Exercícios de Aprofundamento Matemática Geometria Analítica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Exercícios de Aprofundamento Matemática Geometria Analítica"

Transcrição

1 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r, como mostra a figura abaixo. a) Para 0 t 4, encontre a expressão para a função A(t), definida pela área do triângulo T, e esboce o seu gráfico. b) Seja k um número real não nulo e considere a função g(x) k x, definida para todo número real x não nulo. Determine o valor de k para o qual o gráfico da função g tem somente um ponto em comum com a reta r.. (Espcex (Aman) 015) O ponto simétrico do ponto (1,5) em relação à reta de equação x y 4 0 é o ponto a), 1. b) 1,. c) 4,4. d),8. e),.. (Fuvest 015) A equação x x y my n, em que m e n são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta y x 1 contém o centro da circunferência e a intersecta no ponto (, 4). Os valores de m e n são, respectivamente, a) 4 e b) 4 e 5 c) 4 e d) e 4 e) e Página 1 de 15

2 4. (Unicamp 015) No plano cartesiano, a equação x y x y representa a) um ponto. b) uma reta. c) um par de retas paralelas. d) um par de retas concorrentes. 5. (Unifesp 015) Um tomógrafo mapeia o interior de um objeto por meio da interação de feixes de raios X com as diferentes partes e constituições desse objeto. Após atravessar o objeto, a informação do que ocorreu com cada raio X é registrada em um detector, o que possibilita, posteriormente, a geração de imagens do interior do objeto. No esquema indicado na figura, uma fonte de raios X está sendo usada para mapear o ponto P, que está no interior de um objeto circular centrado na origem O de um plano cartesiano. O raio X que passa por P se encontra também nesse plano. A distância entre P e a origem O do sistema de coordenadas é igual a 6. a) Calcule as coordenadas (x, y) do ponto P. b) Determine a equação reduzida da reta que contém o segmento que representa o raio X da figura. 6. (Insper 014) Em um sistema de coordenadas cartesianas no espaço, os pontos A(,, 5), B(5,, 5), C(5, 4, 5) e D(, 4, 5) são os vértices da base de uma pirâmide regular de volume 8. O vértice V dessa pirâmide, que tem as três coordenadas positivas, está localizado no ponto a) (,1, 5). b) (,, ). c) (,, 6). d) (4,, 7). e) (4,,11). 7. (G1 - ifsp 014) Um triângulo é desenhado marcando-se os pontos A(;5), B(; 6) e C( 4;1) no Plano Cartesiano. O triângulo A B C é o simétrico do triângulo ABC em relação ao eixo y. Um dos vértices do triângulo A B C é a) ( ; 5 ). b) ( ; 6 ). c) ( ; 1 ). d) ( 4 ; 5 ). e) ( 4 ; 1 ). 8. (Unesp 014) Chegou às mãos do Capitão Jack Sparrow, do Pérola Negra, o mapa da localização de um grande tesouro enterrado em uma ilha do Caribe. Página de 15

3 Ao aportar na ilha, Jack, examinando o mapa, descobriu que P1 e P se referem a duas pedras distantes 10 m em linha reta uma da outra, que o ponto A se refere a uma árvore já não mais existente no local e que (a) ele deve determinar um ponto M1 girando o segmento P1A em um ângulo de 90 no sentido anti-horário, a partir de P1; (b) ele deve determinar um ponto M girando o segmento PA em um ângulo de 90 no sentido horário, a partir de P; (c) o tesouro está enterrado no ponto médio do segmento M1M. Jack, como excelente navegador, conhecia alguns conceitos matemáticos. Pensou por alguns instantes e introduziu um sistema de coordenadas retangulares com origem em P1 e com o eixo das abscissas passando por P. Fez algumas marcações e encontrou o tesouro. A partir do plano cartesiano definido por Jack Sparrow, determine as coordenadas do ponto de localização do tesouro e marque no sistema de eixos inserido no campo de Resolução e Resposta o ponto P e o ponto do local do tesouro. 9. (Espm 014) Os pontos O(0, 0), P(x, ) e Q(1, x 1) do plano cartesiano são distintos e colineares. A área do quadrado de diagonal PQ vale: a) 1 b) 16 c) 5 d) 4 e) (Unicamp 014) No plano cartesiano, a reta de equação x y 1 intercepta os eixos coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas 4 a) 4,. b) (, ) 4 c) 4,. d) (, ). 11. (Insper 014) A figura mostra um tabuleiro de um jogo Batalha Naval, em que André representou três navios nas posições dadas pelas coordenadas B, B14 e M. Cada navio está identificado por um quadrado sombreado. Página de 15

4 André deseja instalar uma base em um quadrado do tabuleiro cujo centro fique equidistante dos centros dos três quadrados onde foram posicionados os navios. Para isso, a base deverá estar localizada no quadrado de coordenadas a) G8. b) G9. c) H8. d) H9. e) H (Insper 014) Considere, no plano cartesiano, o triângulo retângulo determinado pelos eixos coordenados e pela reta de equação 1x + 5y = 60. A medida do raio da circunferência inscrita nesse triângulo é igual a a) 1. b). c). d) 4. e) (Unicamp 014) Considere no plano cartesiano os pontos A ( 1, 1) e B (, ). a) Encontre a equação que representa o lugar geométrico dos centros dos círculos que passam pelos pontos A e B. b) Seja C um ponto na parte negativa do eixo das ordenadas. Determine C de modo que o triângulo ABC tenha área igual a (Fgv 014) Os pontos A, e C 1,4 do plano cartesiano são vértices de um quadrado ABCD cujas diagonais são AC e BD. A reta suporte da diagonal BD intercepta o eixo das ordenadas no ponto de ordenada: a) / b) /5 c) 1/ d) 1/ e) (Fuvest 014) Considere o triângulo ABC no plano cartesiano com vértices A (0, 0), B (, 4) e C (8, 0). O retângulo MNPQ tem os vértices M e N sobre o eixo das abscissas, o vértice Q sobre o lado AB e o vértice P sobre o lado BC. Dentre todos os retângulos construídos desse modo, o que tem área máxima é aquele em que o ponto P é 16 a) 4, 5 17 b), 4 Página 4 de 15

5 1 c) 5, 5 11 d), 8 e) 6, (Insper 014) No plano cartesiano da figura, feito fora de escala, o eixo x representa uma estrada já existente, os pontos A(8, ) e B(, 6) representam duas cidades e a reta r, de inclinação 45, representa uma estrada que será construída. Para que as distâncias da cidade A e da cidade B até a nova estrada sejam iguais, o ponto C, onde a nova estrada intercepta a existente, deverá ter coordenadas 1 a), 0. 1, 0. b) c), 0., 0. d) 5 e), (Insper 014) No plano cartesiano, a reta r, de coeficiente angular 10, intercepta o eixo y em um ponto de ordenada a. Já a reta s, de coeficiente angular 9, intercepta o eixo y em um ponto de ordenada b. Se as retas r e s interceptam-se em um ponto de abscissa 6, então a) b a. b) b a 9. c) b a 6. d) b a 9. e) b a (Ita 014) Seja ABC um triângulo de vértices A = (1, 4), B = (5, 1) e C = (5, 5). O raio da circunferência circunscrita ao triângulo mede, em unidades de comprimento, a) b) c) Página 5 de 15

6 d) e) Página 6 de 15

7 Gabarito: Resposta da questão 1: t a) Sabendo que P pertence à reta r, temos P t,. Além disso, para todo 0 t 4, o triângulo T é retângulo em (t, 0). Em consequência, segue que 1 t t A(t) t (t 4). 4 O gráfico da função A é uma parábola com concavidade voltada para baixo, e cujas raízes são 0 e 4. Além disso, o vértice tem coordenadas (, 1). b) As abscissas dos pontos de interseção da reta x 0, satisfazem a equação x y com a função k sendo g(x), x x k x 4x k 0. x Para que exista um único ponto de interseção, o discriminante dessa equação deve ser igual a zero, ou seja, Δ ( 4) 4 1 k 0, o que implica em k. Resposta da questão : [A] Considerando, (r ) x y 4 0 e P(1, 5) Determinando a equação da reta ( s) perpendicular a reta (r ) e que passa pelo ponto (1, 5) ( s) x y k 0 10 k 0 k 7 Logo, a equação da reta ( s) será dada por x y 7 0. Determinando, o ponto M de intersecção das retas r e s. x y 4 0 x y 7 0 Resolvendo o sistema, temos M( 1, ). Determinando agora o ponto A simétrico do ponto p em relação à reta r, M é ponto médio de PA. Página 7 de 15

8 1 xa 1 xa 5 xa xa 1 Logo, A(, 1). Resposta da questão : [A] Completando os quadrados, vem m m x x y my n (x 1) y n 1. 4 Logo, como o centro m C 1, pertence à reta y x 1, segue que m ( 1) 1 m 4. Por conseguinte, sabendo que a reta intersecta a circunferência em (, 4), obtemos n x x y my ( ) ( ) 4 ( 4) 4. Resposta da questão 4: [D] Supondo que x, y, temos x y x y x y x y ou x y x y x e y 0 ou, x 0 e y ou seja, a equação representa os eixos cartesianos, cuja interseção é a origem. Resposta da questão 5: Considere a figura, em que A e B são, respectivamente, os pontos de interseção do raio X com o eixo das ordenadas e o eixo das abscissas. Página 8 de 15

9 π a) O ponto P é a imagem do número complexo de módulo 6 e argumento rad. modo, tem-se que Desse π π P 6 cos, 6sen (, ). b) Sendo BOP 60, temos POA e, portanto, OAP 75. Daí, segue que OP OA 6 e, assim, A (0, 6). Portanto, a equação reduzida da reta AP é 6 y 6 (x 0) y ( )x 6. 0 Resposta da questão 6: [E] Observando que as cotas dos pontos A, B, C e D são iguais, podemos concluir que o quadrilátero ABCD está contido no plano z 5. Logo, se O é o centro de ABCD, tem-se que VO é paralelo ao eixo z. Além disso, é fácil ver que ABCD é um quadrado de lado. Desse modo, sabendo que o volume de VABCD é igual a 8, obtemos 1 8 VO VO 6. Portanto, como O,, (4,, 5), segue-se que V (4,, 5 6) (4,,11) ou V (4,, 5 6) (4,, 1). Porém, sabendo que V tem as três coordenadas positivas, só pode ser V (4,, 11). Resposta da questão 7: [E] Considerando que o simétrico de um ponto P( x,y) em relação ao eixo y é P ( x,y), temos: A(,5), então A =(,5) B(, 6), então B (, 6) C( 4,1), então C (4,1) Logo, a alternativa [E] é a correta. Página 9 de 15

10 Resposta da questão 8: ΔP BM ΔACP (LAA ) P B AC a e P C b o 1 1 ΔACP ΔM DP (LAA ) DP a e M D 10 b o Logo, M (a,b) e M (10 a,10 b). 1 Calculando as coordenadas do ponto M médio do segmento M 1 e M, temos: x M a 10 a 5 e y M b 10 b 5 Logo, o ponto médio do segmento de extremos M 1 e M é M(5,5). Resposta da questão 9: [E] Sabendo que O(0, 0), P(x, ) e Q(1, x 1) são colineares, vem Página 10 de 15

11 0 x x x x 0 x ou x 1. Mas O(0, 0), P(x, ) e Q(1, x 1) são distintos. Logo, só pode ser x. Portanto, a área do quadrado de diagonal PQ vale ( (1 ( )) ( 1 ) ) 18 9 u.a. Resposta da questão 10: [D] A equação segmentária da reta AB é x y x y Desse modo, como A (6, 0) e B (0, 4), segue-se que o ponto médio do segmento AB tem coordenadas ( 4), (, ). Resposta da questão 11: [A] Adotando, convenientemente, um sistema de coordenadas cartesianas, com origem no vértice inferior esquerdo do quadrado O1, tem-se B (1,5; 1,5), B14 (1,5;1,5) e M (,5;,5). Queremos determinar o circuncentro do triângulo BB14M. A mediatriz do segmento BB14 é a reta 1,5 1,5 x x 7,5. A reta BM tem coeficiente angular igual a 1,5, ,5,5 O ponto médio do segmento BM é,5 1,5,5 1,5, (, 8). Logo, a equação da mediatriz do segmento BM é dada por y 8 (x ) y x Daí, a ordenada do circuncentro é Página 11 de 15

12 1 86 9,5 y 7,5 8, Portanto, como o ponto (7,5; 8,5) corresponde ao centro do quadrado G8, segue-se o resultado. Resposta da questão 1: [B] Fazendo y 0 na equação 1x 5y 60, obtemos o ponto A (5, 0), que é o ponto de interseção da reta com o eixo das abscissas. Tomando x 0, encontramos o ponto B (0,1), que é o ponto de interseção da reta com o eixo das ordenadas. Desse modo, sendo O a origem do sistema de eixos cartesianos, queremos calcular o raio r da circunferência inscrita no triângulo AOB. Pelo Teorema de Pitágoras, encontramos AB 1. Logo, temos OA OB OA OB AB r 5 1 (5 1 1) r r. Resposta da questão 1: a) O lugar geométrico pedido é a mediatriz do segmento de reta AB. Logo, como o ponto 1 médio de AB é, e o coeficiente angular da reta AB é 1, segue-se que a equação da mediatriz de AB é dada por 1 y x x y 0. b) Se C pertence ao semieixo negativo das ordenadas, então C (0, α), com α 0. Sabendo que a área do triângulo ABC é igual a 8, temos α α 1 α 1 α α ou α 4. Página 1 de 15

13 Porém, sendo α 0, só pode ser α 4. Resposta da questão 14: [D] 4 ( ) O coeficiente angular da reta AC é igual a m. Daí, como AC e BD são AC 1 perpendiculares, segue-se que m m 1 m, com m sendo o coeficiente AC BD BD BD angular da reta BD. Além disso, se M é o ponto médio de AC, temos ( 1) 4 M, (1,1). Sabendo que M é o ponto de interseção das retas AC e BD, concluímos que a equação de BD é 1 y 1 (x 1) y x. Portanto, segue de imediato que a ordenada do ponto de interseção de BD com o eixo Oy é igual a 1. Resposta da questão 15: [D] Considere a figura. A equação da reta AB é dada por yb 4 y x y x. x B Logo, tem-se y Q,y 4 e y M,0, 4 com 0 y 4. Além disso, a equação da reta BC é yb yc 4 0 y y C (x x C) y 0 (x 8) x x 8 B C 4 y x. 5 5 Página 1 de 15

14 Daí, 5y P, y 4 e 5y N, 0, 4 com 0 y 4. A área do retângulo MNPQ é dada por (MNPQ) MN PN 5y y (y 0) 4 4 y 8y [(y ) 4)] 8 (y ). Portanto, o retângulo MNPQ tem área máxima quando y, ou seja, quando Resposta da questão 16: [C] Seja M o ponto médio do segmento de reta AB. Se da, r db, r d, então M pertence à reta r. Logo, 11 P, M,, 4 e, portanto, a equação de r é 11 y 4 tg45 x y x. Em consequência, tomando y 0, segue-se que Resposta da questão 17: [E] C, 0. De acordo com as informações, temos r : y 10x a e s : y 9x b. Logo, se x 6 é a abscissa do ponto de interseção de r e s, então 10 6 a 96 b b a 6. Resposta da questão 18: [D] Página 14 de 15

15 O ponto D pertence à mediatriz do segmento BC, logo D é (K,). Considerando que D é equidistante dos pontos A e B, temos: AD BD K 1 4 K 5 5 K K 11 K 10K 5 4 8K 7 7 K 8 7 Portanto, D,. 8 Logo, a medida do raio r será dada por: R AD 1 ( 4) Página 15 de 15

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Exercícios de Aprofundamento 2015 Mat Geo. Analítica

Exercícios de Aprofundamento 2015 Mat Geo. Analítica Exercícios de Aprofundamento 015 Mat Geo. Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0), (t, 0)

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Distância entre dois pontos, média e mediana

Distância entre dois pontos, média e mediana Distância entre dois pontos, média e mediana 1. (Pucrj 014) Considere o quadrado ABCD como na figura. Assuma que A (5,1) e B (13,6). a) Determine a medida do lado do quadrado ABCD. b) (modificado) Determine

Leia mais

Matemática - UNESP fase

Matemática - UNESP fase Matemática - UNESP -015-014- fase 1. (Unesp 015) Um dado viciado, que será lançado uma única vez, possui seis faces, numeradas de 1 a 6. A tabela a seguir fornece a probabilidade de ocorrência de cada

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.

( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015. Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Geometria Analítica Fundamentos

Geometria Analítica Fundamentos Geometria Analítica Fundamentos 1. (Eear 017) Seja ABC um triângulo tal que A(1, 1), B(3, 1) e C(5, 3). O ponto é o baricentro desse triângulo. a) (,1). b) (3, 3). c) (1, 3). d) (3,1).. (Ita 017) Considere

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Matemática: Geometria Plana Vestibulares UNICAMP

Matemática: Geometria Plana Vestibulares UNICAMP Matemática: Geometria Plana Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0),

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

- GEOMETRIA ANALÍTICA -

- GEOMETRIA ANALÍTICA - Vestibulando Web Page 1. (Puc-rio 2004) Sejam A e B os pontos (1, 1) e (5, 7) no plano. O ponto médio do segmento AB é: a) (3, 4) b) (4, 6) c) (-4, -6) d) (1, 7) e) (2, 3) 2. (Ufg 2004) Para medir a área

Leia mais

Exercícios de Matemática II

Exercícios de Matemática II Nome: nº Professor(a): Série: ª EM. Turma: Data: / /014 Sem limite para crescer Exercícios de Matemática II 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material. Para

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Lista de Exercícios Geometria Analítica CONICAS

Lista de Exercícios Geometria Analítica CONICAS Lista de Exercícios Geometria Analítica CONICAS - 017 1. (Fgv 017) No plano cartesiano, a região determinada pelas inequações simultâneas x y 4 e x y 0 tem área igual a: a) π b),5π c) 3π d) 3,5π e) 4π.

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Geometria Analítica. x + y 4x 6y+ m= 0 e a circunferência C 2 tem. C 2 são tangentes exteriormente, assinale o que for

Geometria Analítica. x + y 4x 6y+ m= 0 e a circunferência C 2 tem. C 2 são tangentes exteriormente, assinale o que for Geometria Analítica 1. (Uerj 15) As baterias B 1 e B de dois aparelhos celulares apresentam em determinado instante, respectivamente, 1% e 9% da carga total. Considere as seguintes informações: - as baterias

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a. APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A. Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)

Leia mais

Geometria Plana 2015

Geometria Plana 2015 Geometria Plana 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

Distâncias e Conceitos Básicos

Distâncias e Conceitos Básicos GEOMETRIA ANAL TICA - N VEL B SICO Distância e Conceitos Básicos...Pag.01 Retas...Pag.05 Distância de Ponto à Reta e reas.pag.11 Circunferências....Pag.14 Posições Relativas entre Retas e Circunferências...Pag.19

Leia mais

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( ) UNIDADE X geometria analítica CAPÍTULO 8 Geometria analítica: ponto e reta Banco de questões 1 (Cesgranrio RJ) Observe a figura e considere uma reta r cuja equação é y = x +. A esse respeito, são feitas

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016

INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016 INSTITUTO FEDERAL DE BRASILIA ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA GABARITO DATA: 14/09/016 1) No plano cartesiano, 0xy, a circunferência C tem centro no ponto P (, 1), e a reta t é tangente a C no ponto

Leia mais

Exercícios de Matemática Geometria Analítica Pontos e Plano Cartesiano

Exercícios de Matemática Geometria Analítica Pontos e Plano Cartesiano Exercícios de Matemática Geometria Analítica Pontos e Plano Cartesiano 1. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

PROFª: ROSA G. S. DE GODOY

PROFª: ROSA G. S. DE GODOY ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: 3ª E.M. Data: / / 2017 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 3ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS

Leia mais

Média, Mediana e Distância entre dois pontos

Média, Mediana e Distância entre dois pontos Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs

Leia mais

G.A. Equação da Circunferência. Nível Básico

G.A. Equação da Circunferência. Nível Básico G.A. Equação da Circunferência Nível Básico 1. (Eear 017) As posições dos pontos A (1, 7) e B (7,1) em relação à circunferência de equação (x 6) (y ) 16 são, respectivamente, a) interna e interna. b) interna

Leia mais

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de

GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de ENSINO MÉDIO - 2012 LISTA DE EXERCÍCIOS 3ª SÉRIE - 3º TRIM PROF. MARCELO DISCIPLINA : GEOMETRIA GEOMETRIA ANALÍTICA 1) Espcex (Aman) 2013) Considere a circunferência 2 2 λ x y 4x 0 e o ponto P 1, 3. Se

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo

Leia mais

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Matemática 2 Módulo 9

Matemática 2 Módulo 9 Matemática Módulo 9 GEOMETRIA ANALÍTICA VI COMENTÁRIOS ATIVIDADES PARA SALA. Se duas circunferências são concêntricas, então os seus centros são coincidentes. Temos a circunferência λ : x + y 4x y + =

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

Solução Comentada da Prova de Matemática

Solução Comentada da Prova de Matemática Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Exercícios de Geometria Analítica Ponto e Reta

Exercícios de Geometria Analítica Ponto e Reta Exercícios de Geometria Analítica Ponto e Reta ) (FGV-2004) No plano cartesiano, o ponto P que pertence à reta de equação y = x e é eqüidistante dos pontos A(-,) e B(5,7) tem abscissa igual a: a), b),

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

GAAL: Exercícios 1, umas soluções

GAAL: Exercícios 1, umas soluções GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3) FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo

Leia mais

QUESTÕES TRIÂNGULO RETÂNGULO

QUESTÕES TRIÂNGULO RETÂNGULO QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe

Leia mais

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano. CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais