Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Tamanho: px
Começar a partir da página:

Download "Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental"

Transcrição

1 Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal da OMEP

2 1 O Teorema da bissetriz interna Nessa segunda parte da aula sobre o Teorema de Tales, aplicamo-lo ao estudo dos teoremas da bissetriz interna e eterna relativas a um ângulo de um triângulo dado. omeçamos analisando o Teorema da issetriz Interna, que trata da razão em que o pé da bissetriz interna de um dos ângulos de um triângulo divide o lado correspondente. Observe que divisão do lado oposto a um vértice de um triângulo ao meio é realizada pela mediana, e não pela bissetriz interna. O resultado fundamental é o que segue. Teorema 1 (da bissetriz interna). Seja um triângulo qualquer. Se a bissetriz interna do ângulo  intersecta o lado no ponto, então divide o lado em dois segmentos proporcionais aos outros dois lados, isto é, =. Figura 1: o teorema da bissetriz interna. Observação 2. Veja que o lado esquerdo da igualdade acima representa a razão em que o ponto divide o lado. Prova. Sendo a bissetriz interna de Â, tracemos uma paralela pelo vértice à bissetriz, a qual encontrará o prolongamento de em um ponto P. Portal da OMEP P Pelo aioma das paralelas, o triângulo P é isósceles (um de seus ângulos é alterno interno com uma das metades do ângulo  e o outro é correspondente à outra metade). Portanto,seguedoTeoremadeTalesque = P, ou, ainda (uma vez que P = ), =. Eemplo. Sejam P e Q pontos sobre os lados e, respectivamente, de um quadrado de lado, tais que P = 2 e Q = 1. Se a diagonal do quadrado intersecta o lado PQ no ponto M, calcule a razão em que M divide o segmento P Q. Solução. Observe a figura abaio, representativa da situação em questão. 2 P M Q É bem sabido que a diagonal divide o ângulo  aomeio. ssim, M ébissetriz interna do triângulopq. aí, pelo teorema da bissetriz interna, tem-se PM MQ = P Q = 2 1 = 2. Eemplo 4. Os lados de um triângulo medem 7cm, 14cm e 15cm. alcule a medida do maior segmento que a bissetriz interna do ângulo oposto ao maior lado determina sobre o mesmo. Solução. Se é um triângulo tal que = 7, = 15 e = 14 (veja a figura a seguir), queremos calcular o comprimento do maior segmento determinado, sobre o lado, pela bissetriz interna partindo de. 1 matematica@obmep.org.br

3 Tal segmento será o adjacente a (pois a proporcionalidade do teorema da bissetriz interna garante que o maior segmento determinado fica ao lado do maior lado). Sendo a medida desse segmento, o outro segmento sobre medirá 15. gora, pelo teorema da bissetriz interna, 15 = = = 210 = 10. Eemplo 5. No triângulo, em que = 12, = 18 e = 25, um semicírculo é desenhado com diâmetro sobre o lado, de tal forma que ele seja tangente aos lados e. Se O é o centro do semicírculo, encontre a medida de O. Solução. figura a seguir representa a situação descrita no enunciado. 12 E P θ θ O Q F Sejam P e Q os pontos de tangência desse semicírculo com os lados e, respectivamente. Pelo teorema do bico, temos P = Q. lém disso, O é lado comum aos triângulos PO e QO, que ainda têm lados PO e QO com comprimentos iguais, pois são raios do semicírculo. Isso garante a congruência entre os triângulos P O e QO, pelo caso de congruência LLL. Portanto, P O = Q O, ou seja, O é bissetriz interna de. gora, sendo a medida de O, temos que 25 é a medida de O. Portanto, pelo teorema da bissetriz interna, Portal da OMEP 12 = = = 00 = 10. Para o próimo eemplo, recorde que o incentro de um triângulo é o ponto de encontro das três bissetrizes internas domesmo, equetalpontoequidistadosladosdotriângulo; em particular, ele é o centro da circunferência inscrita no triângulo. Eemplo 6. Seja um triângulo com lados =, = 4 e = 5. Seja também o ponto sobre o lado tal que é a bissetriz interna do ângulo Â. Se I é o incentro de, calcule: (a) a medida do segmento ; (b) a razão em que o ponto I divide a bissetriz interna I. Solução. figura a seguir servirá à análise de ambos os itens pedidos. β β I (a) plicando o teorema da bissetriz interna ao triângulo, temos = = 4. plicando as propriedades de proporções à igualdade acima, podemos repetir os numeradores e, em seguida, somá-los aos denominadores. ssim fazendo, obtemos 5 + = +4 5 = 15 = 7 7. (b) gora, a ideia é perceber que o segmento I também é bissetriz interna do triângulo. ssim, pelo teorema da bissetriz interna, obtemos E I I = I I = 15 I I = 7 5. Eemplo 7. bissetriz interna de um triângulo divide o lado oposto em dois segmentos e, de medidas respectivamente iguais a 24cm e 0cm. Sabendo que e têm comprimentos respectivamente iguais a e, calcule o valor de e as medidas de e. Solução. Uma vez mais pelo teorema da bissetriz interna, temos = 24 0 = 4 12 = 10+0 = matematica@obmep.org.br

4 Portanto, e, analogamente, = 45. = 2+6 = = 6 Eemplo 8. alcule a medida do lado do triângulo sabendo que: (i) a bissetriz interna de  determina o segmento de medida 10cm; (ii) o lado mede 0cm; (iii) o perímetro de é 75cm. Solução. Representamos a situação descrita na figura abaio: c 10 β plicando o teorema da bissetriz interna, obtemos 0 c 10 = 0 c = 00. Por outro lado, a medida do perímetro de fornece a igualdade c = 75, de sorte que c+ = 5. Resolvendo o sistema de equações { c+ = 5, c = 00 concluímosquecemedem, algumaordem, 15e20. Logo, mede 15cm ou 20cm (observe que ambas essas medidas verificam a desigualdade triangular, de modo que realmente há duas soluções possíveis). Portal da OMEP Terminemos esta seção apresentando um eemplo um tanto mais elaborado. Eemplo 9. Prove que não eiste triângulo no qual o círculo inscrito divide a bissetriz interna de um ângulo em três segmentos de mesmo comprimento. Prova. onsidere a figura a seguir como representativa da situação do problema. Por contradição, suponha que a bissetriz interna fique dividida, pelo círculo inscrito, em três segmentos de comprimentos iguais. Então, sendo I o incentro de e r o raiodo círculoinscrito, é imediato que I = I = r. c r I r gora, aplicando o teorema da bissetriz interna ao triângulo (com a bissetriz ), vimos no Eemplo 6 que I I =. Se juntarmos esse resultado com o teorema da bissetriz interna aplicado ao triângulo (com bissetriz ) e utilizarmos propriedades de proporções, obtemos I I = = + = + = b+c a. Mas, como I = I = r, seguiria daí que b+c = I a I = r r = 1, o que contradiz a desigualdade triangular. Segue o resultado. 2 O teorema da bissetriz eterna Finalmente, vamos ao Teorema da issetriz Eterna, que trata da razão em que o pé da bissetriz eterna de um dos ângulos de um triângulo divide o prolongamento do lado correspondente. Para o que segue, suponha dado um triângulo tal que. ssumindo, sem perda de generalidade, que >, não é difícil concluir que a bissetriz do ângulo eterno de no vértice (conhecida como a bissetriz eterna de relativa a ) intersecta a reta em um ponto E tal que E (cf. Figura 2). Nesse caso, dizemos que E é o pé da bissetriz eterna relativa ao vértice (ou ao lado ). oravante, assumiremos a validade de tais observações sem maiores comentários. O resultado fundamental é o que segue. Teorema 10 (da bissetriz eterna). Seja um triângulo tal que >. Se E é o pé da bissetriz eterna relativa ao vértice, então E divide o lado (eternamente) em dois segmentos proporcionais aos outros dois lados. Em símbolos, E E =. a b matematica@obmep.org.br

5 Figura 2: o teorema da bissetriz eterna. Prova. Pelo ponto, tracemos a reta F paralela à reta, com F sobre o segmento E (cf. Figura ). δ Figura : prova do teorema da bissetriz eterna. Sejam  = 2 e ÂE = δ. omoe ébissetriz eterna relativa ao vértice, temos δ = 1 2 (180 2) = 90. Poroutro lado, como F e F sãoângulosalternos internos, temos F = 180 ÂF = 180 (2+δ) = 2(90 ) δ = 2δ δ = δ. ssim, F é um triângulo isósceles, com = F. plicando o Teorema de Tales às paralelas e F, com transversais E e E, obtemos E E = F. Mas, como = F, isso é o mesmo que E Observações 11. δ E E E =. 1. tente como é fácil lembrar o teorema da bissetriz eterna a partir do teorema da bissetriz interna: basta substituir o ponto pelo ponto E nas equações que são os resultados. Portal da OMEP 2. s bissetrizes interna e eterna são sempre perpendiculares entre si. Verifique essa afirmação! Eemplo 12. Sejam um triângulo retângulo em e e E as bissetrizes interna e eterna, respectivamente, relativas ao vértice. Se = e = 4, então E mede: (a) 17. (b) 18. (c) (d) Solução. Pelo teorema da bissetriz interna, temos = 4 + = +4 5 = 15 = 7 7. Pelo teorema da bissetriz eterna, temos Portanto, E E = 4 E E E = 4 E 5 = E = E = E + = = 7 7. Eemplo 1. Sejam e E respectivamente os pés das bissetrizes interna e eterna do ângulo  do triângulo. Sabendo que = 4, = 2 e =, calcule o comprimento do raio do círculo circunscrito ao triângulo E. Solução. Pelo teorema da bissetriz interna (esboce uma figura para acompanhar os argumentos), temos = 4 2 = 2. omo =, temos = 2 e = 1. Pelo teorema da bissetriz eterna, temos E E = 4 E E = 2 = E 2 = 1 E =. E omo e E são perpendiculares, concluímos que o segmentoe, que mede 4, éodiâmetrodo círculocircunscrito ao triângulo E. ssim, o comprimento do raio de tal círculo mede 2. Eemplo 14. Em um triângulo, as bissetrizes interna e eterna traçadas a partir do vértice encontram o lado oposto (ou seu prolongamento) nos pontos M e N, respectivamente. Se = 21, = 16 e N = 21, calcule os comprimentos dos segmentos e M. 4 matematica@obmep.org.br

6 Solução. Primeiramente, observe que as igualdades N = 21 e = 21 garantem que é o ponto médio do segmento N (veja a figura abaio). N M 21 gora, pelo teorema da bissetriz eterna, temos N N = = 16 = 2. Por outro lado, pelo teorema da bissetriz interna, temos M M = 16 2 = 1 2 M M +M = M 21 = 1 M = 7. icas para o Professor O conteúdo dessa aula pode ser visto em dois encontros de 50 minutos cada. o longo dos eemplos, você deve sempre enfatizar o uso de uma das versões do teorema da bissetriz como ferramenta principal, assim como pode utilizar eemplos mais elaborados(veja as referências). Os teoremas das bissetrizes interna e eterna têm aplicações interessantes à Geometria, sendo um eemplo notável aquele dado pelo círculo de polônio. Para o leitor interessado, sugerimos a referência [1]. Sugestões de Leitura omplementar 1.. aminha. Tópicos de Matemática Elementar, Volume 2: Geometria Euclidiana Plana. Rio de Janeiro, Editora S..M., Portal da OMEP 2. O. olce e J. N. Pompeu. Os Fundamentos da Matemática Elementar, Volume 9: Geometria Plana. São Paulo, tual Editora, matematica@obmep.org.br

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto 1 O Teorema

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 2 esigualdade Triangular Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal da OMEP 1 desigualdade

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 2.

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 2. Material Teórico - Módulo lementos ásicos de Geometria Plana - Parte 2 ongruência de Triângulos e plicações - Parte 2 Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros Inscritíveis e Circunscritíveis

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros Inscritíveis e Circunscritíveis Material Teórico - Módulo lementos básicos de geometria plana - Parte 3 Quadriláteros Inscritíveis e ircunscritíveis itavo ano do nsino Fundamental utor: Prof. Jocelino Sato evisor: Prof. ntonio aminha

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 1 Triângulos Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal da OMEP 1 Intrudução ados três pontos

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental aterial Teórico - ódulo Elementos ásicos de Geometria Plana - Parte 3 Paralelogramos Especiais Oitavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha. Neto Portal da OEP

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Círculos: elementos, arcos e ângulos inscritos

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Círculos: elementos, arcos e ângulos inscritos Material eórico - Módulo Elementos ásicos de Geometria lana - arte 3 írculos: elementos, arcos e ângulos inscritos itavo ano do Ensino Fundamental utor: rof. Jocelino Sato Revisor: rof. ntonio aminha M.

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhança entre triângulos. Nono ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhança entre triângulos. Nono ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Semelhança entre triângulos Nono ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha M. Neto 1 Figuras

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros. Oitavo ano do Ensino Fundamental Material Teórico - Módulo Elementos básicos de geometria plana - arte 3 Quadriláteros Oitavo ano do Ensino Fundamental utor: rof. Jocelino Sato Revisor: rof. ntonio aminha M. Neto ortal da OME 1 Quadriláteros

Leia mais

Aula 9 Triângulos Semelhantes

Aula 9 Triângulos Semelhantes MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos

Leia mais

Lugares geométricos básicos I

Lugares geométricos básicos I Lugares geométricos básicos I M13 - Unidade 5 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Definição Lugar Geométrico da propriedade P é o conjunto

Leia mais

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos Prof. ícero Thiago - cicerothmg@gmail.com rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Material Teórico - Módulo Áreas de Figuras lanas Áreas de Figuras lanas: Exercícios da OME Nono no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha M. Neto de dezembro de 018 1 roblemas da OME

Leia mais

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual

Leia mais

Aula 10 Semelhança de triângulos

Aula 10 Semelhança de triângulos MÓULO 1 - UL 10 ula 10 Semelhança de triângulos Objetivos Introduzir a noção de semelhança de triângulos eterminar as condições mínimas que permitem dizer que dois triângulos são semelhantes. Introdução

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana - Parte 1 Ângulos - Parte 1 itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha Portal da MEP 1 Ângulos Uma região R do

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. A Lei dos Cossenos Revisitada. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. A Lei dos Cossenos Revisitada. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Lei dos ossenos Revisitada Primeiro no do Ensino Médio utor: Prof. Farício Siqueira enevides Revisor: Prof. ntonio aminha M. Neto

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

Circunferências ex - inscritas

Circunferências ex - inscritas Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 18 ircunferências ex - inscritas Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. ntão, adistância de P a XO é igual

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana - Parte 1 Ângulos - Parte 1 itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha 1 Ângulos Uma região R do plano é convexa

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 1.

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 1. aterial Teórico - ódulo Elementos ásicos de Geometria lana - arte 2 ongruência de Triângulos e plicações - arte 1 Oitavo no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha. Neto ortal da OE

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Mais Pontos Notáveis de um Triângulo. Oitavo ano do Ensino Fundamental

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Mais Pontos Notáveis de um Triângulo. Oitavo ano do Ensino Fundamental Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3 Mais Pontos Notáveis de um Triângulo itavo ano do Ensino Fundamental utor: Prof. Jocelino Sato Revisor: Prof. ntonio aminha M. Neto

Leia mais

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,

Leia mais

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Paralelismo M13 - Unidade 3 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Nomes tradicionais reta t corta as retas r e s. Dizemos que a reta t é uma

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Eercícios Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios Resolvidos Neste último material, resolvemos

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

Matemática D Semi-Extensivo V. 2

Matemática D Semi-Extensivo V. 2 Matemática D Semi-Etensivo V. Eercícios 0) 0) D 60 60 P y z y y z D 6 P é semelante a DP. 6 z ssim: D + z tg 60º z 6 0) P E 0) D y 0 y + y 00 y 9y + y 00 6 9y + 6y 00 6 y 00 6 y 6 y 8 6 Perímetro: 6 +

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Áreas de Poĺıgonos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Áreas de Poĺıgonos. Terceiro Ano - Médio Material Teórico - Módulo de Geometria naĺıtica Áreas de Poĺıgonos Terceiro no - Médio utor: Prof ngelo Papa Neto Revisor: Prof ntonio Caminha M Neto 1 Área de um triângulo Na aula Equação da Reta Módulo

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Material Teórico - Módulo Cônicas. Elipses. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Cônicas. Elipses. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Elipses Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução Conforme mencionamos na primeira aula

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

GABARITO. Matemática D 11) B. Como β = C C = 3β.

GABARITO. Matemática D 11) B. Como β = C C = 3β. GRITO Matemática Semietensivo V. ercícios 0) Logo, = 0 + 0 + 0 = 70 Observe a figura: 9 6 0 X 0 gora considerando os dois relógios: 0) O relógio é uma circunferência, o ponteiro dos minutos leva ora para

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. Primeiro Ano do Ensino Médio Material Teórico - Redução ao rimeiro uadrante e Funções Trigonométricas Redução ao rimeiro uadrante rimeiro Ano do Ensino Médio Autor: rof. Fabrício Siqueira enevides Revisor: rof. Antonio Caminha M.

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P5 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 801 Questão 1 Qual dos

Leia mais

Congruência de triângulos II

Congruência de triângulos II ongruência de triângulos II M13 - Unidade 2 Resumo elaborado por Eduardo Wagner baseado no texto:. aminha M. Neto. Geometria. oleção PROFMT Triângulo isósceles Os ângulos da base de um triângulo isósceles

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um

Leia mais

Ângulos, Triângulos e Quadriláteros. Prof Carlos

Ângulos, Triângulos e Quadriláteros. Prof Carlos Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

GAD = 180º 75º 60º = 45º

GAD = 180º 75º 60º = 45º 009 www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVL 3 Resoluções ULS 4 a 6 m lasse. omo e são triângulos eqüiláteros, cada um de seus ângulos internos mede 60º. No triângulo G temos

Leia mais

Aula 12 Introdução ao conceito de área

Aula 12 Introdução ao conceito de área MÓULO 1 - UL 1 ula 1 Introdução ao conceito de área Objetivos Introduzir o conceito de área de uma figura plana presentar as fórmulas para o cálculo da área de algumas figuras planas Introdução entre as

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo

Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo Plano de ulas Matemática Módulo 9 Trigonometria no triângulo retângulo Resolução dos eercícios propostos Retomada dos conceitos PÍTULO 1 1 Os catetos medem 1 e 16 u.c. e o ilustrar esta situação, nota-se

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE PTÊNI PNT, IX RIL, NTR RIL PLIÇÕS Yuri Gomes Lima, Fortaleza - Nível INTRUÇÃ Muitas vezes na Geometria Plana nos deparamos com problemas em que não temos muitas informações a respeito de ângulos e comprimentos,

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

Plano de Recuperação Semestral EF2

Plano de Recuperação Semestral EF2 Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)

Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D) Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 14 Teorema de eva e Teorema de Menelaus. Teorema 1. (eva) Sejam D, E e F pontos sobre os lados, e, respectivamente, do

Leia mais

MATEMÁTICA. Teorema de Tales e Semelhança de Triângulos. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Teorema de Tales e Semelhança de Triângulos. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Teorema de Tales e Semelhança de Triângulos Professor : Dêner Rocha Monster Concursos 1 Teorema de Tales O Teorema de Tales foi estabelecido por Tales de Mileto, consiste em uma interseção entre

Leia mais

PONTOS NOTAVEIS NO TRIANGULO

PONTOS NOTAVEIS NO TRIANGULO 1. (Udesc) Observe a figura. Sabendo que os segmentos BC e DE são paralelos, que o ponto I é incentro do triângulo ABC e que o ângulo BIC é igual a 105, então o segmento AC mede: a) 5 b) 10 c) 0 d) 10

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

EMENTA ESCOLAR III Trimestre Ano 2014

EMENTA ESCOLAR III Trimestre Ano 2014 EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNMENTL tividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Geometria Espacial - Volumes e Áreas de Cilindros, Cones e Esferas Esfera - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Geometria Plana 03 Prof. Valdir

Geometria Plana 03 Prof. Valdir eometria lana 03 rof. Valdir TS TÁVEIS E U TRIÂUL 1. RIETR É o ponto de equilíbrio ou centro de gravidade do triângulo. baricentro coincide com o ponto de intersecção das medianas do triângulo (na figura

Leia mais

1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro

1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro Lista de Exercícios Geometria Plana - loco I - Pontos notáveis do triângulo 1. Considere os pontos notáveis de um triângulo, sendo: aricentro C Circuncentro I Incentro rtocentro Preencha os parênteses:

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Questões da 1ª avaliação de MA 13 Geometria, 2016

Questões da 1ª avaliação de MA 13 Geometria, 2016 uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof. olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico

Leia mais

Teste de MATEMÁTICA - 7º D 09 fev 2015

Teste de MATEMÁTICA - 7º D 09 fev 2015 Teste de MTEMÁTI - 7º D 09 fev 2015 Proposta de resolução lice orreia (alicejcorreia@gmail.com) 1. Resposta: Opção D 5 = 1 5 = 5 1 = 15 2. Para descobrir o valor de a, calculamos a raiz quadrada de 100000:

Leia mais

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 2 Quadriláteros Inscritíveis II Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

III.2 Se os segmentos A B e A B são congruentes ao segmento AB então os segmentos A B e A B também são congruentes.

III.2 Se os segmentos A B e A B são congruentes ao segmento AB então os segmentos A B e A B também são congruentes. 1 Grupo III xiomas de ongruência onsidere o conjunto SEG de todos segmentos e o conjunto NG de todos os ângulos. Vamos admitir a existência de duas relações binárias, uma em SEG (e portanto, entre segmentos)

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 7 entregar no dia 4 0 013 1. O cubo da figura tem as faces paralelas aos planos coordenados

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a 13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a

Leia mais

Resoluções NÍVEL 3. Classe

Resoluções NÍVEL 3. Classe 00 www.cursoanglo.com.br Treinamento para Olimpíadas de atemática NÍVL 3 Resoluções ULS 4 6 m lasse. as paralelas traçadas aos bastões pelos pontos,,, e (ver figura) e da propriedade dos ângulos alternos

Leia mais

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados: Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes

Leia mais

Material Teórico - Elementos Básicos de Geometria Plana - Parte 3. Oitavo Ano

Material Teórico - Elementos Básicos de Geometria Plana - Parte 3. Oitavo Ano Material Teórico - Elementos ásicos de Geometria Plana - Parte 3 Número π e o Comprimento do Círculo itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio Caminha M. Neto Portal da MEP 1 número

Leia mais

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 3. Quádruplas harmônicas e circunferência de Apolônio. Prof.

Polos Olímpicos de Treinamento. Aula 15. Curso de Geometria - Nível 3. Quádruplas harmônicas e circunferência de Apolônio. Prof. olos Olímpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 15 Quádruplas harmônicas e circunferência de polônio Teorema 1. (issetriz interna) bissetriz interna L do ângulo de um triângulo

Leia mais

O Quadrilátero de Saccheri

O Quadrilátero de Saccheri O Quadrilátero de Saccheri 1 efinição (Quadrilátero de Saccheri) Na figura abaixo se tem um quadrilátero com ângulos retos em e, os segmentos e denominados hastes são congruentes isto é, e os segmentos

Leia mais