
Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N
Lista 5: Geometria Analítica
List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.
Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde
Aula 5 Plano de Argand-Gauss
Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto
GABARITO IME DISCURSIVAS 2017/2018 MATEMÁTICA
GABARITO IME DISCURSIVAS 07/08 MATEMÁTICA DISCURSIVAS /0/7 Questão 0 Sej o número complexo z que stisfz relção ( z i) 07 ( + i)( iz ) 07. Determine z, sbendo- -se que z. Gbrito: ( z i) ( + i) ( i z ) 07
Questão 02 Resolva a inequação abaixo, onde x é uma variável real. 2 x 3 6x x + 2 <
08 IME "A mtemátic é o lfbeto com ue Deus escreveu o mundo" Glileu Glilei Questão 0 Sej o número complexo z ue stisfz relção (z i) = ( i )(iz ). Determine z, sbendo-se ue z z i iz z i iz i i Aplicndo módulo:
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e
Simulado EFOMM - Matemática
Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p
Conhecendo-se os valores aproximados dos logaritmos decimais, log = 1,114 e log = 1,176, então, o valor de log 10
MATEMÁTICA Considere os conjuntos A e B: A = { 0, 0, 0, 0,0, 0, 0} e B = {00,00,00,00,500,600,700,800,900,000}, e função f : A B, f(x) = x + 00. O conjunto imgem de f é, ) { 0, 0, 0,0,0,0,0}. ) {00,00,500,000}.
Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2
Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo
Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1
Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região
y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y
Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x
QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um
6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]
6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior
Seu pé direito nas melhores faculdades
MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo
Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:
mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e
Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..
4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe
4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n
Progressões Aritméticas
Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3
EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.
EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =
a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível
CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números
MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações:
MATEMÁTICA Considere os conjuntos S = {0,,, 6}, T = {,, } e U = {0, } e s firmções: I. {0} S e S U. II. {} S \ U e S T U = {0,}. III. Eiste um função f : S T injetiv. IV. Nenhum função g: T S é sobrejetiv.
REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.
NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms
UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON [email protected] MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos
Revisão EXAMES FINAIS Data: 2015.
Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele
CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
Exercícios. setor Aula 25
setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7
Vestibular Comentado - UVA/2011.1
estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo
Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1
Pltão Coment Prov Específic de Mtemátic UEM julho de Grito QUESTÃO: GRITO: ) Corret q 6 6 6 6 6. q 6 6 6 6 8 ) Corret q n com *. n n, q > e ) Incorret. n. n ( ). n S n n n. n n. n 6 8) Corret Como < então.
ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS
EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre
RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração
RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F
Módulo e Equação Modular (valor absoluto)?
Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se
TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície
FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x
FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)
I PARÁBOLA MATQUEST CÔNICAS PROF.: JOSÉ LUÍS
MATQUEST CÔNICAS PROF.: JOSÉ LUÍS I PARÁBOLA 1 Definição - Ddos um ret d e um ponto F, F d, de um plno, chmmos de práol o conjunto de pontos do plno eqüidistntes de F e d. A figur ssim otid é chmd de práol.
Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec
Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)
CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método
Cálculo III-A Módulo 3 Tutor
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,
Recordando produtos notáveis
Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único
Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017
Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
Eletrotécnica TEXTO Nº 7
Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos
CÁLCULO INTEGRAL. e escreve-se
Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje
