Aula 9 Triângulos Semelhantes
|
|
- Orlando Delgado Salazar
- 2 Há anos
- Visualizações:
Transcrição
1 MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos e semelhantes. Lados homólogos são lados opostos a ângulos ordenadamente congruentes. c b c b a a s triângulos e da figura são semelhantes.   Ĉ Ĉ temos que os lados a e a são homólogos temos que os lados b e b são homólogos temos que os lados c e c são homólogos Vértices homólogos são os vértices de ângulos ordenadamente congruentes. Razão de semelhança é a razão de dois lados homólogos quaisquer. Temos que se  = Â, =, Ĉ = Ĉ e também a a = b b = c = k; k é a razão de semelhança. c Teorema Fundamental: Se uma reta é paralela a um dos lados de um triângulo e encontra os outros dois lados em pontos distintos, então o triângulo que ela determina é semelhante ao primeiro. Prova: Seja a reta paralela ao lado do triângulo. Vamos provar que. 155 R J
2 Para provarmos essa semelhança, precisamos provar que eles tem ângulos ordenadamente congruentes e lados homólogos proporcionais. 1) s três ângulos ordenadamente congruentes. e fato, Â Ê Â (comum) (correspondentes) Ĉ (correspondentes) 2) s lados homólogos são proporcionais. e fato, pela hipótese, temos F Tracemos F//. Temos: = (1) = F (2) Temos que o quadrilátero F é um paralelogramo e, portanto, F = (3). Substituindo (3) em (2), vem as relações (1) e (4), temos: = (4) = = e os lados homólogos são proporcionais. Logo, os triângulos e são semelhantes. R J 156
3 MUL 1 - UL 9 bservação: ois triângulos congruentes são semelhantes, e a razão de semelhança é k = 1. xercícios Resolvidos 1. s três lados de um triângulo medem, respectivamente, 6 cm, 15 cm e 16 cm. etermine os lados de um triângulo semelhante a, sabendo que a razão de semelhança do triângulo para o triângulo é igual a 4. Temos que. enominando os lados do de a, b e c, vem: 6 = 15 = 16 = 4 a b c a = 6 4 b = 15 4 c = 16 4 Logo, os lados do valem 3 2, 15 4 e 4. = 3 2 = 4 2. Na figura, = 3 ( ), = 3 ( ) e = 14. alcule, sabendo que // R J
4 Seja a figura, sendo = 3 ( ), = 3 ( ) e = 14. enotemos = x, = a, = 3a. x 14 a 3a Temos que, já que // (Teorema Fundamental): Logo, = x 4a = 14 3a x = s lados de um triângulo medem 4 cm, 8 cm e 12 cm. alcule as medidas dos lados de um triângulo semelhante, cujo perímetro mede 96 cm. Sejam x, y e z as medidas dos lados do triângulo procurado. Temos que x 4 = y 8 = z (definição) e x + y + z = x + y + z = 96 Resolvendo o sistema x = y = z de proporção, vem: x + y + z = x 4 = y 8 = z = x 4 = y 8 = z 12 4 = x 4 = y 8 = z 12 usando a propriedade x = 16 cm, y = 32 cm e z = 48 cm. R J 158
5 MUL 1 - UL 9 asos de semelhança entre triângulos 1 ō caso: Se dois triângulos possuem dois ângulos ordenadamente congruentes, então eles são semelhantes. Prova: onsidere os triângulos e com  =  e =. Vamos provar que. Se o lado fosse congruente ao lado, os dois triângulos seriam  =  congruentes pelo caso L, já que = e a semelhança estaria = verificada (k = 1). Supondo que não seja congruente a. Seja <. Tomemos = sobre o lado e tracemos //, pelo Teorema Fundamental, vem: (1) Vamos provar que. Temos que  =  (hipótese) = (construção) = (correspondentes) o que implica (L) que (2). e (1) e (2). 159 R J
6 2 ō caso: LL Se dois triângulos possuem dois lados correspondentes ordenadamente proporcionais e os ângulos compreendidos entre esses lados são congruentes, então os triângulos são semelhantes. Sejam os triângulos e. ntão: = =. Prova: Sejam os triângulos e. Se, e = então (LL). Vamos supor que e não são congruentes e seja <. Tomemos sobre o lado e tracemos paralela ao lado. Pelo Teorema Fundamental, temos: ( ) Vamos provar que. e fato, Se //, então = (1). Por construção, = (2). e (1) e (2) = (3), mas, por hipótese, = (4). e (3) e (4) = =. R J 160
7 MUL 1 - UL 9 Logo: LL ( ) e ( ) e ( ) vem que:. 3 ō caso: LLL Se dois triângulos têm os lados homólogos proporcionais, então eles são semelhantes. Sejam os triângulos e tal que = = Prova: onsidere os triângulos e, tal que = = (1). Se os lados e são congruentes, de (1) que e. aí, (LLL) e o teorema está provado. Vamos supor que e não são congruentes. Seja então <. Tomemos = sobre o lado e tracemos //. Pelo Teorema Fundamental, temos: (1) Vamos provar que. 161 R J
8 e (1), vem que: Por construção, = (3). e (2) e (3), vem: = = (2) = = (4) Mas, por hipótese, = = (5) e (4) e (5), vem: = (6) e = (7), então (construção) (6) (7) LLL (8) e (1) e (8), vem que:, caso de congruência LLL. xercícios Resolvidos 1. ssociar as alternativas seguintes com pares de triângulos T 1, T 2,, abaixo. a) s triângulos são semelhantes pelo critério ( ) b) s triângulos são semelhantes pelo critério (LLL ) c) s triângulos são semelhantes pelo critério (LL ) 3 4 T T 2 10 R J 162
9 MUL 1 - UL T 3 T T 5 8 T 6 1) T 1 T 2 (b) (critério LLL ) já que: 3 6 = 4 8 = ) T 3 T 4 (a) (critério ) pois o terceiro ângulo do triângulo T 3 é: = 40 0 e daí temos nesses dois triângulos dois ângulos congruentes, que são 80 0 e ) T 5 T 6 (c) (critério LL ) já que: 8 6 = 12, e o ângulo compreendido 9 entre esses dois lados é congruente a (70 0 ). 2. Na figura, //, e os pontos, e são co-lineares. Sabendo que = 14 cm, = 18 cm e = 10 cm, calcule a medida do lado. Temos que: Ê Ê Ĉ (ângulos opostos pelo vértice) (alternos internos). 163 R J
10 Portanto: = 18 = = 90 7 cm. 3. om os dados da figura, calcule x. α x 5 α 7 3, pois { = Â = α Ĉ é comum. Temos então o 1 ō caso de semelhança. Logo: = 5 10 = x 30 = x 5x = 5 x = onsidere dois triângulos semelhantes e, de razão k e medianas homólogas M e M. Mostre que M M = k. M M Seja, de razão k e medianas homólogas M e M. ntão: (1) (ângulos homólogos) (2) = = k e (2) vem: = = k M M = k. R J 164
11 MUL 1 - UL 9 aí, temos que: = M = k M LL M M. Logo: M M = k. bservação: m dois triângulos semelhantes, se a razão de semelhança é k, então: razão entre os perímetros é k razão entre as alturas homólogas é k razão entre as bissetrizes internas homólogas é k razão entre os raios dos círculos inscritos é k razão entre os raios dos círculos circunscritos é k. razão entre dois elementos lineares homólogos é k. 5. ois triângulos semelhantes têm perímetros 60 cm e 48 cm. Quanto mede a altura do primeiro, sabendo-se que a altura homóloga do segundo mede 9 cm? onsidere dois triângulos semelhantes, cujos perímetros são 60 cm e 48 cm. Pela observação, temos que = h, onde h é a altura homóloga 9 do primeiro triângulo. ntão: h = = 45 4 h = 45 4 cm. 165 R J
12 6. Na figura a seguir, consideremos os quadrados de lados x, 6 e 9. etermine o perímetro do quadrado de lado x. 9 6 x 9 6 x onsidere na figura os quadrados de lados x, 6 e 9. { 90 0 Temos, pois ( ). Â Ĉ ntão: = x = 6 x 3x = 6(6 x) 3x = 36 6x 9x = 36 x = alcular R, raio da circunferência circunscrita ao triângulo da figura, sendo = 4, = 6 e H = 3. H R R J 166
13 MUL 1 - UL 9 Seja a figura dada, com = 4, = 6 e H = H R 6 R Trace o diâmetro. Temos que H, pois: Ĥ = 900 = Ĉ (ângulo inscrito e note que é diâmetro) H = = 2 (ângulo inscrito) (caso ). ntão: = H 4 2R = 3 6 6R = 24 R = 4. Polígonos Semelhantes efinição: ois polígonos quaisquer com um mesmo número de lados são semelhantes se têm ordenadamente congruentes todos os ângulos e os lados homólogos proporcionais. xemplo: onsidere um quadrilátero qualquer e um ponto sobre o lado, conforme a figura. Tracemos as diagonais de um mesmo vértice e os segmentos e, respectivamente paralelos a e. 167 R J
14 Temos assim o paralelogramo. s quadriláteros e são semelhantes pois têm: a) Â = Â, =, Ĉ = Ĉ e = b) = = = pela construção de paralelas. bservação: notação para os polígonos semelhantes é análoga à dos triângulos semelhantes. ssim, e são vértices homólogos; e são lados homólogos; = k é a razão de semelhança. Teorema: ois polígonos regulares de mesmo número de lados são semelhantes. Prova: onsidere os dois polígonos regulares de p e p. Vamos mostrar que p e p têm seus ângulos ordenadamente congruentes e seus lados homólogos proporcionais. 1 ō : m cada um desses polígonos, cada ângulo interno mede 1800 (n 2), n e daí todos os ângulos são ordenadamente congruentes e em particular congruentes entre si. R J 168
15 MUL 1 - UL 9 2 ō. s lados,,, do primeiro polígono são congruentes entre si, o mesmo ocorrendo com os lados,,, do segundo polígono. F F aí: = = =... = k. aí, p p 8. razão entre os perímetros de dois hexágonos regulares é 1 4. Sabendo-se que o lado maior de um dos hexágonos mede 45 cm, calcule a medida do lado menor. Seja x a medida do lado que queremos. s polígonos regulares são semelhantes, então à razão entre os perímetros é igual à razão entre os lados homólogos. aí, o lado menor é 45 4 cm. x 45 = 1 4 x = Relações métricas em um círculo Teorema das cordas: Se duas cordas se encontram, então o produto das medidas dos dois segmentos de uma é igual ao produto das medidas dos segmentos da outra. 169 R J
16 Prova: Sejam as cordas e que se encontram em P no círculo. P Temos que P P, pois: P P (opostos pelo vértice) (caso ). ntão: P P = 2 (ângulo inscrito) P P = P P P P = P P. Teorema das Secantes: Se de um ponto exterior a um círculo traçamos duas secantes, então o produto das medidas de uma secante por sua parte exterior é igual ao produto das medidas da outra pela sua parte exterior. Prova: P Sejam as secantes P e P que se encontram em P. Ligue os pontos com e com. Temos que P P, pois: P (comum) (caso ). ntão: PÂ = ĈP = 2 (ângulo inscrito) P P = P P P P = P P. R J 170
17 MUL 1 - UL 9 Teorema: Se de um ponto exterior a um círculo traçamos uma tangente e uma secante, então a medida do segmento da tangente é média geométrica entre as medidas do segmento da secante. Nota: ados os números reais positivos a e b, chama-se média geométrica entre a e b o número x positivo tal que x 2 = ab. Prova: Seja P exterior a um círculo, P secante e PT tangente ao círculo. P T Ligue os pontos e ao ponto T, conforme a figura. Temos que PT PT, pois: P (comum) ÂT = TP = T (ângulo inscrito e de segmento) 2 (caso ). ntão: PT P = P PT PT2 = P P. Nota: No caso de a secante passar pelo centro do círculo e sendo d a distância de P ao centro do círculo e R o raio desse círculo, temos: T P d R R PT 2 = P P = (d R)(d + R) PT 2 = d 2 R R J
18 Potência de um ponto em relação a um círculo onsideremos em um plano uma circunferência e um ponto P, o qual poderá ser exterior ou interior a ela, ou mesmo pertencer à circunferência. Por P traçamos uma reta que encontra a circunferência em dois pontos distintos e. P efinição: produto P P é denominado potência do ponto P em relação ao círculo de centro. Notação: Pot P. onsidere a figura a seguir. F P Temos: P P = P P = P PF = constante (Teorema das ordas). onsidere, agora, a figura a seguir. P T Temos: P P = P P = PT 2 = constante (teorema anterior). R J 172
19 MUL 1 - UL 9 Nota: Sabemos que PT 2 = d 2 R 2, onde d é a distância de um ponto ao centro do círculo de raio R, situado no mesmo plano. ntão: 1) potência de P em relação ao círculo será positiva se d > R, pois: P P = PT 2 = d 2 R 2 = Pot P. 2) potência de P em relação ao círculo é negativa se d < R. 3) potência de P em relação ao círculo é nula se d = R. 4) potência de P em relação ao círculo é mínima se d = onsidere a figura. alcule Pot + Pot + Pot Temos que Pot R = d 2 R 2. Pot = Pot = Pot = o que implica Pot + Pot + Pot = = = R J
20 10. alcule x nas figuras a seguir: a) 2 4 x 9 Pelo Teorema das ordas, vem: 2 x = 4 9 x = 18. b) x x 4 8 Pelo Teorema das Secantes, vem: x 2x = x 2 = 8 16 x 2 = 64 x = Na figura, representa um trecho reto de uma estrada que cruza o pátio circular de centro e raio r. Se = 2r =, determine a medida de em função da medida de. R J 174
21 MUL 1 - UL 9 onsidere a figura, com = 2r =. 2r r r enominando = x, vem: Usando o Teorema das secantes, Temos que: Logo: x 2r = r 3r x = 3r 2. = = 2r 3r 2 = r 2. 3r 2 r 2 = 3 = ponto P está no interior de uma circunferência de 13 cm de raio e dista 5 cm do centro da mesma. Pelo ponto P, traça-se a corda de 25 cm. etermine os comprimentos que P determina sobre a corda. Temos que P está no interior de uma circunferência de 13 cm de raio e dista 5 cm do centro da mesma e a corda = x P 5 y Vamos denominar P = x e P = y. ntão, usando o Teorema das ordas, vem: 18 8 = x y e x + y = = R J
22 aí, xy = 144 (1) x + y = 25 (2) x = 25 y (3). Substituindo (3) em (1), vem: (25 y)y = 144 y 2 25y = 0 y = 25 ± y = = 16 ou y = = 9 ssim, x = = 9 ou x = 25 9 = 16. Logo, os comprimentos pedidos são 16 cm e 9 cm. xercícios Propostos 1. alcule o valor de x na figura, sabendo que r e s são transversais que cortam as paralelas a, b e c. b a 9 x 6 12 c figura mostra um quadrado FG inscrito em um triângulo. Sabendo que a base mede 15 cm e que a altura relativa a essa base mede 10 cm, calcule a medida do lado desse quadrado. G F R J 176
23 MUL 1 - UL 9 3. No triângulo da figura, calcule os valores de x e y. 4. Na figura temos = 9, = 16, = 337 e = 5. etermine e. 5. alcule a altura do triângulo inscrito na circunferência de centro e de diâmetro = 7, 5 cm e os lados e medindo, respectivamente, 5 cm e 6 cm. 6. Na figura, é um triângulo eqüilátero de lado 6 cm e M é o ponto médio do lado. alcule o segmento N. 177 R J
24 7. s bases de um trapézio medem 4 m e 6 m, respectivamente, e a altura mede 8 m. alcule a que distância da base maior cortam-se as diagonais. 8. Mostre que, em um paralelogramo, dois lados consecutivos são inversamente proporcionais às alturas correspondentes. 9. Se, no círculo da figura, vale 10, vale 2, é perpendicular a e é o ponto médio de, calcule o diâmetro do círculo. 10. Por um ponto P distante 9 cm do centro de um círculo de 7 cm de raio, traça-se a secante P ao círculo de modo que P vale a metade de P. alcule o comprimento do segmento P. Gabarito x = 15 2, y = = 80 9, = N = 3, 2 cm. 7. 4,8 metros. 8. demonstração R J 178
Aula 10 Semelhança de triângulos
MÓULO 1 - UL 10 ula 10 Semelhança de triângulos Objetivos Introduzir a noção de semelhança de triângulos eterminar as condições mínimas que permitem dizer que dois triângulos são semelhantes. Introdução
CIRCUNFERÊNCIA E CÍRCULO
IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.
MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um
Geometria Plana. Exterior do ângulo Ô:
Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado
Aula 11 Conseqüências da semelhança de
onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de
Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular
MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício
Aula 11 Polígonos Regulares
MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
MA13 Geometria I Avaliação
13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo
Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.
Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações
Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência
Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. PROPRIEDADES DOS QUADRILÁTEROS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...
1 TRIR SÉRI NSINO MÉIO INTGRO PROPRIS OS QURILÁTROS Prof. Rogério Rodrigues NOM :... NÚMRO :... TURM :... 2 IV - QURILÁTROS IV. 1) Quadriláteros Notáveis - lassificação : hamamos de Quadrilátero todo polígono
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
Aula 12 Introdução ao conceito de área
MÓULO 1 - UL 1 ula 1 Introdução ao conceito de área Objetivos Introduzir o conceito de área de uma figura plana presentar as fórmulas para o cálculo da área de algumas figuras planas Introdução entre as
. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m
05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,
LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre
LINHAS PROPORCIONAIS Geometria Plana PROF. HERCULES SARTI Mestre Exemplo 4: apostila Determine o perímetro do quadrilátero ABCD, circunscritível, da figura. Resolução: Exemplo 4: apostila Determine o perímetro
Testes Propostos 15B e 16B: Triângulos e Quadriláteros
urso de Matemática Testes Propostos 15 e 16: Triângulos e Quadriláteros 01. om três segmentos e comprimentos iguais a 10cm, 12cm e 23cm... é possível apenas formar um triângulo retângulo é possível formar
Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.
Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
VESTIBULAR UFPE UFRPE / ª ETAPA
VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.
RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL
GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma
Turma M1-27/09/2011 Dirce Uesu
Turma M1-27/09/2011 Dirce Uesu Prova: Por quê? Prova: Por quê? Prova: Por quê? OBS: Considere em um plano uma circunferência e um ponto P, o qual poderá ser : - ou exterior - ou interior - ou pertencer
Aula 29 Volume de pirâmides, cones e esferas
MÓULO 2 - UL 29 ula 29 Volume de pirâmides, cones e esferas Objetivos alcular o volume de uma pirâmide. alcular o volume de um cone. alcular o volume de uma esfera. Introdução Sabemos que se cortarmos
Agrupamento de Escolas de Diogo Cão, Vila Real
grupamento de scolas de iogo ão, Vila Real 2015/2016 MTMÁTI FIH TRLHO Nº 8 º PRÍOO MIO Nome: Nº Turma: 7º ata: 1 Observa o polígono da figura 2. fig. 2 1. 1) Indica o número de ângulos internos. 1. 2)
Aula 21 - Baiano GEOMETRIA PLANA
Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Pontos notáveis de um triângulo
MÓULO 1 - UL 9 ula 9 ontos notáveis de um triângulo Objetivos presentar os pontos notáveis de um triângulo. stabelecer alguns resultados envolvendo esses elementos. ontos notáveis de um triângulo Nesta
Lugares geométricos básicos I
Lugares geométricos básicos I M13 - Unidade 5 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Definição Lugar Geométrico da propriedade P é o conjunto
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Aula 3 Polígonos Convexos
MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos
ATIVIDADES COM GEOPLANO CIRCULAR
ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.
Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,
Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)
Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10
CIRCUNFERÊNCIA E CÍRCULO 1ª PARTE DEFINIÇÕES
CIRCUNFERÊNCIA E CÍRCULO 1ª PARTE DEFINIÇÕES CÍRCULO E CIRCUNFERÊNCIA Circunferência: é uma linha. Exemplos: argola, roda de bicicleta... Círculo: é uma superfície. Exemplos: moeda, mesa redonda... CIRCUNFERÊNCIA
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTMÁTI - o ciclo 014-1 a hamada Proposta de resolução aderno 1 1. omo as grandezas x e y são inversamente proporcionais, sabemos que x y é um valor constante. ntão temos que 15 0 = 1 a 00
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
30's Volume 9 Matemática
30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões
a) 64. b) 32. c) 16. d) 8. e) 4.
GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)
Geometria Básica. Bruno Holanda. 12 de novembro de 2011
eometria ásica runo Holanda 12 de novembro de 2011 Resumo ste trabalho representa um conjunto de notas de aulas de um curso inicial em eometria uclidiana Plana para alunos do ensino fundamental. principal
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
Matemática B Semi-Extensivo V. 3
GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o
Geometria. Ana Luísa Correia e João Araújo
Geometria na Luísa orreia e João raújo Lisboa Novembro de 2010 1 1. Triângulos hama-se triângulo a um polígono determinado por três rectas que se cortam duas a duas en três pontos (que não se encontram
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo
Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental
Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
Axiomas e Proposições
Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.
MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS
MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre
MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos
MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se
1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta
1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento
Áreas IME (A) (B) (C) (D) 104 (E) e 2
Áreas IME 1. (IME 010) Seja ABC um triângulo de lados AB, BC e AC iguais a 6, 8, e 18, respectivamente. Considere o círculo de centro O isncrito nesse triângulo. A distância AO vale: 104 (A) 6 104 (B)
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago
Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual
Área das figuras planas
AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:
Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional
RETAS E CIRCUNFERÊNCIAS
RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169
MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas.
31 4 LUGARES GEOMÉTRICOS Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas. Definição: Um conjunto de pontos do plano
GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.
1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF
PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.
PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:
TC E MTEMÁTIC 7 a SÉRIE OLÍMPIC ENSINO FUNMENTL CLICK PROFESSOR Professor: Júnior LUNO(): Nº TURM: TURNO: T: / / COLÉGIO: 1. Faça o que se pede: I. Uma tira de papel retangular é dobrada ao longo da linha
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO
I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,
Colégio Santa Dorotéia
olégio Santa Dorotéia Área de Matemática Disciplina: Matemática no: 9º Ensino Fundamental Professores: Elias e Elvira Matemática tividades para Estudos utônomos Data: / 1 / 01 ORIENTÇÕES PR REUPERÇÃO FINL
APOSTILA DE Geometria Plana MATEMÁTICA
1 RESUO E TETI https://uehelenacarvalhowordpresscom/ PROF RNILO LOPES POSTIL E GEOETRI - RESUO PROF RNILO LOPES POSTIL E Geometria Plana TEÁTI Visite nosso site https://uehelenacarvalhowordpresscom/ Nele
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
Pontos notáveis de um triângulo
Pontos notáveis de um triângulo Sadao Massago Maio de 2010 Sumário 1 onceitos preliminares................................. 1 2 Incentro......................................... 2 3 ircuncentro.......................................
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
Triângulos DEFINIÇÃO ELEMENTOS
Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas
Geometria I Aula 13.1
Geometria I ula 13.1 urso Turno isciplina arga Horária Licenciatura lena em Noturno Geometria I 90h Matemática ula eríodo ata lanejamento 13.1. 0 15/1/006 6ª. feira ndréa Tempo Estratégia escrição (rte)
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial
Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Paralelismo M13 - Unidade 3 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Nomes tradicionais reta t corta as retas r e s. Dizemos que a reta t é uma
Quadro de conteúdos MATEMÁTICA
Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de
Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas
Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas
POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE
PTÊNI PNT, IX RIL, NTR RIL PLIÇÕS Yuri Gomes Lima, Fortaleza - Nível INTRUÇÃ Muitas vezes na Geometria Plana nos deparamos com problemas em que não temos muitas informações a respeito de ângulos e comprimentos,
Resoluções das atividades
Resoluções das atividades Semelhança de triângulos a mesma forma, e duas figuras geométricas são consideradas semelhantes quando têm a mesma forma, podendo ter tamanhos diferentes. bertura de capítulo
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior
Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto
AULAS 10 A 12. Triângulos: Existência, Congruência e Semelhança.
009 www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática N Í V L ULS 0 Triângulos: xistência, ongruência e Semelhança onceitos Relacionados roposição XISTÊNI UM TRIÂNGULO (SIGUL TRINGULR) Sejam
O Quadrilátero de Saccheri
O Quadrilátero de Saccheri 1 efinição (Quadrilátero de Saccheri) Na figura abaixo se tem um quadrilátero com ângulos retos em e, os segmentos e denominados hastes são congruentes isto é, e os segmentos
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.
aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se
Matemática Régis Cortes GEOMETRIA PLANA
GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d
Ortocentro, Reta de Euler e a Circunferência dos 9 pontos
Prof. ícero Thiago - cicerothmg@gmail.com rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5
ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes