EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA"

Transcrição

1 EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto A(m, 1) ao ponto B(4, 0) é de 2 2 unidades, qual é o valor de m? (Resp. : 4 ± 7 )... 2) (U.E.CE) Dois vértices opostos de um quadrado estão nos pontos A(, -4) e B(9, -4). Calcule a soma das abscissas dos outros dois vértices. (Resp. : 12 )... ) (U.F.MG) Calcule a área de um quadrado que tem como vértices opostos os pontos A(4, 8) e B(-2, 2). (Resp.: 6 )... 4) No triângulo de vértices A(1, 6), B(-, 2) e C (-1, -4), calcule a medida da mediana AM. (Resp. : 58 ) 5) No triângulo isósceles ABC, AB = AC e M é o ponto médio do lado BC.Se A = (2, ), M = (-2, -1) e P = (k, 1 ) é o ponto de interseção das medianas do triângulo ABC, então, qual é o valor de k? 2 (Resp. : ) 6) Os pontos A(2, -4), B(-2, -8) e P(a, b) são de uma mesma reta, tais que P é interno ao segmento AB. Se AP mede a terça parte de PB, calcule a soma a+b. (Resp. : a + b = -4 ) 7) O ponto P(m, n) é interno ao segmento de extremidades A(0, 6) e B(6, 4). Se AP corresponde à terça parte de AB, calcule a soma m + n. 22 (Resp. : m + n = ) 8) Dados os pontos A(8, 11), B(-4, -5) e C(-6, 9), determine as coordenadas do centro da circunferência que inscreve o triângulo ABC. [Resp. : (2, ) ] 9) Se o ponto de coordenadas dadas pelo par ordenado (4 2m, -m - 5 ) é do quarto quadrante do Plano Cartesiano, determine os valores possíveis de m. (Resp. : -5 < m < 2 )

2 10) Determine x de modo que o triângulo de vértices A(4, 5), B(1, 1) e C(x, 4) seja retângulo em B. (Resp. : x = - ) 11) (V. UNIF. RS) - Determine a ordenada do ponto onde se interceptam as retas r e s da figura abaixo. (Resp. : 5 9 ) 12) (PUC MG/) Os pontos A(1, ), B(0, 2) e C(a, 1) pertencem ao gráfico de uma função linear. Qual é o valor da abscissa do ponto C? (Resp. : -1 ) 1) (PUC MG) Na figura, o ângulo de vértice B é reto. Calcule a abscissa do ponto C. (Resp. : 5 ) 14) (PUC MG ) Os pontos (2, 4) e (501, 2000) pertencem ao gráfico de uma função função linear.determine a interseção desse gráfico com o eixo das ordenadas.(resp. : (0, -4)

3 15) (PUC MG) Se o ponto P(7, b) pertence à mediatriz do segmento de extremos A(, -1) e B(4, 6), determine o valor de b. (Resp. : b = 2 ) 16) (PUC MG) - A interseção da reta s com o eixo das ordenadas é o ponto M(0, b). A reta s passa pelos pontos A(6, ) e B(-2, 6).Calcule o valor de b. (Resp. : 4 21 ) 28 17) (PUC MG ) Os pontos A e B do eixo x têm abscissas e, respectivamente.calcule 2 a abscissa do ponto médio do segmento AB. 65 (Resp. : ) 12 18) (U.F.MG ) A reta r é paralela à reta de equação x y 10 = 0. Se um dos pontos de interseção de r com a parábola de equação y = x 2 4 tem abscissa 1, obtenha a equação da reta r. (Resp. : x y 6 = 0 ) 19) (U.F.MG ) Na figura, ABCD é um paralelogramo, as coordenadas do ponto C são (6, 10) e os lados AB e AD estão contidos, respectivamente, nas retas de equações x y = + 14 e y = 4x - 2. Determine as coordenadas do ponto B. 2 y A B C D [Resp. : B = (8, 18) 20) (U.F.MG 2 a 2 Etapa) Sejam r e s as retas de equações 6x + 5y = 0 e y = x + 2, respectivamente. a) No plano Cartesiano, trace as retas r e s e indique suas interseções com os eixos Coordenados. b) Calcule a área do triângulo limitados pelo eixo dos y e pelas retas r e s. (Resp. : a) interseções com os eixos : a reta r intercepta em (5, 0) e (0, 6) e a reta s intercepta 0 em (-, 0) e (0, 2) b) área do triângulo : 7 x

4 21) (PUC/MG ) Na figura, um ponto P(x, y), da reta r, se move entre os pontos A e B. Qual é o menor valor que a ordenada de P assume? (Resp. : 0,75) 22) (PUC/MG) Os pontos A(1, ), B(0, 2) e C(a, 1) pertencem ao gráfico de uma função linear. Qual é a abscissa do ponto C? (Resp. : a = -1 ) 2) (PUC/MG) O triângulo da figura tem o lado AB sobre a reta x y + = 0 e o lado BC sobre a reta x + 2y 6 = 0. Calcule a área do triângulo ABC. y B A O C x (Resp. : 4,5 ) 24) (PUC/MG ) A interseção da reta s com o eixo das ordenadas é o ponto M(0, b). A reta s passa pelos pontos A(6, ) e B(-2,6). Calcule o valor de b. (Resp. : b = 4 21 ) 28 25) (PUC/MG) os pontos A e B do eixo x têm abscissas e, respectivamente. Calcule 2 a abscissa do ponto médio do segmento AB. 65 (Resp. : ) 12

5 26) (U.F.MG) A reta r é paralela à reta de equação x y 10 = 0. Se um dos pontos de interseção de r com a parábola de equação y = x 2 4 tem abscissa 1,determine a equação da reta r. (Resp. : x y 6 = 0 ) 27) (U.F.J.F.) - Sendo A, B e C os vértices de um triângulo de coordenadas (1, 2), (5, 5) e (8, 9), respectivamente, classifique o triângulo ABC quanto à medida dos lados e diga se ele é retângulo. (Resp. : isósceles e não-retângulo) 28) (U.F.V. ) Determine a área do retângulo de área máxima, localizado no primeiro quadrante, com dois lados nos eixos cartesianos e um único vértice na reta y = -2x + 8. (Resp. : 8 ) 29) (U.F.V.) Calcule a área do triângulo limitado pelas retas de equações y = -x + 5 e y = x e pelo eixo das abscissas. (Resp. : 1 ) 0) (F.C.M.MG) Os pontos A = (a, 0), B = (0, a), C = (-a, 0) e D = (0, -a),em que a > 0, são vértices de um quadrado de área 50. Obtenha a equação da reta que contém os vértices A e B. (Resp. : x + y 5 = 0 ) 1) (U.F.V.) Se a reta de equação (2 + k)x + (k )y + 2 = 0 passa pelo ponto P(2, ), calcule o valor de k. (Resp. : k = 5 2) (E.F.E.I) Achar a equação da reta que é perpendicular à reta 2x y + 5 = 0 e passa pelo ponto P(2, -). (Resp. : y = x ) 2 ) (U.F.M.G) - Um triângulo isósceles ABC tem como vértices da base os pontos A = (4, 0) e B = (0,6). O vértice C está sobre a reta y = x 4. Calcule a inclinação da reta que passa pelos vértices B e C. (Resp. : 17 7 ) 4) (PUC/MG) As retas y = x + 1 e x = 2 formam, com os eixos coordenados, o trapézio OABC. Calcule a área desse quadrilátero. (Resp. : 4 )

6 5) (PUC/MG) - Calcule a medida da área do quadrilátero ABCD da figura. (Resp. : 12 ) 6) ( FUVEST) Uma reta r determina, no primeiro quadrante do plano cartesiano,um triângulo isósceles, cujos vértices são a origem e os pontos onde a reta intercepta os eixos Ox e Oy. Se a área desse triângulo é 18, determine a equação da reta r. (Resp. : x + y = 6 ) 7) (Newton de Paiva) - A reta r passa pelo ponto A(-2, 1) formando com os eixos coordenados um triângulo de área 2 1. Seja B o ponto de interseção da reta r com o eixo x e C o ponto de coordenadas (, 2). Determine as possíveis equações para a altura relativa ao lado BC no triângulo ABC. (Resp. : 4x y 10 = 0 ou x y 1 = 0)...

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO 1) Um ponto P é da forma P(2a + 4, a 6). Determine P nos seguintes casos: a) P pertence ao eixo das abscissas. b) P pertence ao eixo das ordenadas. c)

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a. APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:

Leia mais

Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff

Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre

Leia mais

BC Geometria Analítica. Lista 4

BC Geometria Analítica. Lista 4 BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff

Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff 1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

singular Lista de Exercícios - Ponto e reta Ensino Médio tarde - 2C17/27/37 Profª Liana

singular Lista de Exercícios - Ponto e reta Ensino Médio tarde - 2C17/27/37 Profª Liana singular Lista de Exercícios - Ponto e reta Ensino Médio tarde - C17/7/7 Profª Liana 01 - (UFJF MG) Dado o triângulo de vértices A = (1,1), B = (,) e C = (4, ). Considere as seguintes afirmações: I. O

Leia mais

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC 1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,

Leia mais

Exercícios de Matemática II

Exercícios de Matemática II Nome: nº Professor(a): Série: ª EM. Turma: Data: / /014 Sem limite para crescer Exercícios de Matemática II 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material. Para

Leia mais

ENEM 2013 A) (65; 35) B) (53; 30) C) (45; 35) D) (50; 20) E) (50; 30) ENEM 2011

ENEM 2013 A) (65; 35) B) (53; 30) C) (45; 35) D) (50; 20) E) (50; 30) ENEM 2011 ENEM 2013 1 - Nos últimos anos, a televisão tem passado por uma verdadeira revolução, em termos de qualidade de imagem, som e interatividade com o telespectador. Essa transformação se deve à conversão

Leia mais

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( ) UNIDADE X geometria analítica CAPÍTULO 8 Geometria analítica: ponto e reta Banco de questões 1 (Cesgranrio RJ) Observe a figura e considere uma reta r cuja equação é y = x +. A esse respeito, são feitas

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

Questão 2 Determine as equações das retas que passam pelo ponto A(2,3) e formam um ângulo de 45 com a reta de equação 3x 2y+z=0.

Questão 2 Determine as equações das retas que passam pelo ponto A(2,3) e formam um ângulo de 45 com a reta de equação 3x 2y+z=0. Estudo da reta Questão 1 Determinar a posição relativa (paralelas, coincidentes ou concorrentes) das retas 3y 2x 5 = 0 e y = 4x + 2. Se forem concorrentes, determine as coordenadas do ponto de interseção.

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0. FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:

Leia mais

Lista 23 - GEOMETRIA ANALÍTICA - II

Lista 23 - GEOMETRIA ANALÍTICA - II Lista - GEOMETRIA ANALÍTICA - II 1) (UFSM) Sejam o ponto A(, ) e a reta r, bissetriz do 1 o quadrante. A equação da reta que passa pelo ponto A, perpendicular à reta r, é (A) y = + - y = y = - + 8 y +

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

Distâncias e Conceitos Básicos

Distâncias e Conceitos Básicos GEOMETRIA ANAL TICA - N VEL B SICO Distância e Conceitos Básicos...Pag.01 Retas...Pag.05 Distância de Ponto à Reta e reas.pag.11 Circunferências....Pag.14 Posições Relativas entre Retas e Circunferências...Pag.19

Leia mais

PROFª: ROSA G. S. DE GODOY

PROFª: ROSA G. S. DE GODOY ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: 3ª E.M. Data: / / 2017 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 3ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br ( ) 4t 1. Para que valores 5 + 1, 2t 4 pertence ao eixo das ordenadas? A linguagem das funções Sistema de coordenadas Conceito de função

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Na figura abaixo, está representado um triângulo equilátero [ABC]. Seja a o comprimento de cada um dos lados do triângulo. Seja M o ponto médio do lado [BC]. Mostre

Leia mais

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA

MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA y Ya d =? A Yb B Xb Xa x y Ya d =? A Yb B Xb Xa x y Ya d =? A Ya - Yb Yb B Xb Xa - Xb Xa x y Ya A Ym =? M Yb B Xb Xm=? Xa x y Ya A Ym =? M T Yb B R Xb

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GA3X1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Retas e Planos Prof. Lilian

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes

PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA º TRIMESTRE Nome: nº: Ano:ºA E.M. Data: / / 018 Professora: Lilian Caccuri x A x B ya y Ponto médio: M ; yb ya Coeficiente angular: m x x 1) As retas x - y = 3 e

Leia mais

Matemática capítulo 2

Matemática capítulo 2 Matemática capítulo Eercícios propostos. Marque os seguintes pontos no plano cartesiano: (,), (,), (-,), D(-,-), E(,-), F(-,), G(,) θ. Determine os valores de a que satisfazem as condições dadas: a) O

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Lista 3 com respostas

Lista 3 com respostas Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v

Leia mais

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática 10º ANO Novembro 004 Ficha de Trabalho nº 4 - Conjuntos de pontos e condições Distância entre dois pontos Mediatriz de um segmento de recta Circunferência

Leia mais

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2012 1ª. SÉRIE 1.- A média das notas dos 21 alunos do 1º Ano do Ensino Médio, em Matemática é 5,80. Se a nota de Álvaro que é 1,80 for excluída, então qual

Leia mais

Lista 22 - GEOMETRIA ANALÍTICA - I

Lista 22 - GEOMETRIA ANALÍTICA - I Lista 22 - GEOMETRIA ANALÍTICA - I 1) Um sistema cartesiano ortogonal é associado à planta de uma cidade plana de modo que o eixo Ox é orientado de oeste para leste, o eixo Oy é orientado de sul para norte

Leia mais

7 a lista de exercícios - GA Período de Prof. Fernando Carneiro

7 a lista de exercícios - GA Período de Prof. Fernando Carneiro Lista 7 de GA 1 7 a lista de exercícios - GA Período de 014. - Prof. Fernando Carneiro 1 (Boulos): Dados os pontos A(1, 0, 0), B(, 1, 0), C(1, 0, 1) e D(, 1, 1), mostre que a) formam um retângulo; b) a

Leia mais

LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL

LISTA DE REVISÃO DE GEOMETRIA 2ºANO PROF. JADIEL LISTA DE REVISÃO DE GEOMETRIA ºANO PROF. JADIEL 1. (Eear) Sejam A(, ), B(, 1), C(5, ) e D( 1, ) vértices de um quadrilátero conveo. A medida de uma de suas diagonais é a) 15 b) 1 c) 1 d) 10. (Upe-ssa )

Leia mais

1 a Lista de Exercícios MAT 105 Geometria Analitica

1 a Lista de Exercícios MAT 105 Geometria Analitica 1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo

Leia mais

Lista 3 com respostas

Lista 3 com respostas Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r. Gênesis Soares Jaboatão, de de 014. Estudante: Circunferência: Circunferência: A circunferência é o conjunto de todos os pontos de plano equidistantes de outro ponto C do mesmo plano chamado centro da

Leia mais

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2 UFF - Universidade Federal Fluminense Instituto de Matemática GGM - Departamento de Geometria Professora: Andréa 2 o semestre de 2018 Atividades IV de Geometria I 1. Com base nos dados da Figua 1, qual

Leia mais

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas). MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Novo Espaço Matemática A, 10.º ano Proposta de teste de avaliação [novembro 2018]

Novo Espaço Matemática A, 10.º ano Proposta de teste de avaliação [novembro 2018] Proposta de teste de avaliação [novembro 018] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. As cotações dos itens encontram-se

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

Equação fundamental da reta

Equação fundamental da reta GEOMETRIA ANALÍTICA Equação fundamental da reta (Xo, Yo) (X, Y) (Xo, Yo) (X, Y) PARA PRATICAR: 1. Considere o triângulo ABC, cujos vértices são A (3, 4), B (1, 1) e C (2, 4). Determine a equação fundamental

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida.

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida. Objetivos da aula 1 Saber usar o ângulo externo de um polígono 2 Saber que ângulos alternos internos têm a mesma medida 3 Saber calcular a soma dos ângulos internos de um polígono 4 Saber a relação entre

Leia mais

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v. 1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1 14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos

Leia mais

Equilátero Isósceles Escaleno

Equilátero Isósceles Escaleno TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que

Leia mais

4. Saber a relação entre o número de lados e diagonais em polígonos convexos.

4. Saber a relação entre o número de lados e diagonais em polígonos convexos. Objetivos da aula 1 Saber usar o ângulo externo de um polígono 2 Saber que ângulos alternos internos têm a mesma medida 3 Saber calcular a soma dos ângulos internos de um polígono 4 Saber a relação entre

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

Ângulos, Triângulos e Quadriláteros. Prof Carlos

Ângulos, Triângulos e Quadriláteros. Prof Carlos Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.

RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

Exercícios de Geometria Analítica - CM045

Exercícios de Geometria Analítica - CM045 Exercícios de Geometria Analítica - CM045 Prof. José Carlos Corrêa Eidam DMAT/UFPR Disponível no sítio people.ufpr.br/ eidam/index.htm 1o. semestre de 2011 Parte 1 Soma e produto escalar 1. Seja OABC um

Leia mais

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos

Leia mais