A seqüência correta do ciclo de vida de uma angiosperma, desde o início da formação da flor, é a) gametófito gametas zigoto esporófito esporos

Tamanho: px
Começar a partir da página:

Download "A seqüência correta do ciclo de vida de uma angiosperma, desde o início da formação da flor, é a) gametófito gametas zigoto esporófito esporos"

Transcrição

1 21 e BIOLOGIA A btt-ingles (bttinh) é muito ric em mido. O órgão vegetl que rmzen ess substânci corresponde, e o mido é encontrdo nos, loclizdos no ds céluls. Os espços devem ser preenchidos, corret e respectivmente, por ) à riz; leucoplstos; vcúolo b) à riz; cloroplstos; citoplsm c) à riz; cloroplstos; vcúolo d) o cule; leucoplstos; vcúolo e) o cule; leucoplstos; citoplsm A btt-ingles (bttinh) rmzen no cule subterrâneo (tubérculo) grndes quntiddes de mido. Ess substânci é encontrd em orgnóides citoplsmáticos chmdos leucoplstos ou miloplstos. 22 d A seqüênci corret do ciclo de vid de um ngiosperm, desde o início d formção d flor, é ) gmetófito gmets zigoto esporófito esporos b) gmetófito gmets esporófito esporos zigoto c) gmetófito gmets zigoto esporos esporófito d) esporófito esporos gmetófito gmets zigoto e) esporófito esporos zigoto gmetófito gmets A flor é o prelho reprodutor ds ngiosperms formd prtir do esporófito. A seqüênci do ciclo de vid será: Esporófito Esporo Gmetófito Gmets Zigoto.

2 23 e A florest ou mt de rucáris situ-se nos estdos do Rio Grnde do Sul, Snt Ctrin, Prná e São Pulo. O pinheiro-do-prná (Arucri ngustifoli) é árvore mis crcterístic dess mt, chegndo tingir 25 m de ltur, com troncos de té 1,5 m de diâmetro. A respeito dess espécie vegetl, é correto firmr que ) é monóic, isto é, que mesm plnt present flores msculin e feminin. b) possui flores feminins trentes, fvorecendo polinizção por insetos e ves. c) possui fruto, o pinhão, que contém um semente em seu interior. d) tem folhs lrgs, permitindo lt tx de trnspirção. e) sus flores feminins possuem óvulos, ms não ovários. As plnts gimnosperms, entre els rucári, produzem flores msculins produtors de pólen e feminins formdors de óvulos. Nesss flores não se formm ovários. 24 Há um grupo de invertebrdos que present lgums crcterístics encontrds tmbém em corddos, evidencindo que mbos tiverm ncestris comuns. O grupo de invertebrdos e s crcterístics referids são ) b) c) d) e) Grupo Equinodermos Equinodermos Anelídeos Artrópodos Moluscos Crcterístics Esqueleto interno, deuterostomi e simetri bilterl n lrv Esqueleto interno, protostomi e simetri rdil n lrv Esqueleto interno, deuterostomi e simetri bilterl n lrv Esqueleto externo, protostomi e simetri rdil n lrv Esqueleto externo, deuterostomi e simetri bilterl n lrv Os equinodermos presentm lgums semelhnçs com os corddos, entre els: esqueleto interno de nturez clcári deuterostomi lrv com simetri bilterl

3 25 A Embrp desenvolveu um bioinseticid que tem em su composição um bctéri, o Bcillus sphericus, cpz de controlr s lrvs de pernilongos. Qundo ingerids pels lrvs, s bctéris liberm um substânci de nturez protéic que dnific o tubo digestório, cusndo morte ds lrvs por innição. Assim, lrvs de Anopheles, de Culex e de Aedes têm sido eliminds. Tl eliminção combte, respectivmente, s seguintes doençs: ) mlári, elefntíse e dengue. b) mlári, Chgs e leishmniose. c) febre mrel, leishmniose e dengue. d) mlári, febre mrel e toxoplsmose. e) toxoplsmose, mlári e dengue. Anopheles, Culex e Aedes são os vetores, respectivmente, d mlári, elefntíse e dengue. 26 A respeito do código genético, é correto firmr que ) é considerdo degenerdo, porque há códons diferentes pr um mesmo minoácido. b) present códons diferentes em cd espécie de ser vivo, o que explic diversidde biológic. c) é ddo pel seqüênci de minoácidos em um proteín. d) result em dus cópis idêntics, sem possibilidde de erro no processo, sempre que é copido. e) todos os seus tipos de bses nitrogends podem ser encontrdos tnto no DNA qunto no RNA. O código genético é dito degenerdo porque cd minoácido pode ser codificdo por dois ou mis códons diferentes.

4 27 O gráfico bixo represent o processo de digestão de mido. Anlisndo o gráfico cim, e considerndo o processo nele representdo, é correto firmr que ) II represent concentrção de milse, que, por ser um enzim, não é consumid durnte reção. b) III represent concentrção de glicose, que é produzid nesse processo. c) o ph ótimo pr ocorrênci dess reção é em torno de 2,0. d) I represent vrição n concentrção do substrto sobre o qul ge milse. e) esse processo ocorre exclusivmente no intestino delgdo. Enzims são ctlizdores biológicos. Acelerm reções sem serem consumids ns mesms.

5 28 c ncestrl equinodermos peixes nfíbios répteis mmíferos O esquem cim represent evolução dos nimis prtir de um ncestrl comum. Sbendo-se que o critério utilizdo pr seprr cd grupo se refere crcterístics do sistem circultório, é correto firmr que ) o ncestrl já possuí sistem circultório fechdo. b) 3 indic o surgimento de pigmentos respirtórios. c) todos possuem circulção dupl, prtir de 2. d) 4 indic o surgimento de 2 átrios. e) 5 indic seprção totl dos ventrículos. A circulção é simples nos peixes e dupl prtir dos nfíbios. 29 b ves Existe um tipo de rquitismo denomindo hipofosftemi, cusdo por um gene dominnte não letl situdo no cromossomo X. Se um homem fetdo cs-se com um mulher tmbém fetd, ms filh de pi norml, probbilidde de nscer um crinç norml é de ) 0% b) 25% c) 50% d) 75% e) 100% Alelos: H (hipofosftemi) e h (norml) (P) X H Y x X H X h (F 1 ) X H X H X H X h X H Y X h Y % fetdos 25% normis 30 d Os indivíduos 1, 3, 5 e 6 pertencem o grupo sngüíneo A; o indivíduo 2 pertence o tipo O e o indivíduo 4 pertence o tipo B. Sbendo se que polidctili é devid um gene utossômico dominnte, probbilidde de o csl 5X6 ter um crinç pertencente o tipo sngüíneo A e norml pr polidctili é de ) 1/4 b) 3/4 c) 1/2 d) 3/16 e) 1/16 Genótipos prentis: (5) I A i Pp x (6) I A i Pp P (crinç I A I A ou I A i e pp) = 3/4. 1/4 = 1/16

6 Comentário de Biologi Prov simples, com questões bordndo ssuntos básicos d mtéri.

04.01. O alto grau de exigência nos testes feitos em organismos transgênicos minimizam ao máximo os riscos para a saúde e para o ambiente.

04.01. O alto grau de exigência nos testes feitos em organismos transgênicos minimizam ao máximo os riscos para a saúde e para o ambiente. BIO 2E ul 04 04.01. O lto gru de exigênci nos testes feitos em orgnismos trnsgênicos minimizm o máximo os riscos pr súde e pr o mbiente. 04.02. Como o código genético é universl, é possível fzer trnsferênci

Leia mais

Resoluções das atividades

Resoluções das atividades LIVRO BIOLOGI Resoluções ds tividdes Sumário Cpítulo Pré-Mendelismo e Genétic Mendelin... Cpítulo Redescobert do trblho de Mendel, mono-hibridismo e estudo de heredogrms... Cpítulo Hernç utossômic monogênic,

Leia mais

CRUZAMENTO Indivíduo 12 Indivíduo 18 aa X Aa

CRUZAMENTO Indivíduo 12 Indivíduo 18 aa X Aa BIO 3E ul 07 07.01. Pr determinr se um crcterístic genétic é dominnte ou recessiv trvés d interpretção de um genelogi, deve-se procurr um cruzmento entre indivíduos normis que tenh, pelo menos, um descendente

Leia mais

Métodos utilizados em genética mendeliana

Métodos utilizados em genética mendeliana Cpítulo 3 Neste cpítulo Cruzmento- -teste. Noções de probbilidde. Construção de heredogrms. Métodos utilizdos em genétic mendelin O modelo experimentl desenvolvido por Gregor Mendel pr estudr trnsmissão

Leia mais

A respeito das flores, que são estruturas exclusivas das gimnospermas e das angiospermas, considere as afirmações

A respeito das flores, que são estruturas exclusivas das gimnospermas e das angiospermas, considere as afirmações 21 BIOLOGIA A respeito ds flores, que são estruturs exclusivs ds gimnosperms e ds ngiosperms, considere s firmções ixo. I Podem ou não ser hermfrodits. II Tods possuem ovário contendo um ou mis óvulos.

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teori d Computção Segundo Semestre, 2014 ul 8: Grmátics Livres de Contexto DINF-UTFPR Prof. Ricrdo Dutr d Silv Veremos gor mneir de gerr s strings de um tipo específico de lingugem, conhecido como lingugem

Leia mais

Biologia Fascículo 09 Juvenal Carlos Schalch

Biologia Fascículo 09 Juvenal Carlos Schalch iologi Fscículo 09 Juvenl Crlos Schlch Índice Genétic...1 Exercícios...7 Grito...10 Genétic Nomencltur genétic genótipo: é o ptrimônio genético de um indivíduo, representdo pelo conjunto de seus genes.

Leia mais

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos:

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos: Desvios de Hrdy-Weinberg cslmento preferencil Mutção Recombinção Deriv Genétic Fluo gênico Fluo Gênico O modelo de Hrdy-Weinberg consider pens um únic populção miori ds espécies tem váris populções locis

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

b para que a igualdade ( ) 2

b para que a igualdade ( ) 2 DATA DE ENTREGA: 0 / 06 / 06 QiD 3 8º ANO PARTE MATEMÁTICA. (,0) Identifique o monômio que se deve multiplicr o monômio 9 5 8 b c. 5 b pr obter o resultdo. (,0) Simplifique s expressões bixo. ) x + x(3x

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth FUNCIONL ENTORNO IDENTIFICR RELÇÃO DO EDIFÍCIO COM OS ELEMENTOS DE ENTORNO, CONSIDERNDO OS TRIBUTOS DO LUGR - MSSS EDIFICDS, RELÇÕES DE PROXIMIDDE, DIÁLOGO, INTEGRÇÃO OU UTONOMI O ENTORNO D CSH #9 É COMPOSTO

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

a FICHA DE AVALIAÇÃO FORMATIVA 9.º ANO

a FICHA DE AVALIAÇÃO FORMATIVA 9.º ANO Cristin Antunes Mnuel Bispo Pul Guindeir FICHA DE AVALIAÇÃO FORMATIVA 9.º ANO Escol Turm N.º Dt Grupo I Documento I É um serviço de tendimento telefónico de Trigem, Aconselhmento e Encminhmento, Assistênci

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

Primeira Lei de Mendel e probabilidade associada à Genética 37

Primeira Lei de Mendel e probabilidade associada à Genética 37 Unidde GENÉTIC sexo feminino sexo msculino crinç indivíduo de sexo desconhecido Primeir Lei de Mendel e proilidde ssocid à Genétic 7 um csl Psso psso. -II, -I, c-iii, d-iv.. Sim. Dus populções geneticmente

Leia mais

UNIVERSIDADE FEDERAL DE JUIZ DE FORA PROVA DE BIOLOGIA- VESTIBULAR 2007 ABERTA

UNIVERSIDADE FEDERAL DE JUIZ DE FORA PROVA DE BIOLOGIA- VESTIBULAR 2007 ABERTA Vestiulndo We Pge www.vestiulndowe.com.r UNIVERSIDDE FEDERL DE JUIZ DE FOR PROV DE IOLOGI- VESTIULR 2007 ERT 01) O esquem ixo ilustr de form sintétic o processo de formção de gmets (meiose) de um indivíduo

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

Citologia das alterações leucocitárias

Citologia das alterações leucocitárias Citologi ds lterções leucocitáris Principis lterções leucocitáris recionis o Infecções bcterins e processos inflmtórios gudos: frequentemente há leucocitose com desvio à esquerd gerlmente esclondo nesss

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

b) Justifique sua resposta. Resolução a) A afirmação não é válida. b) Os vírus são parasitas obrigatórios de células procarióticas

b) Justifique sua resposta. Resolução a) A afirmação não é válida. b) Os vírus são parasitas obrigatórios de células procarióticas 1 BIOLOGIA Devido ao fato de serem muito simples em termos de organização, podemos afirmar que os vírus provavelmente tiveram sua origem antes do surgimento das primeiras células procarióticas. a) A afirmação

Leia mais

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos.

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos. Acoplmento É o gru de dependênci entre dois módulos. Objetivo: minimizr o coplmento grndes sistems devem ser segmentdos em módulos simples A qulidde do projeto será vlid pelo gru de modulrizção do sistem.

Leia mais

Cartilha Explicativa. Segurança para quem você ama.

Cartilha Explicativa. Segurança para quem você ama. Crtilh Explictiv Segurnç pr quem você m. Bem-vindo, novo prticipnte! É com stisfção que recebemos su desão o Fmíli Previdênci, plno desenhdo pr oferecer um complementção de posentdori num modelo moderno

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELHADOS COM DIFERENTES TIPOS DE TELHAS

A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELHADOS COM DIFERENTES TIPOS DE TELHAS A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELADOS COM DIFERENTES TIOS DE TELAS Angéli Cervi, Rosne Bins, Til Deckert e edro A.. Borges 4. Resumo A modelgem mtemátic é um método de investigção que utiliz

Leia mais

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE 07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE SEMENTES NA QUALIDADE FISIOLOGICA DA SEMENTE E A EFICIENCIA NO CONTROLE DE PRAGAS INICIAIS NA CULTURA DA SOJA Objetivo Este trblho tem como objetivo vlir o efeito

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

BIOLOGIA. 08. O desenho ilustra os cromossomos em uma fase da divisão celular e seus respectivos alelos.

BIOLOGIA. 08. O desenho ilustra os cromossomos em uma fase da divisão celular e seus respectivos alelos. BIOLOGIA CURSO APOIO 08. O desenho ilustra os cromossomos em uma fase da divisão celular e seus respectivos alelos. a) Qual fase da divisão celular está representada? Justifique sua resposta. b) Ao final

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

PROJETO DE CONSTRUÇÃO DE FOSSA BIODISGESTORA

PROJETO DE CONSTRUÇÃO DE FOSSA BIODISGESTORA PROJETO DE CONSTRUÇÃO DE FOSSA BIODISGESTORA Acdêmicos: Adenilton Sntos Moreir 123 RESUMO Este rtigo present um projeto de foss biodigestor, que será executdo pelo utor do mesmo, su principl finlidde é

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO)

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) GESTÃO DE EMPRESAS CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) Exercícios Amortizção de Empréstimos EXERCÍCIOS DE APLICAÇÃO Exercício 1 Um empréstimo vi ser reembolsdo trvés de reembolsos nuis, constntes

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

EQUAÇÕES INTENSIDADE / DURAÇÃO / PERÍODO DE RETORNO PARA ALTO GARÇAS (MT) - CAMPO ALEGRE DE GOIÁS (GO) E MORRINHOS (GO)

EQUAÇÕES INTENSIDADE / DURAÇÃO / PERÍODO DE RETORNO PARA ALTO GARÇAS (MT) - CAMPO ALEGRE DE GOIÁS (GO) E MORRINHOS (GO) ABES - Associção Brsileir de Engenhri Snitári e Ambientl V - 002 EQUAÇÕES INTENSIDADE / DURAÇÃO / PERÍODO DE RETORNO PARA ALTO GARÇAS (MT) - CAMPO ALEGRE DE GOIÁS (GO) E MORRINHOS (GO) Alfredo Ribeiro

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Comissão Permanente de Concurso Público CONCURSO PÚBLICO 23 / MAIO / 2010

Ministério da Educação Universidade Tecnológica Federal do Paraná Comissão Permanente de Concurso Público CONCURSO PÚBLICO 23 / MAIO / 2010 Ministério d Educção Universidde Tecnológic Federl do Prná Comissão Permnente de Concurso Público PR CONCURSO PÚBLICO 23 / MAIO / 2010 ÁREA / SUBÁREA: ELETROTÉCNICA GABARITO PROJETOS ELÉTRICOS INSTRUÇÕES

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

CTM Primeira Lista de Exercícios

CTM Primeira Lista de Exercícios CTM Primeir List de Exercícios. Cite crcterístics típics de cd um ds 5 clsses de mteriis presentds no curso. Metis: resistentes, dúcteis, bons condutores térmicos/elétricos Cerâmics: resistentes, frágeis,

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

ANEXO 1. NOTA TÉCNICA

ANEXO 1. NOTA TÉCNICA ANEXO 1. NOTA TÉCNICA As plnts de clim temperdo, como pereir, necessitm de repouso invernl pr quebr de dormênci, florção bundnte e retomd d produção. A quebr de dormênci está relciond com o cúmulo de hors

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 3º ANO DO ENSINO MÉDIO

COLÉGIO MARISTA - PATOS DE MINAS 3º ANO DO ENSINO MÉDIO COLÉGIO MRIST - PTOS DE MINS 3º NO DO ENSINO MÉDIO - 2013 Professor (): Mirley lves Vsconcelos 1ªRECUPERÇÃO UTÔNOM Roteiro de Estudos - Questões Estudnte: Turm: 301 Conteúdo: Genétic - Hernç dos grupos

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I Aprimorndo os Conhecimentos de Mecânic List 7 Grndezs Cinemátics I 1. (PUCCAMP-98) Num birro, onde todos os qurteirões são qudrdos e s rus prlels distm 100m um d outr, um trnseunte fz o percurso de P Q

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

UFU Universidade Federal de Uberlândia Faculdade de Computação Apostila de Lógica Proposicional (Fundamentos Básicos)

UFU Universidade Federal de Uberlândia Faculdade de Computação Apostila de Lógica Proposicional (Fundamentos Básicos) UFU Universidde Federl de Uberlândi Fculdde de Computção Apostil de Lógic Proposicionl (Fundmentos Básicos) Prof. Luiz Gustvo Almeid Mrtins UFU - Fculdde de Computção Lógic Proposicionl Fundmentos Básicos

Leia mais

INFLUÊNCIA DO CLIMA (EL NIÑO E LA NIÑA) NO MANEJO DE DOENÇAS NA CULTURA DO ARROZ

INFLUÊNCIA DO CLIMA (EL NIÑO E LA NIÑA) NO MANEJO DE DOENÇAS NA CULTURA DO ARROZ INFLUÊNCIA DO CLIMA (EL NIÑO E LA NIÑA) NO MANEJO DE DOENÇAS NA CULTURA DO ARROZ Ricrdo S. Blrdin Mrcelo G. Mdlosso Mônic P. Debortoli Giuvn Lenz. Dep. Defes Fitossnitári - UFSM; Instituto Phytus. Em nos

Leia mais

46. Com relação à pequena circulação, assinale a afirmativa CORRETA:

46. Com relação à pequena circulação, assinale a afirmativa CORRETA: 2 o PROCESSO SELETIVO/2005 2 O DIA GABARITO 1 29 BIOLOGIA QUESTÕES DE 46 A 60 46. Com relação à pequena circulação, assinale a afirmativa CORRETA: a) A artéria pulmonar sai do ventrículo esquerdo e transporta

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

Rolamentos com uma fileira de esferas de contato oblíquo

Rolamentos com uma fileira de esferas de contato oblíquo Rolmentos com um fileir de esfers de contto oblíquo Rolmentos com um fileir de esfers de contto oblíquo 232 Definições e ptidões 232 Séries 233 Vrintes 233 Tolerâncis e jogos 234 Elementos de cálculo 236

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

ATIVIDADES DE RECUPERAÇÃO PARALELA 2º Trimestre. 3 ano DISCIPLINA: BIOLOGIA B

ATIVIDADES DE RECUPERAÇÃO PARALELA 2º Trimestre. 3 ano DISCIPLINA: BIOLOGIA B ATIVIDADES DE RECUPERAÇÃO PARALELA 2º Trimestre 3 ano DISCIPLINA: BIOLOGIA B Observações: 1- Antes de responder às atividades, releia o material entregue sobre Sugestão de Como Estudar. 2 - Os exercícios

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

A FAMÍLIA SILVA E SEUS GENES. Os filhos são diferentes, mas todos são Silva. Saiba como! ALBINO PIGMENTADO PROCEDIMENTO

A FAMÍLIA SILVA E SEUS GENES. Os filhos são diferentes, mas todos são Silva. Saiba como! ALBINO PIGMENTADO PROCEDIMENTO A FAMÍLIA SILVA E SEUS GENES Os filhos são diferentes, mas todos são Silva. Saiba como! ALBINO PIGMENTADO PROCEDIMENTO PROCEDIMENTO PARTE 1 Determinação dos genótipos dos pais 1.1. Observar a aparência

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho Equilíbrio do indivíduo-consumidor-trblhdor e ofert de trblho 6 1 Exercício de plicção: Equilíbrio de um consumidor-trblhdor e nálise de estátic comprd Exercícios pr prátic do leitor Neste cpítulo, presentmos

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM Inspeção visul de emblgens de microesfers de vidro retrorrefletivs Norm Rodoviári DNER-PRO /9 Procedimento Págin de RESUMO Este documento, que é um norm técnic, estbelece s condições que devem ser observds

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Austrle Jornl essol de Astronomi, Físic e Mtemátic - roduzido por Irineu Gomes Vrell Crido em 995 Retomdo em Junho de 0 Ano III Nº 04 - Setembro de 0 ÓRBITAS LANETÁRIAS E LEIS DE KELER rof. Irineu

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

a FICHA DE AVALIAÇÃO FORMATIVA 8.º ANO

a FICHA DE AVALIAÇÃO FORMATIVA 8.º ANO Cristin Antunes Mnuel Bispo Pul Guindeir FICHA DE AVALIAÇÃO FORMATIVA 8.º ANO Escol Turm N.º Dt Grupo I Ns mis diverss zons do plnet Terr vivem nimis. Como cd um dests zons possui diferentes condições,

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Semana Epidemiológica de Início de Sintomas

Semana Epidemiológica de Início de Sintomas Boletim Epidemiológico Volume 46 N 3-2015 Secretri de Vigilânci em Súde Ministério d Súde ISSN 2358-9450 Monitormento dos csos de dengue e febre de chikunguny té Semn Epidemiológic (SE) 53 de 2014 Dengue

Leia mais

Matemática. Prova: 05/08/12. Questão 1. Questão 2. Considere os seguintes conjuntos numéricos,,,, = e considere também os seguintes conjuntos:

Matemática. Prova: 05/08/12. Questão 1. Questão 2. Considere os seguintes conjuntos numéricos,,,, = e considere também os seguintes conjuntos: Prov: 05/08/ Mtemátic Questão Considere os seguintes conjuntos numéricos,,,, = e considere tmbém os seguintes conjuntos: A= ( ) ( ) B= ( ) D= ( ) ( ) Ds lterntivs bixo, que present elementos que pertencem

Leia mais

Questão 89. Questão 91. Questão 90. alternativa A. alternativa E

Questão 89. Questão 91. Questão 90. alternativa A. alternativa E Questão 89 O esquema representa o sistema digestório humano e os números indicam alguns dos seus componentes. Nível de açúcar no sangue mg/100ml 200 150 100 50 B A 0 1 2 3 4 5 Número de horas após a alimentação

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito ns melhores fculddes IBMEC 03/junho/007 ANÁLISE QUANTITATIVA E LÓGICA DISCUSIVA 01. O dministrdor de um boliche pretende umentr os gnhos com sus pists. Atulmente, cobr $ 6,00 por um hor

Leia mais