Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Tamanho: px
Começar a partir da página:

Download "Plano cartesiano, Retas e. Alex Oliveira. Circunferência"

Transcrição

1 Plano cartesiano, Retas e Alex Oliveira Circunferência

2 Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o ponto O. chamado de origem do sistema. Há uma relação entre os pontos de um plano e o conjunto de pares ordenados, isto é, a cada ponto corresponde um único par ordenado(x, y). UNIVERSIDADE FEDERAL DE ALAGOAS 2

3 Sistema cartesiano ortogonal Exemplo: B A D C UNIVERSIDADE FEDERAL DE ALAGOAS 3

4 Sistema cartesiano ortogonal Os pares ordenados são: (3, 2) está associado o ponto A; (-1, -4) está associado o ponto B; (-2, -3) está associado o ponto C; (2, -1) está associado o ponto D. Considerando o ponto A(3, 2), dizemos que o número 3 é a coordenada x ou a abscissa do ponto A, e o número 2 é a coordenada y ou a ordenada do ponto A. UNIVERSIDADE FEDERAL DE ALAGOAS 4

5 Sistema cartesiano ortogonal Os eixos x e y dividem o plano em quatro regiões chamadas quadrantes. O sinal positivo ou negativo da abscissa e da ordenada varia de acordo com o quadrante. y 2º quadrante (-, +) 3º quadrante (-, -) 1º quadrante (+, +) x 4º quadrante (+, -) UNIVERSIDADE FEDERAL DE ALAGOAS 5

6 Distância entre dois pontos Dados dois pontos, A e B, a distância entre eles, que será indicada por d(a, B), é a medida do segmento de extremidades A e B. Exemplo: Como em ambos os pontos, o valor da ordenada é o mesmo (y = 1) a distância será a diferença entre as ordenadas. d(a, B) = 3 1 = 2 A(1, 1) B(3, 1) UNIVERSIDADE FEDERAL DE ALAGOAS 6

7 Distância entre dois pontos Exemplo: C(1, 3) Nesse caso, como nem a ordenada e nem a abscissa dos pontos são iguais, usamos a relação de Pitágoras para obter a distância entre os pontos. [d(c, D)] 2 = d(c, D) = D(4, 1) UNIVERSIDADE FEDERAL DE ALAGOAS 7

8 Distância entre dois pontos Temos uma fórmula que representa a distância entre dois pontos independente da localização deles. Para dois pontos quaisquer, A e B, tal que A(x 1, y 1 ) e B(x 2, y 2 ), teremos: d(a, B) = x 2 x y 2 y 1 2 UNIVERSIDADE FEDERAL DE ALAGOAS 8

9 Ponto médio de um segmento Dado um segmento de reta AB tal que A e B são distintos, vamos determinar as coordenadas de M, ponto médio de AB. Considere: Um segmente com extremidades A(x 1, y 1 ) e B(x 2, y 2 ); O ponto M(x, y), ponto médio do segmento AB. y 2 y y 1 A M x 1 x x 2 UNIVERSIDADE FEDERAL DE ALAGOAS 9 B

10 Ponto médio de um segmento Podemos concluir que, dado um segmento de extremidades A e B: A abscissa do ponto médio do segmento é a média aritmética das abscissas das extremidades: x = x 2 + x 1 2 A ordenada do ponto médio do segmento é a média aritmética das ordenadas das extremidades: y = y 2 + y 1 2 UNIVERSIDADE FEDERAL DE ALAGOAS 10

11 Ponto médio de um segmento Assim, o ponto médio M do segmento AB, pode ser obtido independente da localização das extremidades usando as fórmulas anteriores: M = x 2 + x 1 2, y 2 + y 1 2 UNIVERSIDADE FEDERAL DE ALAGOAS 11

12 Coeficiente angular de uma reta Consideremos uma reta r de inclinação em relação ao eixo x. O coeficiente angular ou a declividade dessa reta r é o número real m que expressa a tangente trigonométrica de sua inclinação, ou seja: m = tg( ) UNIVERSIDADE FEDERAL DE ALAGOAS 12

13 Coeficiente angular de uma reta Vamos observar casos, considerando: 0º 180º 1º - y r x Para = 0, temos m = tg = tg 0 = 0, nesse caso temos uma reta horizontal. UNIVERSIDADE FEDERAL DE ALAGOAS 13

14 Coeficiente angular de uma reta 2º - y r x Para 0 < < 90, temos tg > 0 m > 0 UNIVERSIDADE FEDERAL DE ALAGOAS 14

15 Coeficiente angular de uma reta 3º - y r x Para 90 < < 180, temos tg < 0 m < 0 UNIVERSIDADE FEDERAL DE ALAGOAS 15

16 Coeficiente angular de uma reta 4º - y r x Para = 90, a tg não é definida, nesse caso é uma reta vertical, ela não tem declividade UNIVERSIDADE FEDERAL DE ALAGOAS 16

17 Coeficiente angular de uma reta Agora vamos ver como calcular o coeficiente angular de uma reta a partir das coordenadas de dois de seus pontos. No triângulo ABC, temos: d(c, B) tg = d(a, y C) x y 2 y 1 x 2 x 1 Então: m = y x = y 2 y 1 x 2 x 1 y 2 y 1 y A x B C x 1 x 2 r y x UNIVERSIDADE FEDERAL DE ALAGOAS 17

18 Equação da reta Vimos antes que dois pontos distintos determinam uma reta, ou seja, existe uma única reta que passa pelos dois pontos. Da mesma forma, um ponto P(x 0, y 0 ) e a declividade m determinam uma reta r. Considerando ponto P(x, y) dessa reta, veremos que se pode chegar a uma equação, de incógnitas x e y. UNIVERSIDADE FEDERAL DE ALAGOAS 18

19 Equação da reta Considerando um ponto P(x, y) qualquer sobre a reta e tg = m, temos: tg = d(c, P) d(p 0, C) m = y y 0 x x 0 y y P r y 0 P 0 C y y 0 = m(x x 0 ) x 0 x x UNIVERSIDADE FEDERAL DE ALAGOAS 19

20 Vamos praticar... Uma reta passa pelo ponto P(-1, -5) e tem coeficiente angular m = 1 2. Escreva a equação da reta. UNIVERSIDADE FEDERAL DE ALAGOAS 20

21 Vamos praticar... Tendo o ponto e o coeficiente angular, usaremos esses valores no modelo da equação. y y 0 = m(x x 0 ) y (-5) = 1 [x (-1)] 2 y + 5 = x x 2 - y = 0 x 2y = 0 x 2y 9 = 0 UNIVERSIDADE FEDERAL DE ALAGOAS 21

22 Vamos praticar... Na figura dada, o ponto O é a origem do sistema de coordenadas ortogonais e OABC é um retângulo. Nessas condições, escreva a equação da reta-suporte da diagonal AC. C y B(8, 4) O A x UNIVERSIDADE FEDERAL DE ALAGOAS 22

23 Vamos praticar... Pela figura podemos as coordenadas do pontos A e C são: A(8, 0) C(0, 4) Usando os dois pontos podemos encontrar a coeficiente angular. m = y 2 y 1 m = 4 0 x 2 x m = - 4 m = Agora vamos usar um dos pontos junto com o coeficiente para encontrar a equação. y 4 = (x - 0) y 4 = - x 2 x 2 + y - 4 = 0 x + 2y 8 = 0 UNIVERSIDADE FEDERAL DE ALAGOAS 23

24 Vamos praticar... (Vunesp) Num sistema de eixos cartesianos ortogonais, x + 3y + 4 = 0 e 2x 5y 2 = 0 são, respectivamente, as equações das retas r e s. Determine as coordenadas do ponto de intersecção de r em s. UNIVERSIDADE FEDERAL DE ALAGOAS 24

25 Vamos praticar... O ponto de interseção (x, y) deve satisfazer ao mesmo tempo ambas as equações. Assim, devemos resolver o sistema: x + 3y + 4 = 0 2x 5y 2 = 0 Isolamos x na primeira equação: x = -3y 4 Agora aplicamos o x na segunda equação: 2(-3y - 4) 5y 2 = 0-6y 8 5y 2 = 0-11y 10 = 0 y = UNIVERSIDADE FEDERAL DE ALAGOAS 25

26 Vamos praticar... Aplicamos o valor de y na primeira equação para encontrar a coordenada x: x = x = x = x = Assim, o ponto de intersecção das retas r e s é 14, UNIVERSIDADE FEDERAL DE ALAGOAS 26

27 Duas retas no plano Duas retas r e s, contidas no mesmo plano são paralelas ou concorrentes. UNIVERSIDADE FEDERAL DE ALAGOAS 27

28 Retas Paralelas Sendo 1 a inclinação da reta r e 2 a inclinação da reta s, temos: m 1 = m 2 tg 1 = tg 2 1 = 2 Se as inclinações são iguais, as retas são paralelas (r // s). UNIVERSIDADE FEDERAL DE ALAGOAS 28

29 Retas Paralelas Veja as imagens a seguir, que mostram duas retas distintas e não-verticais, que são paralelas: y Observamos que: 2 = 1 tg 2 = tg 1 m 2 = m 1 r // s r s 2 1 x UNIVERSIDADE FEDERAL DE ALAGOAS 29

30 Retas Paralelas y r s Observamos que: 2 = 1 tg 2 = tg 1 m 2 = m 1 r // s 2 1 x UNIVERSIDADE FEDERAL DE ALAGOAS 30

31 Retas Paralelas Podemos concluir que, dadas duas retas distintas e não-verticais r e s são paralelas se, e somente se, seus coeficientes angulares são iguais (m 1 = m 2 ). UNIVERSIDADE FEDERAL DE ALAGOAS 31

32 Retas Concorrentes Duas retas do mesmo plano com coeficientes angulares diferentes não são paralelas, logo, são concorrentes. s y r Observamos que: 2 1 tg 2 tg 1 m 2 m 1 r e s: são concorrentes 2 1 x UNIVERSIDADE FEDERAL DE ALAGOAS 32

33 Retas Concorrentes Portanto, duas retas distintas e não-verticais r e s são concorrentes se, e somente se, seus coeficientes angulares são diferentes (m 1 m 2 ). UNIVERSIDADE FEDERAL DE ALAGOAS 33

34 Intersecção de duas retas A figura mostra duas retas, r e s, do mesmo plano, que se intersectam no ponto P(a, b). y s r P(a, b) x Como P pertence às duas retas, suas coordenadas devem satisfazer simultaneamente às equações dessas duas retas. UNIVERSIDADE FEDERAL DE ALAGOAS 34

35 Intersecção de duas retas Logo, para determiná-las, basta resolver o sistema formado pelas equações das duas retas. Observação: Pela resolução de sistemas verificar a posição relativa de duas retas. Assim temos: Sistema possível e determinado um único ponto comum: retas concorrentes; Sistema possível e indeterminado infinitos pontos comuns: retas coincidentes; Sistema impossível nenhum ponto comum: retas paralelas distintas. UNIVERSIDADE FEDERAL DE ALAGOAS 35

36 Intersecção de duas retas Vamos determinar as coordenadas do ponto P de intersecção das retas r e s, de equações 3x + 2y 7 = 0 e x 2y 9 = 0, respectivamente. UNIVERSIDADE FEDERAL DE ALAGOAS 36

37 Intersecção de duas retas Nosso problema consiste em resolver o sistema formado pelas equações das duas retas: 3x + 2y 7 = 0 x 2y 9 = 0 4x 16 = 0 4x = 16 x = 4 Encontramos a coordenada x do ponto de intersecção, agora substituímos seu valor na segunda equação: 4 2y 9 = 0-2y = 5 y = Logo, as coordenadas do ponto de intersecção são: P 4, 5 2 UNIVERSIDADE FEDERAL DE ALAGOAS 37

38 Perpendicularidade de duas retas A figura mostra a reta r, de inclinação 1 e a reta s, de inclinação 2, tal que r e s são perpendiculares. y s P r A 2 1 x B UNIVERSIDADE FEDERAL DE ALAGOAS 38

39 Perpendicularidade de duas retas Dadas as retas r e s, de coeficientes angulares m 1 e m 2, temos: r s m 2 m 1 = -1 UNIVERSIDADE FEDERAL DE ALAGOAS 39

40 Vamos praticar... (FEI-SP) A reta s é perpendicular à reta r e a reta t é paralela à reta s. Determine a equação da reta s e a equação da reta t. y P(0, 3) t s Q(4, 0) x O M(1, 0) r UNIVERSIDADE FEDERAL DE ALAGOAS 40

41 Vamos praticar... Vamos determinar coeficiente angular da reta r, usando os dois pontos: m r = 0 3 m 4 0 r = 3 4 Como a reta r é perpendicular a reta s, temos: m r m s = m 4 s = -1 m s = 4 3 Agora podemos obter a equação da reta s: y 0 = 4 (x - 4) y = 4x x - y - 16 = x 3y 16 = 0 UNIVERSIDADE FEDERAL DE ALAGOAS 41

42 Vamos praticar... Como a reta t e paralela a reta s, os coeficientes angulares são iguais, ou seja, m t = 4. Com isso, já podemos determinar a 3 equação da reta t. y 0 = 4 4x (x - 1) y = - 4 4x - y - 4 = x 3y 4 = 0 UNIVERSIDADE FEDERAL DE ALAGOAS 42

43 Circunferência Vamos estudar sobre a circunferência, assim vamos associar cada circunferência a uma equação, e a partir daí, estudar suas propriedades geométricas. UNIVERSIDADE FEDERAL DE ALAGOAS 43

44 Circunferência Uma circunferência com centro O(a, b) e raio r é o conjunto de todos os pontos no plano equidistantes de O, ou seja: d(o, P) = x a 2 + y b 2 = r y P(x, y) b O(a, b) a x UNIVERSIDADE FEDERAL DE ALAGOAS 44

45 Circunferência Se elevarmos ambos os membros ao quadrado, teremos a equação normal da circunferência: (x - a) 2 + (y - b) 2 = r 2 UNIVERSIDADE FEDERAL DE ALAGOAS 45

46 Problemas de tangência Para resolver problemas envolvendo retas tangentes á circunferência devemos lembrar de dois detalhes: Quando a reta é tangente à circunferência, a distanciado centro da circunferência à reta tangente é o raio. A reta tangente é sempre perpendicular ao raio no ponto de tangência. UNIVERSIDADE FEDERAL DE ALAGOAS 46

47 Problemas de tangência O ponto P(5, 2) pertence a circunferência de equação x 2 + y 2 + 2x 6y 27 = 0. Vamos determinar a equação da reta t tangente a essa circunferência em P. C P(5, 2) UNIVERSIDADE FEDERAL DE ALAGOAS 47

48 Problemas de tangência Se uma reta t tangencia uma circunferência de centro C e raio r em P, então t é perpendicular à reta-suporte de CP. Vamos encontrar o centro e raio da circunferência. x 2 + y 2 + 2x 6y 27 = 0 x 2 + 2x + y 2 6y = 27 x 2 + 2x y 2 6y + 9 = (x + 1) 2 + (y 3) 2 = 37 Então, C(-1, 3) e r = 37 UNIVERSIDADE FEDERAL DE ALAGOAS 48

49 Problemas de tangência Agora, vamos determinar o coeficiente angular m 1 da reta-suporte que passa pelo pontos C(- 1, 3) e P(5, 2): m 1 = = Vamos determinar o coeficiente angular m 2 da reta tangente perpendicular à reta-suporte. m 2 m 1 = -1 m = -1 m 2 = = 6 UNIVERSIDADE FEDERAL DE ALAGOAS 49

50 Problemas de tangência Agora podemos calcular a equação da reta t que passa pelo ponto P(5, 2) e tem coeficiente angular 6: y 2 = 6(x 5) y 2 = 6x 30 6x y 28 = 0 A equação pedida é 6x y 28 = 0. UNIVERSIDADE FEDERAL DE ALAGOAS 50

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Equação fundamental da reta

Equação fundamental da reta GEOMETRIA ANALÍTICA Equação fundamental da reta (Xo, Yo) (X, Y) (Xo, Yo) (X, Y) PARA PRATICAR: 1. Considere o triângulo ABC, cujos vértices são A (3, 4), B (1, 1) e C (2, 4). Determine a equação fundamental

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

Geometria Analítica:

Geometria Analítica: Geometria Analítica: DISCIPLINA : Geometria Analítica - II PROFESSOR:: Erandi Alves de Lima Moraújo CE Janeiro - 2018-1 - GEOMETRIA ANALÍTICA 1.. O PLANO CARTESIIANO Y ( eixo das ORDENADAS ) Bissetriz

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 GEOMETRIA ANALÍTICA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 5 SUMÁRIO Apresentação ---------------------------------------------- 3 Capítulo 5 ---------------------------------------------------4

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Aula O Plano Cartesiano

Aula O Plano Cartesiano Aula 3 3. O Plano Cartesiano O plano cartesiano, em geral denotado por duas dimenções, é o conjunto dos pares P = (x,y) de reais, x e y, chamados respectivamente de abscissa (ou primeira coordenada) e

Leia mais

Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff

Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff 1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOMETRIA ANALÍTICA ESTUDO DA RETA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOMETRIA ANALÍTICA ESTUDO DA RETA EQUAÇÃO GERAL DA RETA... EQUAÇÃO REDUZIDA DA RETA... 8 EQUAÇÃO SEGMENTÁRIA DA RETA... 4 EQUAÇÃO PARAMÉTRICA... 5 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO... 8 CONDIÇÃO DE PARALELISMO... 6 CONDIÇÃO DE

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

MATEMÁTICA A ÁLGEBRA LINEAR

MATEMÁTICA A ÁLGEBRA LINEAR MATEMÁTICA A ÁLGEBRA LINEAR Lilian de Souza Vismara Mestre Eng. Elétrica ESSC / USP Licenciada em Matemática UFSCar 1 GEOMETRIA ANALÍTICA (GA), & ÁLGEBRA LINEAR Lilian de Souza Vismara Mestre Eng. Elétrica

Leia mais

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,

Leia mais

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r. Gênesis Soares Jaboatão, de de 014. Estudante: Circunferência: Circunferência: A circunferência é o conjunto de todos os pontos de plano equidistantes de outro ponto C do mesmo plano chamado centro da

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =

Leia mais

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por:

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por: . Plano Cartesiano: é formado por dois eixos perpendiculares, um horizontal (eixo das abscissas) e outro vertical (eixo das ordenadas), dividido em quatro quadrantes contados no sentido anti-horário como

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 = QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Sistema de coordenadas cartesiano

Sistema de coordenadas cartesiano Sistema de coordenadas cartesiano Geometria Analítica Prof. Rossini Bezerra Definição Sistema de Coordenadas no plano cartesiano ou espaço cartesiano ou plano cartesiano Um esquema reticulado necessário

Leia mais

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli

x = 3 1 = 2 y = 5 2 = 3 Aula Teórica 3 ATIVIDADE 1 Professor Responsável: Profa. Maria Helena S. S. Bizelli Aula Teórica 3 ATIVIDADE. Represente, no plano cartesiano xy descrito abaixo, os dois pontos (x 0,y 0) = (,) e (x,y ) = (3,5).. Trace a reta r que passa pelos pontos e, no plano cartesiano acima. 3. Determine

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

Função Afim. Definição. Gráfico

Função Afim. Definição. Gráfico Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função

Leia mais

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1 PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 3º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Ô, 04 ! ^ D. Exercícios

Ô, 04 ! ^ D. Exercícios O Espaço 93 O, 0,0), Q 2 (6, O, 0), Q 3 (6, 8, 0), Q 4 (0, 8,0), Q 5 (6, O, 4),

Leia mais

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita. GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e

Leia mais

Aula Exemplos diversos. Exemplo 1

Aula Exemplos diversos. Exemplo 1 Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os

Leia mais

MATEMÁTICA I CÁLCULO I

MATEMÁTICA I CÁLCULO I Profª Msc. Déora de Oliveira Bastos MATEMÁTICA I CÁLCULO I para Tecnólogo em Construção de Edifícios e Tecnólogo. FURG 2 DISCIPLINA CARÁTER CÓDIGO MATEMÁTICA I orig 11 CRÉDITOS LOCALIZAÇÃO NO QSL CH TOTAL

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central)

SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central) MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

3 ano E.M. Professores Cleber Assis e Tiago Miranda

3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II Tarefa: 002 PLANO DE TRABALHO 2 Cursista: CLÁUDIO MAGNO

Leia mais

MA23 - Geometria Anaĺıtica

MA23 - Geometria Anaĺıtica MA23 - Geometria Anaĺıtica Unidade 1 - Coordenadas e vetores no plano João Xavier PROFMAT - SBM 8 de agosto de 2013 Coordenadas René Descartes, matemático e filósofo, nasceu em La Have, França, em 31 de

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

T.D. - Resolução Comentada

T.D. - Resolução Comentada T.D. - Resolução Comentada Matéria: Série: Turmas: Professor: Matemática º Ano A, B, C, D e Olímpica Wilkson Linhares Bimestre: 3º Assunto: Geometria Analítica Questão: 01 Resposta: Item: c) O ponto P

Leia mais

Geometria Analítica - Sistemas de Coordenadas no Plano

Geometria Analítica - Sistemas de Coordenadas no Plano Geometria Analítica - Sistemas de Coordenadas no Plano Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Retas e Elipses Turmas E1 e E3 1 / 1 Para denir um sistema de coordenadas no

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA º TRIMESTRE Nome: nº: Ano:ºA E.M. Data: / / 018 Professora: Lilian Caccuri x A x B ya y Ponto médio: M ; yb ya Coeficiente angular: m x x 1) As retas x - y = 3 e

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y

Leia mais

Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj. Matemática 3º Ano 4º Bimestre/2014. Plano de Trabalho

Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj. Matemática 3º Ano 4º Bimestre/2014. Plano de Trabalho Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj Matemática 3º Ano 4º Bimestre/2014 Plano de Trabalho GEOMETRIA ANALÍTICA: retas paralelas e retas perpendiculares a partir de suas equações

Leia mais

Consequentemente, fica fácil determinar os outros casos. Logicamente:

Consequentemente, fica fácil determinar os outros casos. Logicamente: 4.. Posição relativa entre ponto e círculo. A linha, que é o círculo, divide o plano cartesiano em duas partes, a interior e a exterior, assim um ponto tem chance de pertencer a três lugares: P interior

Leia mais

Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc.

Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc. INTRODUÇÃO Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 02 - Introdução, Plano Cartesiano, Pontos e Retas

Leia mais

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente

Leia mais

Álgebra Linear I - Lista 7. Respostas

Álgebra Linear I - Lista 7. Respostas Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais