SISTEMAS DE PROJEÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "SISTEMAS DE PROJEÇÃO"

Transcrição

1 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD020 Geometria Descritiva Curso de Engenharia de Produção Turma PA Apostila GD - Parte 1 1. Operações fundamentais no desenho projetivo 1.1 Conceito de projetar SISTEMAS DE PROJEÇÃO a) Projetar um ponto A a partir de um outro ponto O, distinto de A, significa determinar a reta pertencente aos dois pontos. A reta OA é denominada projetante do ponto A e o ponto O é denominado de centro de projeção (Figura 1). FIGURA 1 PROJEÇÃO DO PONTO A b) Projetar uma reta r partir de um ponto O, não pertencente a essa reta, significa determinar o plano pertencente ao ponto e à reta. Esse plano,, é denominado plano projetante da reta r (Figura 2). FIGURA 2 PROJEÇÃO DA RETA R, A PARTIR DO PONTO O c) Projetar um objeto a partir de um ponto significa determinar as projetantes de todos os pontos desse objeto. Quando se quer projetar um objeto, normalmente são projetados somente os elementos necessários e suficientes que o determinam (Figura 3). FIGURA 3 PROJEÇÃO DE UM OBJETO A PARTIR DO PONTO O Observação: Sejam uma reta a e um ponto A fixos e b uma reta móvel passando por A, que rotaciona em torno do ponto A (Figura 4): FIGURA 4 CONCEITO DE PONTO IMPRÓPRIO

2 2 1.2 Conceito de cortar a) Cortar uma reta a por outra b, significa obter o ponto (ab) comum às duas retas. O ponto considerado pode ser próprio ou impróprio, conforme as retas sejam concorrentes ou paralelas (Figura 5). FIGURA 5 CORTE DA RETA a NA RETA b b) Cortar um plano por uma reta a, ou uma reta a por um plano, significa obter o ponto (a ) comum à reta e ao plano (Figura 6). FIGURA 6 CORTE DA RETA a NO PLANO c) Cortar um plano outro significa encontrar a reta comum a ambos os planos (Figura 7). FIGURA 7 CORTE DO PLANO NO PLANO d) Cortar um objeto por um plano significa encontrar a seção plana produzida por este plano no sólido considerado (Figura 8). FIGURA 8 CORTE DO PLANO NA SUPERFÍCIE Observação: o ponto ou a reta ou a curva quando determinados por cortes chamam-se traços.

3 3 2. Conceito de projeção cônica (ou central) Considere um plano e um ponto fixo O não pertencente ao plano considerado. Denomina-se projeção central ou cônica, no plano, de um ponto A, distinto de O, ao traço A, produzido sobre o plano, pela reta projetante do ponto A a partir do ponto O (Figura 9). FIGURA 9 PROJEÇÃO CÔNICA DO PONTO A O plano é denominado plano de projeção e o ponto O é denominado centro, pólo ou vértice de projeção. A projeção central ou cônica é também denominada perspectiva cônica, ou perspectiva linear exata do ponto A. Plano de projeção não é o mesmo que plano projetante. O sistema é chamado de projeção cônica, pois as projetantes descrevem uma superfície cônica. 3. Conceito de projeção cilíndrica (oblíqua ou ortogonal) Denomina-se projeção cilíndrica de um ponto A, no plano a partir de O, ao traço A produzido sobre, pela reta projetante do ponto A a partir do ponto O (Figura 10). FIGURA 10 PROJEÇÃO CILÍNDRICA DO PONTO A Observações: Dado o ponto A, A é único, porém dado somente A sabe-se que o ponto A pertence a sua reta projetante; O sistema é denominado projeção cilíndrica, pois as projetantes descrevem uma superfície cilíndrica; Os pontos do plano de projeção coincidem com suas projeções; Se a direção das projetantes for oblíqua ao plano de projeções tem-se o sistema de projeção Cilíndrica Oblíqua; Se a direção das projetantes for perpendicular ao plano de projeções tem-se o Sistema de Projeção Cilíndrica Ortogonal.

4 4 3.1 Propriedades das projeções cilíndricas (oblíquas ou ortogonais) Propriedade 1: A projeção cilíndrica de uma reta não paralela à direção das projetantes é uma reta (Figura 11). A projeção cilíndrica de uma reta paralela à direção das projetantes é um ponto (Figura 12). FIGURA 11 PROJEÇÃO CILÍNDRICA DA RETA R Observações: FIGURA 12 PROJEÇÃO CILÍNDRICA DA RETA R a) Se a projeção cilíndrica de uma reta é uma reta, então a reta objetiva não é paralela a direção das projetantes; b) Se a projeção cilíndrica de uma reta é um ponto, então a reta é paralela à direção das projetantes; c) Se uma reta é perpendicular ao plano de projeção, sua projeção cilíndrica-ortogonal sobre o mesmo será o seu traço no plano de projeção considerado. Reciprocamente, se a projeção ortogonal de uma reta sobre um plano reduzir-se a um ponto, então a reta será perpendicular ao plano de projeção, ou o que é equivalente, a reta será paralela à direção das projetantes. d) Uma reta r, não paralela à direção das projetantes, e sua projeção cilíndrica r são coplanares; logo, pode ocorrer entre a reta e sua projeção uma das seguintes condições: r e r são concorrentes, neste caso a reta corta o plano de projeção (Figura 11); São paralelas, neste caso a reta será paralela ao plano de projeção; São coincidentes, neste caso a reta estará contida no plano de projeção.

5 5 Propriedade 2: Se duas retas r e s são paralelas, então as suas projeções cilíndricas ou são paralelas (Figura 13), ou são coincidentes (Figura 14) ou são pontuais (Figura 15). FIGURA 13 PROJEÇÕES PARALELAS =s FIGURA 14 PROJEÇÕES COINCIDENTES FIGURA 15 PROJEÇÕES PONTUAIS Observação: A recíproca da propriedade 2 não é verdadeira (Figura 16). Ou seja, se t //s não implica que t//s. =t FIGURA 16 CONTRA EXEMPLO DA RECÍPROCA DA PROPRIEDADE 2

6 6 Propriedade 3: Se dois segmentos são paralelos ou são colineares, então a razão entre eles no espaço conserva-se na projeção cilíndrica, desde que a direção dos segmentos não seja paralela à direção das projetantes (Figuras 17 e 18). a) AB//CD AB // CD Se ou colineares AB A B e não paralelos a d CD C D b) AB e CD colineares FIGURA 17 RAZÃO ENTRE AS PROJEÇÕES DE SEGMENTOS PARALELOS FIGURA 18 RAZÃO ENTRE AS PROJEÇÕES DE SEGMENTOS COLINEARES Conseqüência: Se M é ponto médio do segmento AB então M é ponto médio da projeção do segmento AB (A B ). Observação: A recíproca não é verdadeira. Ou seja, se AB/CD=A B /C D não implica que AB//CD ou colineares (Figura 19). FIGURA 19 CONTRA-EXEMPLO PARA A RECÍPROCA DA PROPRIEDADE 3

7 7 Propriedade 4: Se uma figura está contida num plano paralelo ao plano de projeção, então essa figura será congruente à sua projeção cilíndrica, isto é, a projeção cilíndrica desta figura está em verdadeira grandeza (VG) (Figura 20). FIGURA 20 PROPRIEDADE 4 Observação: A recíproca não é verdadeira em projeção oblíqua, porém é verdadeira em projeção ortogonal (Figura 21). =C =D FIGURA 21 CONTRA-EXEMPLO PARA A RECÍPROCA DA PROPRIEDADE 4 Propriedade 5: Qualquer figura contida num plano paralelo à direção das projetantes tem para projeção um segmento que está contido no traço do plano dessa figura sobre o plano de projeção (Figura 22). FIGURA 22 PROPRIEDADE 5 Observação: A recíproca da Propriedade 5 é verdadeira.

8 8 3.2 Propriedades das projeções cilíndricas ortogonais Propriedade 6: Se um segmento é oblíquo ao plano de projeção ortogonal é menor que a sua verdadeira grandeza (Figura 23)., então sua projeção FIGURA 23 PROPRIEDADE 6 Observação: A recíproca da Propriedade 6 é verdadeira. Propriedade 7: Se duas retas são perpendiculares ou ortogonais entre si, sendo uma delas paralela ou pertencente ao plano de projeção e a outra não perpendicular a esse plano, então as projeções ortogonais dessas retas são perpendiculares entre si (Figura 24). Resumindo: Se r s ou r s (1) r // ou r (2) r s (4) s (3) FIGURA 24 PROPRIEDADE 7 Observação: As recíprocas da propriedade 7 são verdadeiras. São elas: Recíproca 1: (2) + (3) +(4) (1) Recíproca 2: (1) + (4) (2) + (3)

9 9 Exercícios: Considere um sistema de projeção cilíndrica com somente um plano de projeção. Escrever ao lado de cada exercício as propriedades geométricas e as propriedades das projeções cilíndricas utilizadas. 1. Representar o ponto médio M do segmento dado AB. a) b) 2. Representar o paralelogramo ABCD sendo dados os três vértices. a) b) c) d)

10 10 3. Representar o paralelogramo ABCD sendo dados os pontos A e B e o ponto M de interseção das diagonais. a) b) c) 4. Representar o triângulo ABC sendo dados os vértices A e B e o baricentro G. a) b) c)

11 11 5. Representar o hexágono regular ABCDEF sendo dados dois vértices e o centro O da circunferência circunscrita. a) b) c) 6. Representar o hexágono regular ABCDEF sendo dados A, B e C a) b) c)

12 12 O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS O Método das Duplas Projeções Ortogonais (ou Método de Monge) é utilizada para representar os objetos do espaço tridimensional no espaço bidimensional, mediante a utilização de projeções e resolver os problemas relativos a esses objetos através da Geometria Plana e do Desenho Geométrico. São utilizados pelo menos dois planos de projeção. 1. Planos fundamentais de referência (PFR) I REPRESENTAÇÃO DO PONTO Consideremos e π dois planos perpendiculares entre si, denominados Planos Fundamentais de Referência (PFR) ou Planos de Fundamentais de Projeção (PFP). Denominamos: - 1º PFR ou 1º PFP ou Plano Horizontal de Projeção. π - 2º PFR ou 2º PFP ou Plano Vertical de Projeção. A interseção de e π chama-se Linha de Terra. Esta divide nas partes: anterior e posterior e π em superior e inferior. Estes dois planos dividem o espaço em 4 porções, chamadas de diedros: 1º diedro entre a parte anterior de e a superior de π 2º diedro entre a parte posterior de e a superior de π 3º diedro entre a parte posterior de e a inferior de π 4º diedro entre a parte anterior de e a inferior de π Considerando uma origem O sobre a Linha de Terra temos os eixos x, y e z. No 1º diedro temos os valores para x y e z No 2º diedro temos os valores para x y e z No 3º diedro temos os valores para x y e z No 4º diedro temos os valores para x y e z Consideremos um 3º PFR (ou 3º PFP ou 3º PDP ou Plano Lateral de Projeção) π que contém os eixos y e z. Estes 3 planos dividem o espaço em octantes.

13 13 2. Representação do ponto Seja A um ponto. Consideremos as três projeções cilíndricas ortogonais: A, A e A sobre os planos, π e π, respectivamente. Temos as distâncias de A até os 3PFR: Cota distância de A até = segmento AA Afastamento distância de A até π = segmento AA Abscissa distância de A até π = segmento AA Estas distâncias também nos fornecem as coordenadas (x,y,z) do ponto A: x = abscissa y = afastamento z = cota Fixamos um dos PFR e rebatemos os outros sobre o primeiro escolhido, temos a representação plana do ponto, chamada de épura do ponto A:

14 14 Um ponto pode pertencer a qualquer diedro: a) A pertence ao 1º diedro b) B pertence ao 2º diedro c) C pertence ao 3º diedro d) D pertence ao 4º diedro

15 15 3. Pontos pertencentes aos PFR Espaço: Épura: a) é o lugar geométrico (LG) dos pontos de nulas. Se A LT. b) π é o lugar geométrico (LG) dos pontos de nulos. Se B π LT. c) π é o lugar geométrico (LG) dos pontos de nulas. Se C π. 4. Pontos pertencentes aos eixos Espaço: Épura: a) A LT (eixo x) é o LG dos pontos de nulas. Se A LT. b) O eixo y é o LG dos pontos de nulos. Se B y. c) O eixo z é o LG dos pontos de nulas. Se C z.

16 16 5. Obtenção da 3 a projeção Para obtermos a representação do ponto na 3ª projeção, podemos rebater o 3º PFP sobre o 1º ou 2º PFP. Rebatimento sobre π : Consideremos o 2º PFP fixo. Ao rebatermos o 3º plano sobre o 2º, a 3ª projeção do ponto descreverá um arco de circunferência com centro no eixo z e raio o seu afastamento. Este arco está contido num plano paralelo a e, portanto está em VG na 1ª projeção. A 3ª projeção rebatida do ponto pertence a uma reta que passa pela segunda projeção do ponto e é paralela à linha de terra. Espaço Épura

17 17 Exercícios A unidade utilizada é o milímetro. 1. Representar os pontos dados. a) A(30,20,40) b) B(20,-10,40) c) C(30,-20,-40) d) D(20,30,-20)

18 18 2. Localizar os pontos dados nos diedros. A B C D E 3. Representar os pontos dados (as primeiras e segundas projeções). Identificar a posição do ponto em relação aos diedros ou aos planos de projeção. A(20,30,10) B(50,-20,40) C(30,-40,-20) D(40,50,-10) E(10,0,30) F(60,20,0) G(-20,40,50) O

19 19 4. Representar os pontos dados e obter as terceiras projeções. A(20,50,20) B(40,-10,-20) C(50,-20,10) D(60,30,-40) E(10,40,?) F(-10,-20,-30) G(-40,30,-10) H(-20,0,20) O 5. Representar um quadrado contido em sendo dados A e B.

20 20 6. Representar um quadrado contido num plano paralelo a sendo dados A e B. A(20,20,10) B(40,30,?) 7. Representar o paralelogramo ABCD, sendo dados os vértices A e B, e o ponto M de interseção das diagonais. A(10,60,50) B(30,20,20) M(40,40,30)

21 21 8. Representar um hexágono regular ABCDEF, contido em sendo dados dois vértices. a) A(20,?,20) e B(40,?,10) b) A(30,?,50) e C(60,?,30)

22 22 9. Representar o triângulo ABC sendo dados M, N e P, pontos médios dos lados AB, BC e CA, respectivamente. M(20,15,30) N(40,40,20) P(60,30,10) 10. Representar o triângulo ABC sendo dados os vértices A e B e o baricentro G. A(30,10,20) B(20,50,40) G(50,30,30).

23 Representar um quadrado contido em sendo dados A(20,40,?) e sabendo-se que o lado AB mede 30 e é paralelo à LT. 12. Representar os pontos A e B de conhecendo A(10,30,?) e B(x,50,?) sabendo-se que AB=30.

24 24 II REPRESENTAÇÃO DA RETA 1. Representação da reta Propriedade já vista: Se r é uma reta então r ou é uma reta (se r não for paralela à direção das projetantes d) ou um ponto (se r for paralela à direção das projetantes d). Para obtemos a projeção de uma reta consideramos: - ou dois pontos A e B pertencentes a r - ou o seu plano projetante Como temos 3 PFR então há 3 projeções e portanto 3 planos projetantes. Normalmente, consideramos apenas a 1ª e a 2ª projeções da reta, pois são suficientes para determinar a 3ª projeção (exceto para a reta de perfil que veremos mais tarde). Espaço Épura 2. Ponto pertencente à reta Propriedade: P r P r e P r Mas se r// π e r então também deve ser verificado se P r. Exemplos:

25 25 3. Posições da reta em relação aos PFR A reta pode ocupar posições distintas em relação aos 3 PFR, podendo ser: - r perpendicular a um dos PFR: reta vertical reta de topo reta fronto-horizontal - r paralela a um dos PFR e oblíqua em relação aos outros dois PFR: r' reta horizontal reta frontal reta de perfil - r oblíqua em relação a todos os 3 PFR: reta qualquer

26 Reta vertical Essa reta é perpendicular ao Plano Horizontal de Projeção e paralela em relação ao Plano Vertical de Projeção. a) Característica espacial: b) Épura: c) Diedros: d) Ângulos: com com π com π e) Tem alguma projeção em VG? f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

27 Reta de topo Essa reta é paralela ao Plano Horizontal de Projeção e perpendicular em relação ao Plano Vertical de Projeção. a) Característica espacial: b) Épura c) Diedros: d) Ângulos: com com π com π e) Tem alguma projeção em VG? f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

28 Reta fronto-horizontal Essa reta é paralela ao Plano Horizontal de Projeção e paralela em relação ao Plano Vertical de Projeção. a) Característica espacial: b) Épura: c) Diedros: d) Ângulos: com com π com π e) Tem alguma projeção em VG? f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

29 Reta horizontal Essa reta é paralela ao Plano Horizontal de Projeção e inclinada em relação ao Plano Vertical de Projeção. a) Característica espacial: b) épura c) Diedros: d) Ângulos: com com π com π e) Tem alguma projeção em VG? f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

30 Reta frontal Essa reta é inclinada em relação ao Plano Horizontal de Projeção e paralela em relação ao Plano Vertical de Projeção. a) Característica espacial: b) Épura: c) Diedros: d) Ângulos: com com π com π e) Tem alguma projeção em VG? f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

31 Reta de perfil Essa reta é inclinada em relação ao Plano Horizontal de Projeção e ao Plano Vertical de Projeção e paralela ao Plano Lateral de Projeção. a) Característica espacial: b) Épura: c) Diedros: d) Ângulos: com com π com π e) Tem alguma projeção em VG? f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

32 Reta qualquer Essa reta é inclinada em relação ao Plano Horizontal de Projeção, ao Plano Vertical de Projeção e ao Plano Lateral de Projeção. a) Característica espacial: b) Épura z c) Diedros: d) Ângulos: com com π com π r r" x e) Tem alguma projeção em VG? y r' f) Quantidade de pontos necessários para representá-la: g) Traços: H, V, L

33 33 Exercícios 1. Na reta r, definida pelos pontos A(20,40,10) e B(60,10,-40) representar os pontos: C(40,?,?) D(?,50,?) E(?,?,-10) F(?,-10,?) G(?,?,0) H(-10,?,?) I(0,?,?) O 2. Na reta r, definida pelos pontos A(40,30,10) e B(40,10,30) representar os pontos: C(?,35,?) D(?,?,20) E(?,?,-10) F(?,-10,?) G(?,?,0) H(?,0,?) O

34 34 3. Seja a reta r definida pelos pontos A e B. Representá-la, identificar o nome da reta e sua posição em relação aos PFR (paralela, oblíqua ou perpendicular). a) A(30,20,10), B(60,50,20) b) A(20,30,20), B(20,40,20) c) A(10,20,30), B(40,20,50) d) A(40,50,10), B(40,20,30)

35 35 4. Seja a reta r definida pelos pontos A e B. Representar os traços H, V e L sobre os PFR(, π e π ). Identificar os diedros pelos quais a reta atravessa. a) A(30,20,10), B(50,10,40) b) A(20,30,10), B(40,20,10) c) A(30,20,20), B(30,20,40) d) A(30,30,10), B(30,20,30)

36 36 5. Seja a reta r definida pelos pontos A e B. Identificar o nome da reta. Encontrar os ângulos que a reta forma com os PFR, bem como a VG do segmento AB. a) A(10,20,30) B(40,20,10) b) A(30,-10,40), B(30,20,40) c) A(20,20,10), B(40,30,40) d) A(30,-30,-10), B(30,-30,20)

37 37 e) A(20,-20,-30), B(50,-20,-30) f) A(30,10,50), B(30,-20,-15) g) A(20,10,0), B(40,10,30) h) A(0,-20,-10), B(50,20,-10)

38 38 6. Representar as retas horizontais que passem pelo ponto dado A e que formem ângulo dado com um dos PFR. a) A(20,30,40) 3 =30 o b) A(30,40,20) 2 =15 o 7. Representar as retas frontais que passem pelo ponto dado A e que formem ângulo dado com um dos PFR. a) A(30,30,40) 1 =30 o b) A(30,30,40) 3 =15 o

39 39 8. Representar as retas de perfil que passem pelo ponto dado A e que formem ângulo dado com um dos PFR. a) A(20,30,10), 1 = 60 0 b) A(30,20,40), 2 = 15 0

40 40 9. Representar uma reta horizontal que passe pelo ponto dado A(30,40,30) sabendo-se que qualquer segmento da mesma tem a sua segunda projeção reduzida a metade desse segmento. 10. Representar as retas quaisquer que passam pelo ponto dado A(30,20,40) e formam ângulo θ 1 =30º com e θ 2 = 45º com π.

41 41 4. Posição relativa de duas retas Duas retas r e s podem ser: paralelas coplanares concorrentes coincidentes não coplanares ou reversas Observação: sejam r, s, P r e (P,s) então - se (P,s) possuir em comum com r apenas o ponto P então r e s são reversas e P (r ); - ou se r estiver contida em então as retas r e s são coplanares Condições de paralelismo 1º) Retas não de perfil Vimos propriedade 2: Se r//s então r //s ou r s ou são pontuais. Como trabalhamos com pelo menos duas projeções então: r' //s' e r" //s" r//s r' s' e r" //s" (ou r" s" e r' // s' ) r' e s' são pontuais e r" //s" ( ou r" e s" são pontuais Se r s e r s e r e s são não de perfil então r s 2º) Retas de perfil e r //s ) a) as retas pertencem a um mesmo plano projetante em 1ª e 2ª projeções paralelas se r //s r e s podem ser coincidentes se r s concorrentes se r xs b) as retas pertencem a planos projetantes distintos em 1ª e 2ª projeções paralelas se r //s ou r s r e s podem ser reversas se r xs 4.2. Condições de incidência 1º) Retas não de perfil r x s em P e r x s em P e P P mesma LC r x s r x s e r s (ou r x s e r s ) r x s,r é um ponto e a s (ou r x s, r é um ponto e a s ) 2º) Uma reta é de perfil e a outra não Além das condições anteriores deve ser verificada também a 3ª projeção. 3º) Retas de perfil Duas retas de perfil somente poderão ser concorrentes se pertencem ao mesmo plano projetante em 1ª projeção e suas 3 as projeções são concorrentes.

42 42 Exercícios de posição relativa de duas retas 1. Representar a reta r pertencente ao ponto A(10,20,30) e paralela a reta s(p,q): a) P(40,10,30) Q(40,20,30) b) P(40,30,10) Q(40,30,20) c) P(30,30,20) Q(50,30,20) d) P(30,10,20) Q(50,30,20) e) P(30,30,20) Q(50,30,30) f) P(30,40,10) Q(60,30,-10)

43 43 2. Representar a reta r, pertencente ao ponto dado A e paralela a reta s(p,q) a) A(30,50,20) P(30,40,50) Q(30,20,30) b) A(60,40,10) P(40,30,40) Q(40,10,20)

44 44 3. São dadas duas retas r(a,b) e s(p,q), verificar se são coincidentes, paralelas, concorrentes ou reversas. Caso sejam concorrentes, determinar o ponto X em comum. 3.1 As retas dadas são não de perfil a) b) c) d)

45 45 e) f) g) h)

46 As retas dadas são de perfil i) A(30,30,40) B(30,40,20) P(30,10,30) Q(30,20,40) j) A(30,20,10) B(30,10,20) P(30,30,30) Q(30,40,40)

47 47 k) A(20,30,40) B(20,40,50) P(40,40,20) Q(40,10,30) l) A(20,30,40) B(20,40,50) P(40,40,20) Q(40,50,30)

48 Uma das retas dadas é de perfil e a outra é não de perfil m) A(30,-10,40) B(30,0,40) P(30,10,20) Q(30,20,30) n) A(40,10,20) B(40,30,10) P(20,10,10) Q(60,30,50)

49 49 4. Representar a reta horizontal r pertencente ao ponto dado A e concorrente com uma reta qualquer s(p,q) dada. Representar o ponto X de interseção. A(10,20,10) P(30,30,30) Q(50,20,40) 5. Representar a reta frontal r pertencente ao ponto dado A e concorrente com uma reta qualquer s(p,q) dada. Representar o ponto X de interseção. A(10,20,50) P(30,30,30) Q(50,10,40)

50 50 6. Representar a reta de perfil r pertencente ao ponto dado A e concorrente com uma reta qualquer s(p,q) dada. Representar o ponto X de interseção. A(10,20,10) P(30,20,30) Q(50,10,40) 7. Representar a reta horizontal r pertencente ao ponto dado A e concorrente com uma reta de perfil s(p,q) dada. Representar o ponto X de interseção. A(10,20,20) P(30,30,40) Q(30,10,10)

51 51 8. Representar a reta de topo r pertencente ao ponto dado A e concorrente com uma reta de perfil s(p,q) dada. Representar o ponto X de interseção. A(30,-10,30) P(30,30,20) Q(30,50,10) 9. Representar a reta vertical r pertencente ao ponto dado A e concorrente com uma reta de perfil s(p,q) dada. Representar o ponto X de interseção. A(30,15,50) P(30,30,20) Q(30,50,10)

52 Representar a reta fronto-horizontal r pertencente ao ponto dado A e concorrente com uma reta de perfil s(p,q) dada. Representar o ponto X de interseção. A(20,30,?) P(30,10,20) Q(30,40,10) 11. Representar uma reta r(a,b) qualquer concorrente com uma reta de perfil s(p,q) dada. Representar o ponto X de interseção. A(10,30,30) B(30,20,?) P(40,30,40) Q(40,10,10)

53 53 5. Perpendicularidade e ortogonalidade de retas Relembrando a Propriedade 7 para somente uma projeção: (1) r s ( ou r s ) Se (2) r // ( ou r ) (4) r s (3) s Recíprocas são válidas: (2) r // ( ou r ) Se (3) s (1) r s ( ou r s ) (4) r s Se (1) r s ( ou r s ) (3) s (4) r s (2) r // ( ou r ) Na projeção cilíndrica ortogonal tem-se que um ângulo não reto somente se projeta em VG quando os dois lados forem paralelos ao plano de projeção. Porém, se o ângulo for reto, basta um só lado ser paralelo (ou estar contido) e o outro ser não perpendicular ao plano de projeção para que ele tenha projeção ortogonal em VG. Exercícios de perpendicularidade e ortogonalidade de retas 1. Representar a reta s que passe pelo ponto dado P e seja perpendicular a uma reta dada r. a) r é horizontal b) r é frontal

54 54 c) r é de perfil d) r é fronto-horizontal e) r é qualquer

55 55 2. Representar pelo ponto dado P uma reta s ortogonal a reta dada r, sabendo-se que: a) s é horizontal b) s é frontal c) s é de perfil d) s é qualquer

56 56 3. Representar a distância do ponto dado P a uma reta dada r. Obter a verdadeira grandeza dessa distância. a) r é horizontal b) r é frontal c) r é de perfil d) r é fronto-horizontal e) r é qualquer

57 57 4. Representar o losango ABCD, de diagonal BD horizontal, sendo dados os vértices A e C, e o comprimento da diagonal BD. A(20,35,10) C(50,15,30) BD=30 5. Representar o losango ABCD, de diagonal BD horizontal, sendo dados os vértices A e C e sabendo-se que a primeira projeção do mesmo deve ser um quadrado. A(20,35,10) C(50,15,30)

58 58 6. Representar um triângulo ABC isósceles, de base AB horizontal dada, sendo dados o afastamento e a cota do vértice C. A(20,40,20) B(50,50,20) C(x,20,40) 7. Representar um retângulo ABCD, sendo dados os vértices A e C, e sabendo-se que o lado AB é frontal e tem comprimento dado. A(20,20,25) C(50,40,45) AB=20

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA

Leia mais

Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011

Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Introdução à Geometria Descritiva Aula 01 Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Resumo O que é Geometria Descritiva? Projeção Ortogonal de um Ponto Método da Dupla Projeção de Monge

Leia mais

Expressão Gráfica II EXPRESSÃOGRÁFICA. Departamento de. Unidade I - GEOMETRIA DESCRITIVA

Expressão Gráfica II EXPRESSÃOGRÁFICA. Departamento de. Unidade I - GEOMETRIA DESCRITIVA Expressão Gráfica II Unidade I - GEOMETRIA DESCRITIVA Departamento de EXPRESSÃOGRÁFICA Material elaborado por: Profª MSc.Andrea Faria Andrade Curitiba, PR / 2011 I Introdução A Geometria Descritiva (também

Leia mais

Um plano fica definido por duas retas paralelas ou concorrentes.

Um plano fica definido por duas retas paralelas ou concorrentes. 1 3 - ESTUDO DOS PLANOS Um plano fica definido por duas retas paralelas ou concorrentes. 3.1. Traços do plano São as retas de interseção de um plano com os planos de projeção. απ' - traço vertical de (α)

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado

Leia mais

Capítulo 1 - O Ponto. Capítulo 2 - A Reta

Capítulo 1 - O Ponto. Capítulo 2 - A Reta Capítulo 1 - O Ponto Lista de Exercícios de GD0159 O Ponto, A Reta, O Plano e Métodos Descritivos Professor: Anderson Mayrink da Cunha 1. Represente os pontos (A),..., (F ) em épura, onde (A)[1; 2; 3],

Leia mais

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo.

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo. Geometria Descritiva Prof. Sérgio Viana Estas notas de aulas são destinadas a todos aqueles que desejam ter um conhecimento básico de Geometria Descritiva, para um posterior estudo mais profundo. GEOMETRIA

Leia mais

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Índice Item Representação diédrica Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Reta e plano 8 Ponto pertencente a uma reta 8 Traços de uma reta

Leia mais

1. SISTEMA DE PROJEÇÕES

1. SISTEMA DE PROJEÇÕES Expressão Gráfica I 1 Desde a pré-história o homem já defrontou-se com o problema de representar em um só plano. O desenho assumiu a função simbólica, mística (os povos primitivos representavam em cavernas

Leia mais

APOSTILA GEOMETRIA DESCRITIVA

APOSTILA GEOMETRIA DESCRITIVA APOSTILA GEOMETRIA DESCRITIVA 1 GEOMETRIA MÉTRICA E ESPACIAL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SISTEMAS DE PROJEÇÃO Conforme o que foi exposto anteriormente, o estudo da Geometria Descritiva está

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 2: Conceitos Básicos Sistemas de Projeção Método da Dupla Projeção de Monge Professor: Eng. Daniel Funchal,

Leia mais

Expressão Gráfica Projeção Cotada 32

Expressão Gráfica Projeção Cotada 32 Expressão Gráfica Projeção Cotada 32 CAPÍTULO I - INTRODUÇÃO O MÉTODO DAS PROJEÇÕES COTADAS O método foi idealizado por Fellipe Buache em 1737 para o levantamento da carta hidrográfica do Canal da Mancha.

Leia mais

AULA SISTEMA DE PROJEÇÃO

AULA SISTEMA DE PROJEÇÃO 1 É a parte da matemática aplicada que tem por finalidade representar sobre um plano as figuras do espaço de modo que seja possível resolver por geometria os problemas de três dimensões SISTEMAS PROJETIVOS

Leia mais

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO:

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO: GEOMETRIA DESCRITIVA UNIDADE 01 GEOMETRIA DESCRITIVA PLANO DE PROJEÇÃO PHA ( ) PHP ( ) Iº DIEDRO: PVS ( ) IIº DIEDRO: PVI ( ) IIIº DIEDRO: LT ( ) IVº DIEDRO: 1 GEOMETRIA DESCRITIVA UNIDADE 01 Linha Terra

Leia mais

Geometria Descritiva Básica (Versão preliminar)

Geometria Descritiva Básica (Versão preliminar) Geometria Descritiva Básica (Versão preliminar) Prof. Carlos Kleber 5 de novembro de 2008 1 Introdução O universo é essencialmente tridimensonal. Mas nossa percepção é bidimensional: vemos o que está à

Leia mais

Geometria Descritiva. Desenho de Sólidos. Departamento de EXPRESSÃO GRÁFICA

Geometria Descritiva. Desenho de Sólidos. Departamento de EXPRESSÃO GRÁFICA Geometria Descritiva Desenho de Sólidos Departamento de EXPRESSÃO GRÁFICA Material elaborado para Disciplina CD014 - Geometria Descritiva do curso de Agronomia pelo Prof Dr. Rossano Silva em março de 2014

Leia mais

Curso de Engenharia Naval

Curso de Engenharia Naval Curso de Engenharia Naval Enviar via email, no formato CAD [formato DXF ou AutoCAD DWG (versão menos recente que a 2013) ], as duas épuras seguintes com a legenda indicando o autor do exercício. A margem

Leia mais

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,

Leia mais

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres (juliotorres@ufrj.br) REPRESENTAÇÃO

Leia mais

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

Notas de Aula de Geometria Descritiva - GGM - IME - UFF

Notas de Aula de Geometria Descritiva - GGM - IME - UFF Aula 01: O Ponto O objetivo da Geometria Descritiva é representar no plano as figuras do espaço, possibilitando o estudo de suas propriedades e a resolução de problemas espaciais através da Geometria Plana.

Leia mais

COLÉGIO PEDRO II U. E. ENGENHO NOVO II

COLÉGIO PEDRO II U. E. ENGENHO NOVO II COLÉGIO PEDRO II U. E. ENGENO NOVO II Terceira projeção da reta de perfil Determinação dos traços Pertinência de ponto à reta de perfil - 2º no do Ensino Médio Prof a. Soraya Coord. Prof. JORGE MRCELO

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Geometria Espacial de Posição

Geometria Espacial de Posição Geometria Espacial de Posição Prof.: Paulo Cesar Costa www.pcdamatematica.com Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele

Leia mais

2ª série Ensino Médio. Aluno(a): N o Turma: Disciplina: DESENHO Coordenação: Prof. Jorge Marcelo Prof.ª: Soraya Izar

2ª série Ensino Médio. Aluno(a): N o Turma: Disciplina: DESENHO Coordenação: Prof. Jorge Marcelo Prof.ª: Soraya Izar COLÉGIO PEDRO II U E EN II 2ª série Ensino Médio Estudo do Ponto Março/ 2011 Aluno(a): N o Turma: Disciplina: DESENHO Coordenação: Prof. Jorge Marcelo Prof.ª: Soraya Izar Apostila extra 2 ESTUDO DO PONTO

Leia mais

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides )

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Geometria Descritiva. Alfabeto do Plano:

Geometria Descritiva. Alfabeto do Plano: Geometria Descritiva Alfabeto do Plano: Posição de um plano em relação aos: Planos projectantes - Paralelo - perpendicular a um só plano - perpendicular aos dois planos Planos não projectantes: Retas contidas

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

PROPOSTAS DE RESOLUÇÃO

PROPOSTAS DE RESOLUÇÃO Exame Nacional de 2010 (2.ª Fase) 1. Em primeiro lugar representaram-se as retas a e b, bem como o ponto P, pelas respetivas projeções. As projeções da reta a desenharam-se em função dos respetivos ângulos

Leia mais

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,

Leia mais

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano. FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

Revisões de Geometria Descritiva

Revisões de Geometria Descritiva Revisões de Geometria Descritiva Projeção de Pontos Projeção de 2 Pontos numa reta proj. Hor., Frontal e simétricos Representação da reta Pontos Notáveis Percurso da reta, Visibilidades e Invisibilidade

Leia mais

Item 1 (Paralelismo) Item 2 (Distâncias)

Item 1 (Paralelismo) Item 2 (Distâncias) Item 1 (Paralelismo) 1. Representam-se os dados do enunciado; 2. Este relatório apresenta dois processos distintos para a resolução do primeiro exercício do Exame: o Processo A (que consiste em visualizar

Leia mais

PLANIFICAÇÃO DA DISCIPLINA. Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário

PLANIFICAÇÃO DA DISCIPLINA. Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário PLANIFICAÇÃO DA DISCIPLINA Escola Secundária Campos de Melo Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário Professor: Ana Fidalgo Ano letivo 2011/2012

Leia mais

Escola Secundária de Alberto Sampaio - Braga Junho de Proposta de correcção do exame nacional de Geometria Descritiva A (prova 708) 1ª fase

Escola Secundária de Alberto Sampaio - Braga Junho de Proposta de correcção do exame nacional de Geometria Descritiva A (prova 708) 1ª fase Exercício 1-1ª hipótese de resolução (escala 1:1) Jorge Marques e Estefânio Lemos 1 10 Exercício 1-2ª hipótese de resolução (escala 1:1) Jorge Marques e Estefânio Lemos 2 10 Exercício 1-3ª hipótese de

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017 Apresentação da disciplina: Objetivos, funcionamento e avaliação. 1. Módulo inicial 2. Introdução à Geometria Descritiva Domínios: Socio Afetivo e Cognitivo. Avaliação e sumativa. Lista de material e sua

Leia mais

Geometria Descritiva Sistema Mongeano

Geometria Descritiva Sistema Mongeano Geometria Descritiva Prof. Luiz Antonio do Nascimento Método da Dupla Projeção A Geometria Descritiva utiliza um sistema de projeções elaborado por Garpard Monge, conhecido como, Ortogonal ou Diédrico.

Leia mais

Dupla Projeção Ortogonal / Método de Monge

Dupla Projeção Ortogonal / Método de Monge Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade Para a Frequência do Ensino Superior dos Maiores de 23 Anos 2016 Prova de Desenho e Geometria Descritiva - Módulo de Geometria Descritiva

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto

Leia mais

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 1 Fundamentos de Geometria Euclidiana Plana e Ângulos SUMÁRIO 1. Fundamentos 1.1. Postulados principais 1.2. Determinação do plano 1.3. Posições

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA

EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II 3 a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA EXERCÍCIOS DE FIXAÇÃO MATEMÁTICA II a SÉRIE ENSINO MÉDIO INTEGRADO GEOMETRIA ANALÍTICA ******************************************************************************** 1) (U.F.PA) Se a distância do ponto

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

Profº Luiz Amiton Pepplow, M. Eng. DAELT - UTFPR

Profº Luiz Amiton Pepplow, M. Eng. DAELT - UTFPR Fonte:http://www.bibvirt.futuro.usp.br/textos/didaticos_e_tematicos/telecurso_2000_cursos_profissio nalizantes/telecurso_2000_leitura_e_interpretacao_de_desenho_tecnico_mecanico Telecurso 2000 - Leitura

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

GDC I AULA TEÓRICA 07

GDC I AULA TEÓRICA 07 GDC I AULA TEÓRICA 07 Perspectiva linear de quadro plano: - Determinação de pontos de fuga de direcções de figuras planas contidas em orientações (dadas) ortogonais e oblíquas ao quadro. - O rebatimento

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Prova Prática de Geometria Descritiva A

Prova Prática de Geometria Descritiva A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Prática de Geometria Descritiva A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 708/1.ª Fase 3 Páginas Duração da Prova: 150 minutos.

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

3. Representação diédrica de pontos, rectas e planos

3. Representação diédrica de pontos, rectas e planos 3. Representação diédrica de pontos, rectas e planos Geometria Descritiva 2006/2007 Geometria de Monge Utilizam-se simultaneamente dois sistemas de projecção paralela ortogonal. Os planos de projecção

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

GEOMETRIA DESCRITIVA. Professor: Luiz Gonzaga Martins, M.Eng. Acadêmica: Suelen Cristina da Silva

GEOMETRIA DESCRITIVA. Professor: Luiz Gonzaga Martins, M.Eng. Acadêmica: Suelen Cristina da Silva GEOMETRIA DESCRITIVA Professor: Luiz Gonzaga Martins, M.Eng. Acadêmica: SUMÁRIO DICAS PARA OS ALUNOS...2 1. BREVE HISTÓRIA...5 2. PROJEÇÃO...6 3. MÉTODO BIPROJETIVO...7 4. A ÉPURA...10 5. COMO REPRESENTAR

Leia mais

Coordenadas e distância na reta e no plano

Coordenadas e distância na reta e no plano Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais

Leia mais

Cidália Fonte Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Cidália Fonte Faculdade de Ciências e Tecnologia da Universidade de Coimbra 1. Introdução Geometria Descritiva 2006/2007 Geometria Descritiva Programa 1. Introdução 2. Projecções 2.1 Sistemas de projecção plana 2.2 Propriedades das projecções cónicas e cilíndricas 2.3 Métodos

Leia mais

DESENHO TÉCNICO I - EM

DESENHO TÉCNICO I - EM DESENHO TÉCNICO I - EM Conteúdo teórico e referência para os exercícios práticos extraídos da publicação: Desenho Técnico Básico - Fundamentos teóricos e exercícios à mão livre, Volumes I e II. José Carlos

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz.

1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1º - traçar uma reta A-B 2º - ponta seca em A (abertura do compasso um pouco maior que a metade), risca em cima e risca embaixo.

Leia mais

a) Postulado 1 - Por dois pontos...passa uma e só uma reta

a) Postulado 1 - Por dois pontos...passa uma e só uma reta PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. 01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

AGRUPAMENTO DE CLARA DE RESENDE COD COD

AGRUPAMENTO DE CLARA DE RESENDE COD COD CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO ( Aprovados em Conselho Pedagógico de 16 outubro de 2012 ) No caso específico da disciplina de Geometria Descritiva do 11º ano de escolaridade, a avaliação incidirá ainda

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais