RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

Tamanho: px
Começar a partir da página:

Download "RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração"

Transcrição

1 RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F (x) + C NOTA MENTAL: Não esquecer constnte pr integris indefinids. Fórmuls de Integrção d x = x + C c ossec x cotg x dx = c ossec x + C x r x dx = r+1 r+1 + C (r 1 ) e x dx = e x + C c os x dx = s en x + C b x dx = bx ln b + C (0 < b, b 1) s en x dx = c os x + C 1 x dx = l n x + C s ec²x dx = t g x + C 1 1+x² dx = rctg x + C c ossec² x dx = c otg x + C 1 1 x² dx = rc sen x + C s ec x tg x dx = s ec x + C 1 x x² 1 dx = rcsec x + C Proprieddes d integrl indefinid!

2 c f(x)dx = c f (x)dx Qundo se multiplic por um constnte, el pode estr dentro ou for d integrl, que dá n mesm! [f(x) + g (x)]dx = f (x)dx + g (x)dx A integrl de um som é som ds integris [f(x) g (x)]dx = f(x)dx g (x)dx A integrl de um diferenç é diferenç ds integris INTEGRAÇÃO POR SUBSTITUIÇÃO U O método de substituição é utilizdo pr simplificr integrção, gerndo um integrl que sbemos como resolver. Considerndo u = g(x) e colocndo du/dx = g (x) n form diferencil du = g (x) dx: f (g(x))g (x)dx = F (g(x)) + C f (u)du = F (u) + C Exemplo: INTEGRAL DEFINIDA A integrl definid possui limites de integrção [,b]. Assim, o resultdo será um número e não um equção, ou sej, não precismos mis d constnte de integrção. A integrl definid utiliz conceitos de áre, comprimento e volume.

3 PROPRIEDADES DA INTEGRAL DEFINIDA Bsicmente, s proprieddes são s mesms ds integris indefinids. Ms há proprieddes extrs devido os limites de integrção, conforme tbel: Proprieddes extrs d integrl definid! f (x)dx = 0 Qundo os limites de integrção forem iguis b f (x)dx = b f (x)dx Qundo os limites estão invertidos b f (x)dx = c f (x)dx + b f (x)dx c Um integrl pode ser reescrit como som de dus integris, reescrevendo os limites TEOREMA FUNDAMENTAL DO CÁLCULO PARTE 1 Como clculr um integrl definid: clculndo ntiderivd do limite

4 de cim, subtrindo est do limite de bixo! Sendo f um função contínu em [,b] e F ntiderivd de f : Exemplo: b f (x)dx = F (b) F () ou f (x)dx = F (x)] b b TEOREMA FUNDAMENTAL DO CÁLCULO PARTE 2 Qundo um integrl definid tiver um limite de integrção superior vriável (x, por exemplo): Exemplo: F (x) = x f (t)dt dx [ x f (t)dt] = f (x) d

5 CALCULANDO INTEGRAIS DEFINIDAS POR SUBSTITUIÇÃO Deve-se levr em cont os efeitos d substituição nos limites de cim e de bixo. Dess form, há dois métodos pr fzer isso: Método 1: Determinr integrl indefinid por substituição e depois voltr pr definid. Método 2 : Usr u = g(x) pr substituir os vlores dos limites de integrção. ÁREA ENTRE DUAS CURVAS A = b g (x)]dx [f(x) NOTA MENTAL: relembrndo s proprieddes d integrl definid (subtrção de integris), qui nd mis é do que integrl de um função menos outr!

6 ÁREA INTEGRANDO EM Y A = b g (y)]dy [f(y) VOLUME POR DISCOS E ARRUELAS EM X E Y O volume do sólido de revolução gerdo pel rotção d função f em torno do eixo x é: V = b π [f(x)]²dx O mesmo pode ser feito qundo um função f é gird em torno do eixo y.

7 V = b π [f(y)]²dy NOTA MENTAL: tlvez sej preciso, em lgum momento, clculr o volume de um sólido prtir d diferenç do volume de outros dois. Pr isso, bst seguir o mesmo esquem d áre entre dus curvs. INTEGRAÇÃO POR PARTES u dv = uv v du O objetivo d integrção por prtes é escolher um u e dv pr obter um nov integrl, mis fácil de resolver que originl. Exemplo: NOTA MENTAL : Pode-se escolher u d seguinte list: P otênci, I nvers trigonométric, T rigonométric, E xponencil, L ogrítmic (PITEL)!!

8 INTEGRAIS TRIGONOMÉTRICAS PRODUTOS DE SENOS E COSSENOS Se m e n forem números inteiros e positivos, integrl cim pode ser clculd trvés relções trigonométrics! Seprr c os x n ímpr Aplicr c os²x = 1 s en²x u = s enx Seprr s en x m ímpr Aplicr s en²x = 1 c os²x u = c os x Reduzir potêncis de sen x e c os x m e n pres 1 s en²x = 2 (1 c os 2x) 1 c os²x = 2 (1 + c os 2x) A prtir dqui, nós utilizmos o método de substituição u.du, sendo u = 2 x e

9 d u = 2 dx : INTEGRAIS TRIGONOMÉTRICAS PRODUTOS DE TANGENTES E SECANTES tg m x secn x dx Seprr s ec²x n pr Aplicr s ec²x = t g²x + 1 Seprr s ec x tg x u = t g x m ímpr Aplicr t g²x = sec²x 1 u = s ec x m pr e n ímpr Reduzir potêncis de s ec x tg 2 x = sec2x 1 SUBSTITUIÇÕES TRIGONOMÉTRICAS O método de substituições trigonométrics pode ser relizdo em três pssos: escolher substituição corret, resolver integrl e retornr vriável inicil. Expressão 2 x 2 x² + ² Substituição x = sen θ x = tg θ

10 x² ² x = sec θ Exemplo: Então, deve-se expressr cotngente em função de x! Substituindo n integrl já resolvid, temos que: INTEGRAÇÃO DE FUNÇÕES RACIONAIS POR FRAÇÕES PARCIAIS É um método utilizdo pr decompor divisões de polinômios em frções prciis, obtendo constntes que devem ser determinds pr, então, resolver integrl. Exemplo:

11

b a f(x) dx a f(x)dx = 0 f(x)dx a f(x)dx = - b f(x)dx b f(x)dx = c f(x)dx + b f(x)dx ou - f(x)dx ou - f(x)dx f (x) y f (x) 1 DEFINIÇÃO DE INTEGRAL

b a f(x) dx a f(x)dx = 0 f(x)dx a f(x)dx = - b f(x)dx b f(x)dx = c f(x)dx + b f(x)dx ou - f(x)dx ou - f(x)dx f (x) y f (x) 1 DEFINIÇÃO DE INTEGRAL DEFINIÇÃO DE INTEGRAL Dentro do conceito do cálculo, temos que integrl foi crid pr delimitr áre A loclizd sob um curv f() em um plno crtesino. A f () b A notção mtemátic d integrl cim é: A = b f() d 2

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic mrili@umc.br º semestre de 05 Cálculo Diferencil

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Cálculo Diferencil e Integrl II List 1 - Técnics de Integrção 1 Técnics de Integrção 1. Integrção por Substituição. 3cosx 1 + 3senx sec x tgx sen 4 xcos 5 x sen (πx)cos (πx) cotg 3 xcossc x x( x + 1) 1

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

AULA 1 Introdução 3. AULA 2 Propriedades e teorema fundamental do cálculo 5. AULA 3 Integrais indefinidas 7. AULA 4 Integração por substituição 9

AULA 1 Introdução 3. AULA 2 Propriedades e teorema fundamental do cálculo 5. AULA 3 Integrais indefinidas 7. AULA 4 Integração por substituição 9 www.mtemticemexercicios.com Integris (volume ) Índice AULA Introdução AULA Proprieddes e teorem fundmentl do cálculo 5 AULA Integris indefinids 7 AULA 4 Integrção por sustituição 9 AULA 5 Integrção por

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi A forç não provém d cpcidde físic, e sim de um vontde indomável. Mhtm Gndhi Futuros militres, postos! É hor de meter o ggá! Este é o módulo 8 do curso de MATEMÁTICA d turm AFA-EN-EFOMM- EsPCE-EEAr. Nesse

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Atividade Prática como Componente Curricular

Atividade Prática como Componente Curricular Universidde Tecnológic Federl do Prná Gerênci de Ensino e Pesquis Deprtmento Acdêmico de Mtemátic Atividde Prátic como Componente Curriculr - Propost - Nome: Mtrícul: Turm: Justique su respost, explicitndo

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

f(x) dx. Note que A é a área sob o gráfico

f(x) dx. Note que A é a área sob o gráfico FFCLRP-USP AULA-INTEGRAL - CÁLCULO II- ECONOMIA Professor: Jir Silvério dos Sntos PROPRIEDADES DA INTEGRAL Sejm f,g : [,b] R funções integráveis. Então (i) [f(x) + g(x)]dx = (ii) Se λ é um número rel,

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm

Leia mais

6.1 Derivação & Integração: regras básicas

6.1 Derivação & Integração: regras básicas 6. Derivção & Integrção: regrs básics REGRAS BÁSICAS DE DERIVAÇÃO. Regr d som:........................................ (u + k v) = u + k v ; k constnte. Regr do Produto:.....................................................

Leia mais

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004 Integrção Numéric Prof. Doherty Andrde- DMA/UEM DMA-UEM-4 Preliminres Nests nots o nosso interesse é clculr numericmente integris f(x)dx. A idéi d integrção numéric reside n proximção d função integrnd

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

1 Limite - Revisão. 1.1 Continuidade

1 Limite - Revisão. 1.1 Continuidade 1 Limite - Revisão O conceito de limite de um função contribui pr nálise do comportmento d função n vizinhnç de um determindo ponto. Intuitivmente, dd um função f(x) e um ponto b que pertence o domínio

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

META: Introduzir o conceito de integração de funções de variáveis complexas.

META: Introduzir o conceito de integração de funções de variáveis complexas. Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Cálculo Diferencial e Integral II Prof. Ânderson Vieira

Cálculo Diferencial e Integral II Prof. Ânderson Vieira CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

Mudança de variável na integral dupla

Mudança de variável na integral dupla UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 6 Assunto: Mudnç de Vriável n Integrl Dupl Plvrs-chves: mudnç de vriável, integris dupls, jcobino Mudnç de vriável n integrl dupl Vmos ntes

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2. Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo A List Eercício :Usemudnçu + ev eclculeintegrldef,) +) sen ) sobre região : + π. Solução: O esboço d

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral Eercícios de Integrl Eercícios de Fição Cálculo I (5/) IM UFRJ List 5: Integrl Prof Milton Lopes e Prof Mrco Cbrl Versão 55 Fi : Determine se é Verddeiro (provndo rmtiv) ou Flso (dndo contreemplo): b ()

Leia mais

Matemática B Extensivo V. 8

Matemática B Extensivo V. 8 Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Como calcular a área e o perímetro de uma elipse?

Como calcular a área e o perímetro de uma elipse? Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm o conceito de

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

INTEGRAIS INDEFINIDAS APRENDA SOZINHO

INTEGRAIS INDEFINIDAS APRENDA SOZINHO INTEGRAIS INDEFINIDAS APRENDA SOZINHO ANGELA OLANDOSKI BARBOZA 015 Algums plvrs do utor: Fui professor d Universidde Tecnológic Federl do Prná por 9 nos. Um ds mets que quero conquistr n minh posentdori

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R

x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R Algums primitivs Simples... c dt = cx + k, k R x n dx = xn+ n + + k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = rctn(x) + k, dx = SetSh(x)

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo.

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo. Cálculo Univrido List numero integrl trcisio@sorlmtemtic.org T. Prcino-Pereir Sorl Mtemátic lun@: 7 de setemro de 7 Cálculo Produzido com L A TEX sis. op. Dein/GNU/Linux www.clculo.sorlmtemtic.org/ Os

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Marcelo José Dias Nascimento. Marcelo Nascimento / UFSCar

Marcelo José Dias Nascimento. Marcelo Nascimento / UFSCar Cálculo Mrcelo José Dis Nscimento Mrcelo Nscimento / UFSCr Mrcelo Nscimento / UFSCr Sumário Integris 5. Primitivs................................... 5. Integrl de Riemnn............................. 7.3

Leia mais

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Termodinâmica e Estrutura da Matéria 2013/14

Termodinâmica e Estrutura da Matéria 2013/14 Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Cálculo integral. 4.1 Preliminares

Cálculo integral. 4.1 Preliminares Cpítulo 4 Cálculo integrl 4. Preinres Considere um decomposição do intervlo [, ] R em su-intervlos d orm [x, x ], [x, x ],..., [x n, x n ], onde = x < x < < x n < x n = e n N. Por um questão de simplicidde,

Leia mais