Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental"

Transcrição

1 postila de Geometria nalítica º período de gronomia e Engenharia mbiental luno(a): data: / /0 GEOMETRII NLÍÍTIIC.. O PLNO CRTESIINO Y ( eio das ORDENDS ) issetriz dos quadrantes pares issetriz dos quadrantes ímpares º QUDRNTE ( -, + ) º QUDRNTE ( +, + ) ( eio das SCISSS ) 3º QUDRNTE ( -, - ) 4º QUDRNTE ( +, - ) cada ponto P do plano cartesiano corresponde um par ordenado (, ) de números reais e escrevemos P(, ) para indicar este ponto. Dois eios orientados ( e ) são dispostos ortogonalmente, dando a origem à divisão do plano em quatro partes, cada uma denominada quadrante. Os quatro quadrantes são numerados no sentido anti-horário, e os eios e a intersecção entre eles são denominados, respectivamente, eio das abscissas ( ), eio das ordenadas ( ) e origem ( 0 ) do sistema de coordenadas cartesianas. reta que divide ao meio os quadrantes ímpares é chamada de bissetriz dos quadrantes ímpares e a que divide os quadrantes pares é a bissetriz dos quadrantes pares. Observações: I. Os pontos pertencentes ao eio 0 possuem ordenadas nulas. P Є 0 P = (, 0 )

2 II. Os pontos pertencentes ao eio 0 possuem abscissas nulas. P Є 0 P = ( 0, ) III. Todos os pontos da bissetriz dos quadrantes ímpares possuem abscissas iguais à ordenada e vice-versa. Є bi = ( a, a ) IV. Todos os pontos da bissetriz dos quadrantes pares possuem abscissas e ordenadas opostas e vice-versa. Є bp = ( b, -b ) 0. Situe no mesmo sistema de eios cartesianos os pontos (3, 4), (-, 3), C(, 0), D(0, -3) 3 E(, - 5), F(-, ) E G(, -). 0. Determine o valor de k, sabendo que o ponto ( k-, - k+ ) pertence à bissetriz dos quadrantes ímpares.

3 03. O ponto P( 3k+6, -k+ ) pertence à bissetriz dos quadrantes pares, pergunta-se: a) Qual a ordenada do ponto P? b) Em que quadrante encontra-se o ponto P? c) Qual a distância do ponto P à origem? 0.. DIISTÂNCII ENTRE DOIIS PONTOS b d b - a a b a a b Dados dois pontos distintos do plano cartesiano, chama-se distância entre eles a medida do segmento de reta que tem os dois pontos por etremidade. Sendo (a, a) e (b, b), aplicando Pitágoras temos: d ou d 04. Sejam os ponto (-3, ) e (4, 3). distância entre eles é a) 0 b) 5 c) 53 d) e) distância entre (, 3) e (5, 6) é: a) 5 b) 0 c) 5 d) 0 e) 5 3

4 06. (UFRGS) distância entre os pontos (-, ) e (6, 7) é 0. O valor de é: a) - b) 0 c) ou 3 d) - ou 0 e) ou 07. Qual o ponto do eio das ordenadas que eqüidista dos pontos (, -) e (6, 3)? a) (0,5) b) (5,0) c) (,3) d) (6,) e) (-,0) 08. O comprimento da circunferência de diâmetro CD, sendo C(, ) e D(0, 7) é: a) 5 b) 0 c) 0 d) 7 e) PONTO MÉDIIO Sendo (a, a), (b, b) e M( M, M ) o seu ponto médio, temos: M M M, M X M é o ponto que divide o segmento ao meio. 09. Sendo (, 3) e (7, 3) as etremidades do segmento, seu ponto médio é: a) (4, 8) b) (, 4) 4

5 c) (8, 6) d) (, ) e) (3, 4) 0. Sendo (-5, ) uma das etremidades do segmento de reta e M(-, 4) o seu ponto médio, o ponto vale: a) (, 6) b) (, ) c) (-5, 4) d) (-, ) e) (0, ) 04.. ÁRE DE UM TRIIÂNGULO Consideramos um triângulo de vértices (, ), (, ) e C(C, C) a sua área é dada por: (, ) (, ) C(C, C) = C C ou = C C. Calcular a área do triângulo de vértices (,3), (4,) e C(6,5). a) 6 b) 4 c) 0 d) e) 8. Calcular a área do triângulo de vértices (,), (7,8) e C(,0). a) 7 b) 54 c) 3 d) 9 e) 43 5

6 3. Calcular a área do quadrilátero de vértices (,3), (5,), C(6,5) e D(3,7). a) 7 b) 34 c) 0 d) 6 e) CONDIIÇÃO DE LIINHMENTO DE TRÊS PONTOS Sendo (, ), (, ) e C(C, C) três pontos distintos dois a dois, são colineares ou estão alinhados, se e somente se: C(C, C) (, ) (, ) C C 0 C ou 0 C 4. O valor de para que os pontos (,0), (3,) e C(-4,) sejam colineares é: a) 0 b) 0 c) 3 d) e) Os pontos (,3), (,7) e (4,k) do plano cartesiano estão alinhados se, e somente se: a) k = b) k = c) k = 3 d) k = 4 e) k = EQUÇÃO REDUZIID D RET É toda equação do tipo = a + b, onde a é chamado de coeficiente angular (ou declividade) e b é chamado de coeficiente linear. Eemplos: 6

7 a 3 b 3 a 0 3 b 3 a 5 5 b 5 a b COEFIICIIENTE NGULR DE UM RET (). O coeficiente angular de uma reta é um número real a que representa a sua inclinação Por definição, temos que: a = tg São quatro as possibilidades para o coeficiente angular: Reta inclinada para a direita Reta inclinada para esquerda é agudo a > 0 é agudo a > 0 Reta horizontal Reta vertical é nulo a = 0 é reto a não eiste 7

8 Para determinarmos o valor do coeficiente angular (a) faremos: a = med. med. ou a = ou a = Observação: b é a ordenada do ponto onde a reta intersecciona o eio. 6. Os coeficientes angular e linear da reta = 0 são respectivamente: a) /3 e 4 b) 3/ e c) -/3 e - d) /3 e -4 e) -3/ e 4 7. Os pontos (, 0) e (3, ), pertencem a reta de equação = 0. distância entre eles é: a) 0 b) c) 3 0 d) 4 0 e) 0 8. reta da figura abaio tem como coeficiente angular e linear, respectivamente: a) ½ e - b) e -/ c) -/ e - 4 d) - e -/ e) ½ e -/ - 9. Determine a equação reduzida da reta: a) = + 3 b) = c) = +6 3 d) = 3 e) =

9 0. Determine a equação geral da reta a) - 4 = 0 b) + = 0 c) 4 4 = 0 d) + = 0 e) + 4 = Determine a equação da reta que passa pelos pontos (-3, ) e (5, -4) a) = 0 b) = 0 c) = 0 d) + 4 = 0 e) = PONTO DE IINTERSECÇÃO ENTRE DUS RETS Para determinarmos o ponto de intersecção entre duas retas basta resolvermos o sistema formado pelas suas equações.. Obtenha o ponto de intersecção entre as retas r: = 0 e s: = - 3. a) (-3, 3) b) (, -) c) (5, ) d) (, ) e) (3, 4) 3. Obtenha o ponto de intersecção entre as retas r: = - 6 e s: = 3 +. a) (-8, -) b) (, ) c) (4, -0) d) (5, 6) e) (-4, ) 4. s retas de equação 3 = 0 e = k interceptam-se no ponto (k+, k-) determine o valor de k e o ponto de intersecção entre as duas retas, respectivamente. a) e (, 0) b) e (, 0) c) 5 e (, 0) d) e (0, ) e) e (, ) 9

10 09.. EQUÇÃO DO FEIIXE DE RETS s retas não-verticais que passam por P(0, 0) são dadas pela equação: a Obtenha a equação da reta que por P e tem declividade a. a) P(, 3); a = b) P(-, ); a = - c) P(4, 0); a = 6. Escreva a equação fundamental da reta que passa pelo ponto P e tem inclinação. a) P(, 8) e = 45º b) P(-4, 6) e = 30º c) P(3, -) e = 0º 0.. POSIIÇÃO RELTIIV ENTRE RETS RETS PRLELS 0

11 Dadas duas retas r e s não-verticais dadas pelas equações: (r) = a + b (s) = a + b Para essas retas, temos as seguintes possibilidades: a b a b PRLELS DISTINTS a b a b PRLELS COINCIDENTES 7. Determine o valor de m para que as retas = 0 e m = 0 sejam paralelas. a) b) c) - 3 d) - 6 e) 5 8. Escreva a equação da reta que passa pelo ponto P(3, -3) e é paralela à reta 3-6 = 0. a) + 9 = 0 b) 3 5 = 0 c) = 0 d) + 9 = 0 e) = 0 9. Determine a equação da reta que passa pelo ponto (3, ) e é paralela à reta 4 + = 0.

12 a) = 3 b) = 4 0 c) = d) = + 5 e) = RETS PERPENDIICULRES Dadas duas retas r e s não-verticais dadas pelas equações: (r) = a + b (s) = a + b Para essas retas, temos a seguinte possibilidade: a a PERPENDICULRES 30. Determine o valor de k para que as retas = 0 e k + 3 = 0 sejam perpendiculares. a) b) 6 c) -0 d) 5 e) 5 3. Escreva a equação da reta que passa pelo ponto P(, 5) e é perpendicular à reta de equação = 0. a) = - b) = + 4 c) = 3 + d) = e) = - 3. Obtenha a equação da mediatriz do segmento de reta, sendo (3, ) e (7, 4).

13 a) = b) = 3 c) = + d) = 3 + e) = 4.. DIISTÂNCII ENTRE PONTO E RET distância entre o ponto e a reta (r) + + C = 0 é dada pela seguinte epressão: P(P, P) d d Pr 0 0 C 33. Calcule a distância do ponto P(, 6) à reta 3 4 = 0. a) 3 d) 4 b) 0 e) c) 8.. CIIRCUNFERÊNCII EQUÇÃO REDUZIID Consideremos uma circunferência de centro C(c, c) e raio R, teremos: P(, ) C R R c c C 3

14 34. Determine a equação reduzida da circunferência de centro C e raio R. a) C(3,5) R b) C(0,0) R 7 C(0,4) c) R Escreva a equação reduzida da circunferência de raio e concêntrica com a circunferência ( ) + ( + 3) = 64. Qual é a área da coroa circular determinada por essas duas circunferências? 36. Determine a equação da circunferência de centro em (3, 5) e raio igual a 4. a) = 0 b) = 0 c) = 0 d) = 0 e) = 0 EQUÇÃO GERL + + D + E + F = 0 Condições para ser circunferência:. = O ( coef. de = coef. ). C = 0 ( não pode aparecer ) 3. R > 0 ( O raio de ver ser um número real ) Coordenadas do centro: coef. coef. C ; Raio: R F c c 4

15 37. Determine a equação geral da circunferência de centro C(3, 5) e raio R igual 4. a) = 0 b) = 0 c) = 0 d) = 0 e) = Determine o centro e o raio da circunferência , respectivamente: a) (-,5) e 7 b) (5,) e 5 c) (,) e d) (3,4) e e) (5,-) e Calcule a área de um quadrado inscrita na circunferência a) u.a. b) 4u.a. c) 8u.a. d) 6u.a. e) 64u.a. 40. Determine o valor de k para que a equação 4 k 0 represente uma circunferência: a) k > 5 b) k < 5 c) k > 0 d) k < 5 e) k = 0 4. Escreva a equação da circunferência de centro C(3,5) e tangente a reta (r) = 0 a) = 0 b) = 0 c) = 0 d) = 0 e) = POSIIÇÕES RELTIIVS PONTO E CIIRCUNFERÊNCII Para uma circunferência de centro C(c,c) e raio R e um ponto P qualquer, compararemos o seguimento de reta PC com R. 5

16 Há três casos possíveis: º) Se dpc = R, então P pertence à circunferência. º) Se dpc > R, então P é eterno à circunferência. 3º) Se dpc < R, então P é interno à circunferência. Interno Pertence Eterno P P P dpc < R dpc = R dpc > R 4. Determine a posição do ponto P(53) em relação a circunferência ( ) ( 4) 9 a) eterno b) interno c) pertence d) centro e) n.d.a. RET E CIIRCUNFERÊNCII Se substituirmos o valor de uma das variáveis ( ou ) da reta na equação da circunferência, obteremos uma equação do º grau (na outra variável). Calculando o discriminante () da equação obtida, poderemos ter: º) Se > 0, então a reta será secante à circunferência ( pontos de interseção). º) Se = 0, então a reta será tangente à circunferência ( ponto de interseção). 3º) Se < 0, então a reta é eterna à circunferência (não eiste ponto de interseção). Secante Tangente Eterna > 0 = 0 < 0 6

17 4. Determine a posição relativa da reta + = 0 em relação ao círculo 4 0 : a) secante b) tangente c) eterna d) n.d.a. DUS CIIRCUNFERÊNCIIS Dadas duas circunferências, uma de centro C e raio R e a outra de centro C e raio R, compararemos o seguimento de reta CC e R + R. Há três possibilidades: º) Se dcc = R + R, então as circunferências são tangentes ( ponto de interseção). º) Se dcc > R + R, então as circunferências são eternas (não eiste ponto de interseção). 3º) Se dcc < R + R, então as circunferências são secantes ( pontos de interseção). Tangentes Secante Eternas dcc = R + R dcc < R + R, dcc > R + R, 43. Qual a posição relativa entre as circunferências () e () a) tangente b) secante c) eternas d) coincidentes e) n.d.a. 7

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por:

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por: . Plano Cartesiano: é formado por dois eixos perpendiculares, um horizontal (eixo das abscissas) e outro vertical (eixo das ordenadas), dividido em quatro quadrantes contados no sentido anti-horário como

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚLICO FEDERL Ministério da Educação Universidade Federal do Rio Grande Universidade berta do rasil dministração acharelado Matemática para Ciências Sociais plicadas I Rodrigo arbosa Soares Curso

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Análise Vetorial na Engenharia Elétrica

Análise Vetorial na Engenharia Elétrica nálise Vetorial na Engenharia Elétrica ula 13/03/09 1.3 - Medida algébrica de um segmento Segmento: um segmento é determinado por um par ordenado d de pontos. figura 1.8 apresenta um segmento Figura 1.8

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares Notas de Aulas - Retas e Circunferências Prof Carlos A S Soares Preliminares O Plano Cartesiano e o Ponto Você certamente está familiarizado com o plano cartesiano desde o término do seu ensino fundamental

Leia mais

F 01. Coordenadas na reta

F 01. Coordenadas na reta IME IT postila IT F 1 Coordenadas na reta Uma reta diz-se orientada quando sobre ela se escolheu um sentido de percurso, chamada positivo; o sentido inverso chama-se negativo. Numa reta orientada, diz-se

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a. APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Utilizando a Geometria analítica para fazer desenhos no GrafEq

Utilizando a Geometria analítica para fazer desenhos no GrafEq Utilizando a Geometria analítica para fazer desenhos no GrafEq O problema é traçar estes 3 objetos no GrafEq, representado pela figura abaio, par tanto vamos iniciar traçando o quadrilátero vermelho. Primeiramente

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

Propriedades. n m a. n m a. 1. Calcule: a) 2 4 d) 1 7 g) 3-2 b) 2 4 e) 0 3 h) c) ( 2) 4 f) 214 0

Propriedades. n m a. n m a. 1. Calcule: a) 2 4 d) 1 7 g) 3-2 b) 2 4 e) 0 3 h) c) ( 2) 4 f) 214 0 UNIDDE POTENCIÇÃO E RDICIÇÃO POTENCIÇÃO Nomenclatura Em n a = b, temos: n é o índice a é o radicando b é a raiz Matemática Definição Potenciação é uma multiplicação de fatores iguais. Sendo a R e a 0 e

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

COORDENADAS CARTESIANAS

COORDENADAS CARTESIANAS Aula 32 Geometria Analítica COORDENADAS CARTESIANAS Consideremos o plano determinado por dois eixos perpendiculares em O. Considere um ponto P qualquer do plano, e trace por ele as paralelas aos eixos,

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) Matemática (Prof. Lara) Lista de exercícios recuperação semestre (Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(MACK) Se A é uma matriz 3 x 4 e B uma matriz n x m, então: a) existe

Leia mais

PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO

PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO PUERI DOMUS ENSINO MÉDIO MATEMÁTICA Saber fazer saber fazer + 10 MÓDULO Saber fazer Geometria analítica 1. Determine as coordenadas dos pontos da figura. 2. Sendo A (2, 2), B (4, 6) e C (7, ) vértices

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

Aula O Plano Cartesiano

Aula O Plano Cartesiano Aula 3 3. O Plano Cartesiano O plano cartesiano, em geral denotado por duas dimenções, é o conjunto dos pares P = (x,y) de reais, x e y, chamados respectivamente de abscissa (ou primeira coordenada) e

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano Nome da Escola no letivo 20-20 Matemática 11.º ano Nome do luno Turma N.º Data Professor - - 20 GRUP I s cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções,

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Distâncias e Conceitos Básicos

Distâncias e Conceitos Básicos GEOMETRIA ANAL TICA - N VEL B SICO Distância e Conceitos Básicos...Pag.01 Retas...Pag.05 Distância de Ponto à Reta e reas.pag.11 Circunferências....Pag.14 Posições Relativas entre Retas e Circunferências...Pag.19

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano GRUPO I. Vamos calcular o valor da função objetivo, L, em cada um dos vértices da região admissível. Vértice L O 0 0 L = 0 + 0 = 0 0 L = + 0 = L = + = C L = + = D 0 L = 0 + = função objetivo atinge o máimo,

Leia mais

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados

Leia mais

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B. Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( ) UNIDADE X geometria analítica CAPÍTULO 8 Geometria analítica: ponto e reta Banco de questões 1 (Cesgranrio RJ) Observe a figura e considere uma reta r cuja equação é y = x +. A esse respeito, são feitas

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

d AB y a x b x a x a

d AB y a x b x a x a Introdução A Geometria Analítica é uma parte da Matemática, que através de processos particulares, estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo, uma reta, uma circunferência

Leia mais

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Sistema de coordenadas cartesiano

Sistema de coordenadas cartesiano Sistema de coordenadas cartesiano Geometria Analítica Prof. Rossini Bezerra Definição Sistema de Coordenadas no plano cartesiano ou espaço cartesiano ou plano cartesiano Um esquema reticulado necessário

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 7 entregar no dia 4 0 013 1. O cubo da figura tem as faces paralelas aos planos coordenados

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

4 Trigonometria no círculo trigonométrico

4 Trigonometria no círculo trigonométrico 37 4 Trigonometria no círculo trigonométrico Com o surgimento do cálculo infinitesimal e posteriormente da análise matemática as noções básicas da trigonometria ganharam uma nova dimensão. Passaremos a

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 SUMÁRIO Apresentação ---------------------------------------------- 3 Capítulo 5 ---------------------------------------------------4

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Matemática 3ª série Roteiro 01. Geometria Analítica Estudo do ponto

Matemática 3ª série Roteiro 01. Geometria Analítica Estudo do ponto Matemática 3ª série Roteiro 01 Profª Helena Geometria Analítica Estudo do ponto Atividade em Dupla Material necessário: lápis, borracha, régua, uma folha de papel sulfite (use esta!), um aparelho celular

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 8 cm por 8 cm, mostrado abaio, será repetido tanto

Leia mais