Geometria Analítica. Geometria Analítica 28/08/2012

Tamanho: px
Começar a partir da página:

Download "Geometria Analítica. Geometria Analítica 28/08/2012"

Transcrição

1 Prof. Luiz Antonio do Nascimento Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação a.b = b.a Propriedade associativa Adição (a + b) + c = a + ( b + c) Multiplicação (ab)c = a(bc) Elemento Neutro Adição a + 0 = a Multiplicação a. 1 = a Elemento oposto e elemento inverso Adição a (chamado oposto) tal que a + ( a) = 0 Multiplicação 1 a ou a- ¹ (chamado inverso) tal que a. 1 a =1 Propriedade distributiva a (b + c ) = ab + ac (b + c) a = ba + ca A foi concebida por René Descartes. União da Álgebra à Geometria que possibilita o estudo das figuras geométricas, associando-as a um Sistema de Coordenadas. As figuras podem ser representadas de pares ordenados (figuras planas), ternos ordenados (figuras sólidas) e equações (igualdades) ou inequações (desigualdades). 1

2 Representação Geométrica dos Números Representação através de uma reta numerada. Na reta graduada existe um Ponto de Origem (Ponto Zero) onde os pontos da direita representam os números positivos e os da esquerda os números negativos. Coordenadas Cartesianas Unidimensional Um dos elementos básicos da geometria é o ponto e para representar um ponto de maneira linear pode-se utilizar um Sistema de Coordenadas (Reta Real). Na reta numerada é definido um ponto O chamado Origem onde os números à direita são positivos e à esquerda negativos. A reta r é chamada eixo das abscissas. Os números são chamados abscissas dos pontos. abscissa do ponto A = -1 abscissa da origem O = 0 abscissa do ponto A = 1 Também chamado de Plano Cartesiano e Sistemas de Sistema de Coordenadas Retangulares ou Coordenadas Ortogonais. Um Ponto no Plano pode ser representado por um par ordenado (x, y). Sistema constituído de duas retas perpendiculares (reta horizontal chamada eixo x e reta vertical chamada eixo y). O ponto de intersecção é o ponto O (Origem). 2

3 Sistema de coordenadas cartesianas no plano. No par ordenado (x, y): o x é chamado de abscissa (ou coordenada x). o y é chamada ordenada (ou coordenada y). o x e y são as coordenadas de um ponto no espaço. Coordenadas do ponto P O sistema de coordenadas cartesiano é dividido em quatro partes chamadas de quadrante. 1º quadrante = x > 0 e y > 0 2º quadrante = x < 0 e y > 0 3º quadrante = x < 0 e y < 0 4º quadrante = x > 0 e y < 0 3

4 Pares ordenados dos pontos A, B, C e D no plano. Coordenadas Cartesianas Tridimensional Sistema de coordenadas onde um Ponto pode ser representado no Espaço um terno ordenado (x, y, z): o x é chamado de abscissa (ou coordenada x). o y é chamada ordenada ou afastamento (ou coordenada y). o z é chamado cota (ou coordenada z). Coordenadas Cartesianas Representação de um ponto no sistema de coordenadas unidimensional, bidimensional e tridimensional: 4

5 Tipos de Sistemas de Coordenadas Coordenadas Absolutas: Coordenadas baseadas no ponto de origem (0,0,0). Coordenadas Relativas Coordenadas baseadas em um ponto arbitrário baseado no último ponto (soma-se as coordenadas a partir do ponto arbitrário). Sistemas de Coordenadas retangulares bidimensionais Sistemas em que se utiliza X e Y como referência dos eixos principais. (0,0). Sistemas de Coordenadas Polares bidimensionais Sistemas em que se utiliza a distância de origem de um ponto e um ângulo em relação ao eixo X. Outros tipos de Coordenadas Conceito A geometria analítica diz respeito a definição e representação de formas geométricas de modo numérico e a extração de informação numérica dessa representação. O resultado numérico também pode ser um vetor. 5

6 Origem Os estudos iniciais da devemse ao filósofo e matemático francês René Descartes, inventor do sistema de coordenadas cartesianas, que permitiram a representação numérica de propriedades geométricas. René Descartes, que fez um progresso significante em seus métodos em um ensaio chamado Geometria, que foi um dos anexos publicados no seu Discurso do Método, em Origem Os estudos iniciais da devemse ao filósofo e matemático francês René Descartes ( ), inventor do sistema de coordenadas cartesianas, que permitiram a representação numérica de propriedades geométricas. Em geral, o sistema de coordenadas cartesianas é usado para manipular equações para planos, retas, curvas e círculos em duas ou três dimensões. As figuras elementares da geometria são o ponto a reta e o plano. Ponto elemento que indica uma posição no plano ou no espaço. Representado por letras maiusculas A, B, C,... Reta caminho mais curto entre dois pontos. Uma linha infinita a uma dimensão que tem comprimento e não tem largura. Representado por letras minusculas a, b, c,... 6

7 Plano (superfície plana) conjunto infinito de pontos a duas dimensões. Possui comprimento e largura e não tem espessura. Um plano é como uma folha de papel que se estende infinitamente em todas as direções. Representado por um paralelograma. Representado por uma letra minuscula do alfabeto grego geralmente o α e o β. Espaço conjunto infinito de planos. Possui três dimensões (comprimento, largura e espessura). Figuras no espaço podem ser representadas através da perspectiva. Segmento conjunto formado por todos os pontos de uma reta entre dois pontos denominados extremidades do segmento. A figura mais simples construída por segmentos é o triângulo que é formado por três pontos que não pertencem a uma mesma reta e pelos três segmentos determinados por estes três pontos. Os três pontos são chamados de vértices e os segmentos de lados. 7

8 Eixo uma reta orientada. O sentido positivo da reta é o do sentido do eixo. Segmento Orientado um segmento de reta de extremos pertencentes a um eixo. Segmentos Coincidentes dado dois segmentos orientados AB e CD se A=C e B=D e é escrito (A,B)=(C,D). Segmento Nulo é o segmento cuja extremidade coincide com a origem (A,A). Segmentos Opostos dois segmentos orientados que possuem mesmo módulo, mesma direção, mas sentidos contrários. (A,B) e (B,A). Módulo de um segmento (ou valor absoluto ou magnitude) comprimento de um segmento. Distância entre dois pontos. Ex.: Distância de A à C. A C D E F G B Representa-se o módulo por AC = 2. Medida Algébrica é o produto de um módulo por +1 ou -1 conforme o sentido do segmento coincida ou não com o sentido do eixo que o contém. Sentido de um segmento orientação do segmento da origem para a extremidade. Direção de um segmento inclinação do segmento que é determinado pelo eixo que o contém. Dois segmentos têm a mesma direção quando pertencem a um mesmo eixo ou a eixos paralelos entre si. 8

9 Abscissa de um ponto distância entre um ponto de origem e outro ponto qualquer em um eixo. Abscissa do ponto P: X P = OP Medida Algébrica de um segmento medida das diferenças de suas abscissas. AB = X B X A Ponto Médio de um Segmento ponto que divide o segmento em dois com o mesmo módulo. X M = X A +X B 2 Divisão de um segmento em n partes iguais utilizar a razão K. K = X B X A n X C = K + X A X D = K + X C. Equipolência de segmentos dois segmentos são equipolentes quando têm a mesma medida (módulo), a mesma direção e o mesmo sentido. Classe de Equivalência conjunto de todos os infinitos segmentos equipolentes no espaço. Todos os segmentos que formam uma classe de equipolência têm o mesmo módulo, direção e sentido qualquer que seja a sua origem. Vetor representação de uma classe de equivalência. 9

Figura disponível em: .

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. Capítulo 2 Plano Cartesiano / Vetores: Plano Cartesiano Foi criado pelo matemático René Descartes, associando a geometria à álgebra. Desse modo, ele pôde

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3 VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues fabio.miranda@engenharia.ufjf.br Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Planificação Anual (por unidades)

Planificação Anual (por unidades) Planificação Anual (por unidades) Total de tempos letivos planificados: 10 Disciplina: MATEMÁTICA 5º ANO Ano letivo: 01/015 Período Unidade didática Nº DE TEMPOS PREVISTOS Total - Apresentação. - Atividades

Leia mais

dia 10/08/2010

dia 10/08/2010 Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão

Leia mais

Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012

Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras

Leia mais

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas Números e Operações Adição e subtração de números racionais não negativos DEPARTAMENTO DE MATEMÀTICA DISCIPLINA: Matemática PLANIFICAÇÃO 1ºperíodo - 5º ANO - Efetuar operações com números racionais não

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO DE MATEMÁTICA - 5.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números

Leia mais

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade 1 DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade GRANDEZAS ESCALARES São grandezas que se caracterizam apenas por um valor acompanhado uma unidade

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo.

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo. Geometria Descritiva Prof. Sérgio Viana Estas notas de aulas são destinadas a todos aqueles que desejam ter um conhecimento básico de Geometria Descritiva, para um posterior estudo mais profundo. GEOMETRIA

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Curso de Engenharia Civil Física Geral e Experimental I Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para representar

Leia mais

VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Grandeza é tudo aquilo que pode variar quantitativamente. Algumas vezes necessitamos mais que um número e uma unidade para representar

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 2015-2016 DISCIPLINA / ANO: Matemática A 10ºano de escolaridade MANUAL ADOTADO: NOVO ESPAÇO 10 GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: Set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 5º Ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO DEPARTAMENTO DE MATEMÁTICA E TECNOLOGIAS ÁREA DISCIPLINAR DE MATEMÁTICA PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO CALENDARIZAÇÃO DO ANO LETIVO Período Início Fim Nº Semanas

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

2. SEGMENTOS ORIENTADOS

2. SEGMENTOS ORIENTADOS FFCLRP-USP - ALGEBRA LINEAR - Vetores Geométricos 1 NOTAS DE AULAS Professor Doutor: Jair Silvério dos Santos 1 1. LEMBRETE DA GEOMETRIA DE EUCLIDES RETA Dados dois pontos distintos no espaço P e Q, existe

Leia mais

Sistemas de coordenadas tridimensionais

Sistemas de coordenadas tridimensionais Sistemas de coordenadas tridimensionais Prof. Dr. Carlos Aurélio Nadal Sistema de coordenadas Tridimensionais no espaço Prof. DR. Carlos Aurélio Nadal - Sistemas de Referência e Tempo em Geodésia Aula

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

Ângulo é a abertura que duas semi-reta faz. Observe a figura:

Ângulo é a abertura que duas semi-reta faz. Observe a figura: A geometria plana estuda a geometria no plano, ou seja, em uma coisa plana, imagine um desenho em uma folha de papel ou no chão. Resumindo, a geometria plana tem o objetivo de estudar as figuras geométricas

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff 1 Coordenadas no plano 1 1.1 Introdução........................................ 2 1.2 Coordenada e distância na reta............................ 3 1.3 Coordenadas no plano.................................

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Matemática 3ª série Roteiro 01. Geometria Analítica Estudo do ponto

Matemática 3ª série Roteiro 01. Geometria Analítica Estudo do ponto Matemática 3ª série Roteiro 01 Profª Helena Geometria Analítica Estudo do ponto Atividade em Dupla Material necessário: lápis, borracha, régua, uma folha de papel sulfite (use esta!), um aparelho celular

Leia mais

Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre

Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre Exercícios de matemática - 3º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Álgebra [011 - ENEM] Um bairro de uma cidade foi planejado em uma região plana, com ruas paralelas e perpendiculares,delimitando

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ö Ð Ó Å Ö Ò Ó ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹ ¼½ ÐÙÐÓ Î ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ËÓ ÄÙ ¹ ÅA ¾¼½½ ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Reta Orientada....................................

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C.

Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. Posições de Retas Introdução: Conceitos Primitivos Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. A partir dessas definições estabeleceram-se os termos geométricos

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Atitudes: Valoração da importância da representação gráfica na resolução de problemas em situações geométricas.

Atitudes: Valoração da importância da representação gráfica na resolução de problemas em situações geométricas. Unidade 3. Geometria Analítica no Plano: Enquadramento curricular em Espanha: Objetos de aprendizagem 3.1. Conceito de vetor. Conhecer o conceito de Vetor fixo. Analisar os componentes de um vetor: módulo,

Leia mais

Desenho Técnico e CAD CAD e Sistemas de Coordenadas. Computação Gráfica. Computação Gráfica

Desenho Técnico e CAD CAD e Sistemas de Coordenadas. Computação Gráfica. Computação Gráfica Desenho Técnico e CAD CAD e Prof. Luiz Antonio do Nascimento Engenharia Ambiental 3º Semestre Computação Gráfica Ramo da computação dedicado à geração, tratamento, apresentação e armazenamento de imagens

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA

Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar

Leia mais

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

Período Conteúdos Metas Curriculares Nº de Aulas

Período Conteúdos Metas Curriculares Nº de Aulas AGRUPAMENTO VERTICAL DE ESCOLAS DE MOURA Agrupamento de Escolas de Moura Planificação de Matemática -5ºAno Período Conteúdos Metas Curriculares Nº de Aulas 1.º Números naturais Critérios de divisibilidade

Leia mais

Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato

Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato Desenho Técnico Desenho Mecânico Eng. Agr. Prof. Dr. Cristiano Zerbato Introdução O desenho, para transmitir o comprimento, largura e altura, precisa recorrer a um modo especial de representação gráfica:

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março)

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março) DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período(4 de janeiro a 18 de março) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Noções iniciais de Desenho Geométrico

Noções iniciais de Desenho Geométrico INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Noções iniciais de Desenho Geométrico Professor: João Carmo INTRODUÇÃO O desenho é a maneira de expressar graficamente a FORMA

Leia mais

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

CURRÍCULO DAS ÁREAS DISCIPLINARES / CRITÉRIOS DE AVALIAÇÃO

CURRÍCULO DAS ÁREAS DISCIPLINARES / CRITÉRIOS DE AVALIAÇÃO Domínios e subdomínios Metas/Objetivos Objetivos gerais 2º Ciclo Matemática 5º Ano Conteúdos Programáticos Critérios de Avaliação Instrumentos de Avaliação NÚMEROS E OPERAÇÕES/ ÁLGEBRA: -Números naturais

Leia mais

Algoritmos geométricos

Algoritmos geométricos Algoritmos geométricos introdução a conceitos básicos de geometria computacional que serão abordados de forma mais avançada na disciplina Computação Gráfica disciplina de computação gráfica arquitetura

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES

MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Aula 3 VETORES. Introdução

Aula 3 VETORES. Introdução Aula 3 VETORES Introdução Na Física usamos dois grupos de grandezas: as grandezas escalares e as grandezas vetoriais. São escalares as grandezas que ficam caracterizadas com os seus valores numéricos e

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais

Apostila de Física 35 Reflexão da Luz Espelhos Esféricos

Apostila de Física 35 Reflexão da Luz Espelhos Esféricos Apostila de Física 35 Reflexão da Luz Espelhos Esféricos 1.0 Definições Um plano, ao cortar uma superfície esférica, divide-a em 2 partes calotas de calotas esféricas. Espelho esférico Uma calota esférica,

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 10º ano _ CCH 2015/2016 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Início

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Unidade 2 Conceito de Funções

Unidade 2 Conceito de Funções Unidade 2 Conceito de Funções Conceito Sistema Cartesiano Ortogonal Estudo do domínio, contradomínio e imagem de função Representações de funções por meio de tabelas, gráficos e fórmulas Conceito de Função

Leia mais

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega DESENHO Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções

Leia mais

EMENTA ESCOLAR III Trimestre Ano 2014

EMENTA ESCOLAR III Trimestre Ano 2014 EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 3 ano do Ensino Médio Data 15/setembro 17/setembro 18/setembro 22/setembro Conteúdo NÚMEROS COMPLEXOS

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

1º Período. Figuras geométricas

1º Período. Figuras geométricas ii 1º Período Figuras geométricas Quadrado polígono com quatro lados iguais e com quatro ângulos rectos. Rectângulo polígono com quatro lados iguais dois a dois e com quatro ângulos rectos. Trapézio rectângulo

Leia mais

Ciclo Trigonomé trico

Ciclo Trigonomé trico Ciclo Trigonomé trico Aluno: Professores: Camila Machado, Joelson Rolino, Josiane Paccini, Rafaela Fidelis, Rafaela Nascimento. Aula 1 As origens da trigonometria Não se sabe ao certo da origem da trigonometria,

Leia mais