Seu pé direito nas melhores faculdades

Tamanho: px
Começar a partir da página:

Download "Seu pé direito nas melhores faculdades"

Transcrição

1 Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados e Y refrigerantes nessa lanchonete, gastou o mesmo que Luana, que comprou Y salgados e Y refrigerantes. Então, pode-se concluir que a) Y = X b) Y = X c) X = Y d) Y = X e) X = Y Considerando os dados do enunciado, temos: X + Y = XY + Y X XY Y = 0. Resolvendo a equação na variável X, temos: = ( Y).. ( Y ) = 9Y X = Y ± Y X = Y ou X = Y (não convém) portanto X = Y lternativa C. Define-se aproveitamento de uma equipe de futebol num determinado campeonato como o número de pontos efetivamente conquistados por essa equipe dividido pelo número de pontos que ela teria obtido se tivesse vencido todos os jogos que disputou, sendo essa fração escrita na forma de porcentagem. Em cada partida, uma equipe ganha pontos em caso de vitória, ponto em caso de empate e 0 ponto em caso de derrota. Nos dez primeiros jogos de um campeonato, a equipe rrancatoco obteve 8 pontos, tendo, portanto, um aproveitamento de 60%. O número mínimo de jogos que o rrancatoco ainda deverá disputar nesse campeonato para que seu aproveitamento final possa superar 70% é igual a a) b) c) d) e) 5 ibmecjun007 Considerando um total de n jogos a mais, temos: 8 + n n 70% = = 0 + n n n = n 0 = n n =, Note que esse cálculo pressupõe que o time ganharia todos os próximos jogos. ssim, o número mínimo de jogos é. lternativa D π π π π nπ. Dado o conjunto =,,,,...,,..., considere a função f: IR dada pela lei f(x) = sen x + cos x. Se I é o conjunto imagem da função f, então I possui a) elementos b) elementos c) 5 elementos d) 8 elementos e) infinitos elementos π π π π nπ Considerando o conjunto =,,,,...,,..., temos as seguintes imagens: x y = sen x + cos x π y = π y = π y = 0 π y = 5π y = π y = 7π y = 0 π y =.. Observamos na tabela acima que há 5 valores distintos de y, portanto I possui 5 elementos. lternativa C

2 IBMEC 0/06/007 Seu pé direito nas melhores Faculdades. Júlia construiu um losango, mostrado na figura abaixo, usando 6 peças com a forma de triângulos equiláteros. s peças claras têm todas o mesmo tamanho, o mesmo ocorrendo com as peças escuras. a > a 0 a x + ax a = 0 a x = ax + a ( a) a x = x + Sejam f(x) = a x e g(x) = x + y f(x) x Se a área do losango montado por Júlia é 6, então as áreas de uma peça clara e de uma peça escura valem, respectivamente, a) e 9 b) e c) e 6 d) e 8 e) e 5 g(x) a x = x + f(x) = g(x) ( pontos) equação ax + ax a = 0 tem apenas duas soluções, independente do valor de a. lternativa E 6. Na figura abaixo estão representados infinitos hexágonos regulares, construídos a partir das seguintes informações: cada lado do maior deles mede, cada vértice do segundo maior hexágono está sobre o ponto médio de um lado do maior hexágono, cada vértice do terceiro maior está sobre o ponto médio de um lado do segundo maior, cada vértice do quarto maior hexágono está sobre o ponto médio de um lado do terceiro maior, e assim por diante. Como a figura pode ser fracionada em triângulos de mesma área (sendo brancos e 8 pretos), temos: branco = 6 = branco = Logo, preto = 9. = 8 5. Se a >, então a equação a x + ax a = 0 tem lternativa D a) nenhuma solução, independente do valor de a. b) nenhuma ou apenas uma solução, dependendo do valor de a. c) nenhuma, apenas uma ou apenas duas soluções, dependendo do valor de a. d) apenas uma solução, independente do valor de a. e) apenas duas soluções, independente do valor de a. O limite da soma das áreas das regiões sombreadas é igual a a) b) 8 c) d) 6 e) 0 ibmecjun007

3 Seu pé direito nas melhores Faculdades IBMEC 0/06/007 a) ( + 6) cm S b) (6 + 0) cm S c) (0 + ) cm d) ( + 8) cm S e) (8 + ) cm S S / S / H G M F S =... sen 0º = 6 C D S = S =..... sen 0º =. sen 0º = 9 6 B 6 6 E (S ; S ; S,...) é uma PG de razão q = Portanto, a soma S pedida é: S =. S +. S +. S +... =. (S + S + S +...) soma da PG infinita S =. a q =. = 8 Outra maneira de resolver a questão 6: área hachurada corresponde a da área do hexágono, portanto 6 S = S equil. S = S = 8 lternativa B 7. Considere uma pirâmide reta cuja base é um quadrado de lado 6 cm e cujas faces laterais são triângulos equiláteros. Uma formiga posicionada inicialmente num dos vértices do quadrado da base vai escalar a pirâmide. Ela inicia sua trajetória de maneira retilínea sobre uma das faces triangulares adjacentes ao vértice em que está, indo diretamente ao ponto médio do lado oposto, subindo assim metade da altura total a que irá se elevar. Como está cansada, caminha até o ponto médio do outro lado (não pertencente à base) sobre o triângulo adjacente ao que acabou de percorrer, mantendo-se no mesmo nível de altura. No triângulo seguinte, ela caminha de maneira retilínea até o ponto da outra aresta (não pertencente à base) cuja altura é três quartos da altura da pirâmide. Mantém-se nesse nível de altura durante sua caminhada no triângulo seguinte e chega a um ponto sobre a mesma aresta do ponto onde começou, pela qual sobe diretamente até o vértice superior da pirâmide. Em toda sua caminhada, a formiga andou B F G M C o movimento o movimento (BC) = (BM) + (MC) MF = 8 BM = 8 D E E B o movimento o movimento (F) = (G) + (FG) G = = + (FG) 5 o movimento FG = H = Total do percurso = = ( + 6) cm lternativa 8. Quando aumentamos em 60% um número real positivo b, seu logaritmo decimal aumenta em 0%. Considerando log = 0,0, podemos concluir que a) b = b) b = c) b = d) b = 8 e) b = 0 C M G H F D ibmecjun007

4 IBMEC 0/06/007 Seu pé direito nas melhores Faculdades log (,6 b) =, log b log,6 + log b =, log b log 6 0 = 0, log b log log 0 = 0, log b. log = 0, log b. 0, = 0, log b 0, = 0, log b log b = b = 0 lternativa E 9. Euler e Gauss, os dois professores de Matemática de uma escola, usam um dado de seis faces não viciado para definir o elaborador de cada prova. Pelas regras estabelecidas, cada um deles lança o dado uma vez e calcula o cosseno do arco cuja medida, em radianos, é igual ao número de pontos por ele obtido. quele que obtém o menor resultado prepara a prova, sendo que, em caso de empate, cada um faz metade das questões. Se numa certa disputa Euler obtiver em seu lançamento o número, então a probabilidade de que Gauss tenha de preparar todas as questões dessa prova será igual a a) b) c) d) e) Inicialmente, temos: cos < cos < cos < cos 5 < cos < cos 6. Desta forma, como Euler obteve o número no dado, Gauss deve tirar ou para obter menor resultado e, assim, ter de preparar todas as questões da prova. Portanto, a probabilidade pedida é 6 =. 50. Uma operadora de contact afirma que pelo menos 90% das ligações que seus atendentes recebem, para atendimento dos clientes das empresas para as quais presta serviço, são concluídas. Declara também que, das ligações que caem, em apenas metade dos casos, o cliente não consegue fazer a sua solicitação. Nessas condições, a probabilidade de um cliente ligar para a operadora vezes e em todas elas sua ligação cair antes de ele conseguir fazer sua solicitação é no máximo igual a a) 0,05. b) 0,005. c) 0,0005. d) 0, e) 0, Como pelo menos 90% das ligações são concluídas, no máximo 0% não são, ou seja, caem. Temos ainda que em 0% = 5% das ligações o cliente não consegue fazer sua solicitação. Desta forma, a probabilidade pedida é (5%) = 0,0005 lternativa C 5. Considere, no plano cartesiano da figura, o triângulo de vértices, B e C. Se r é a reta suporte da bissetriz do ângulo ^BC, então o coeficiente angular de r é igual a rad rad a) rad 6 rad b) c) d) rad 5 rad lternativa e) ibmecjun007

5 Seu pé direito nas melhores Faculdades IBMEC 0/06/007 5 O y C á B θ α B m B = =. = m BC = =. = γ = 0º θ = 60º α x P T m(b)» = πr OQ OQ = (OB) OT = m(pq)» = πr α OT α No OTQ: cos = = = 60º OQ Portanto α = 0º lternativa B 5. Num conhecido programa de entrevistas, o convidado senta-se no centro de duas circunferências concêntricas, ao longo das quais são distribuídas as cadeiras dos entrevistadores. Q γ = 0º m r = tg (5º + 0º) = lternativa B 5. s figuras, fora de escala, mostram a cúpula de um abajur com a forma da superfície lateral de um tronco de cone circular reto, cujo raio da base maior mede o dobro do raio da base menor, e o recorte de tecido que foi utilizado na sua confecção. Sabendo que a linha decorativa que aparece na cúpula foi obtida traçando-se, no tecido, a corda PQ da circunferência maior, sendo PQ tangente à circunferência menor, podese concluir que a medida do ângulo central α é igual a a) 90. b) 0. c) 5. d) 50. e) 65. Cada círculo pequeno sombreado representa uma cadeira. Os 7 assentos da circunferência menor serão ocupados por entrevistadores acadêmicos e os 8 assentos da circunferência maior serão ocupados por jornalistas. Considerando as posições dos entrevistadores de cada circunferência como relativas apenas às demais posições sobre a mesma circunferência, independentemente das posições na outra circunferência ou das cadeiras em que se sentam, o número de possibilidades para acomodar os 5 entrevistadores é a) 5!. b) 7!. 9!. c) 6!. 8!. d) 7!. 8!. e) 6!. 7!. permutação circular de n pessoas é dada por (n )! Na circunferência externa, temos (8 )! = 7! permutações. Na circunferência interna, temos (7 )! = 6! permutações. O total de permutação é dado por: 7!. 6! lternativa E ibmecjun007

6 6 IBMEC 0/06/007 Seu pé direito nas melhores Faculdades 5. Considere as retas dadas pelas equações abaixo: r : y 5 = 0 r : x = 0 r : y = 0 e r 5 : x 5 = 0 r : x + y = 0 r 6 : x + y + = 0 É correto afirmar que a figura delimitada pelas retas: a) r, r, r e r 6 é um losango. b) r, r, r e r 6 é um retângulo. c) r, r, r e r 6 é um paralelogramo. d) r, r, r e r 6 é um trapézio. e) r, r, r 5 e r 6 é um losango. r :y = 5 r :y = r : y = x r :x = r 5 :x = 5 r 6 : y = x r r r r r 5 r 55. No meio de uma prova de matemática, a calculadora de um estudante apresentou o seguinte defeito: a tecla referente à operação de multiplicação parou subitamente de funcionar. Entretanto, tal calculadora dispunha das teclas apresentadas abaixo, com os respectivos significados. x substitui o número x que estiver no visor da calculadora por elevado a x; log x substitui o número x que estiver no visor da calculadora pelo logarítmo de x na base, caso x seja positivo; caso contrário, exibe uma mensagem de erro. O estudante precisava fazer a multiplicação entre dois números positivos e B. Como os números eram muito grandes, ele precisava fazer a conta na calculadora. Supondo que as teclas dos números e as teclas +,, e = estavam funcionando normalmente, para obter o resultado de que precisava, bastava: a) inserir o número, pressionar log x, pressionar +, inserir o número B, pressionar log x ; pressionar = e pressionar x. b) inserir o número, pressionar x, pressionar +, inserir o número B, pressionar log x, pressionar = e pressionar log x. c) inserir o número, pressionar x, pressionar +, inserir o número B, pressionar x, pressionar = e pressionar log x. d) inserir o número, pressionar log x, pressionar +, inserir o número B, pressionar x, pressionar = e pressionar log x. e) inserir o número, pressionar +, inserir o número B, pressionar =, pressionar x e pressionar log x. log + log B = log. B figura delimitada pelas retas r, r, r e r 6 é um trapézio. lternativa D B log. =. B lternativa ibmecjun007

7 Seu pé direito nas melhores Faculdades IBMEC 0/06/ Sejam a, b, x, y números reais positivos. Considere a seguinte relação entre números complexos: (x + yi) (a + bi) se e somente se 0 < x < a e 0 < y < b. Das figuras abaixo, a que melhor representa, no plano rgand-gauss, o conjunto das imagens dos números complexos x + yi tais que (x + yi) ( + i) é a) d) 57. Um banco opera em 0 estados brasileiros, com pelo menos 0 agências em cada estado, cada uma com pelo menos.000 clientes. Cada cliente deve ter uma senha de acesso. composta por seis dígitos numéricos. É correto afirmar que a) é possível que todos os clientes tenham senhas de acesso distintas. b) pelo menos três clientes têm senhas iguais. c) no máximo dois clientes têm senhas iguais. d) todas as possíveis senhas já foram usadas por pelo menos um cliente. e) num mesmo estado, não podem existir clientes com a mesma senha. Das estatísticas apresentadas, o número mínimo de clientes do banco em questão pode ser calculado pelo produto: b) e) MIN = = clientes Por outro lado, o total de diferentes senhas de acesso disponíveis é dado por: n = 0 6 senhas = senhas. c) Numa primeira aproximação, maximizando a diversidade de senhas usadas, é possível associar cada uma das senhas a um cliente, cobrindo os primeiros de clientes. Numa segunda aproximação, associamos o mesmo conjunto de senhas aos próximos de clientes. Finalmente, cada um dos próximos clientes terá, obrigatoriamente, senhas já usadas em pelo menos duas ocasiões anteriores. Portanto, pelo menos três clientes têm senhas iguais. lternativa B 58. Para que a afirmação Segundo a relação dada, se (x + yi) ( + i), então 0 < x < e 0 < y < e portanto o gráfico que melhor representa o conjunto das imagens é: y x lternativa Em todo vestibular para ingresso no Ibmec São Paulo há pelo menos uma questão de Lógica. seja falsa a) é necessário que não haja qualquer questão de Lógica em todo vestibular do Ibmec São Paulo. b) é necessário que não haja qualquer questão de Lógica no vestibular de junho de 007 do Ibmec São Paulo. c) é necessário que não haja qualquer questão de Lógica nos vestibulares do Ibmec São Paulo de junho de 007 para frente. d) é suficiente que haja somente uma questão de Lógica no vestibular de junho de 007 do Ibmec São Paulo. e) é suficiente que haja pelo menos um vestibular do Ibmec São Paulo em que não haja qualquer questão de Lógica. ibmecjun007

8 8 IBMEC 0/06/007 Seu pé direito nas melhores Faculdades Nessa questão, há um condicional lógico do tipo B. Para que esse condicional seja falso, é necessário que a condição ocorra, ao mesmo tempo em que o efeito B não ocorra. Em outras palavras, para que a previsão seja falsa, é necessário e suficiente que, em ao menos uma prova aplicada, não figure nenhuma questão de Lógica. À exceção da alternativa E, que é correta, as demais deveriam ser corrigidas para versões a seguir, para que satisfizessem às condições previstas no enunciado: a) é suficiente que não haja qualquer questão de Lógica em todo vestibular do Ibmec São Paulo; b) é suficiente que não haja qualquer questão de Lógica no vestibular de junho de 007 do Ibmec São Paulo; c) é suficiente que não haja qualquer questão de Lógica nos vestibulares do Ibmec São Paulo de junho de 007 para a frente; d) é insuficiente que haja somente uma questão de Lógica no vestibular de junho de 007 do Ibmec São Paulo. lternativa E 59. Observe o slogan de uma cervejaria, utilizado em uma campanha publicitária: Se o bar é bom, então o chopp é Tathurana. Os bares Matriz e utêntico oferecem a seus clientes chopp das marcas Tathurana e Karakol, respectivamente. Então, de acordo com o slogan acima, pode-se concluir que a) os dois bares são necessariamente bons. b) o bar Matriz é necessariamente bom, e o bar utêntico pode ser bom ou não. c) o bar Matriz é necessariamente bom, e o bar utêntico, necessariamente, não é bom. d) o bar Matriz pode ser bom ou não, e o bar utêntico, necessariamente, não é bom. e) os dois bares, necessariamente, não são bons. Pareando as situações apresentadas no slogan (um condicional lógico do tipo B) com suas complementares, temos o diagrama: (se) o bar é bom (então) o chopp é Tathurana 60. Considere as duas afirmações seguintes, feitas a respeito do três conjuntos de números inteiros, B e C: () Se x é elemento de, então x é elemento de B. () x é um número par pertencente a B se, e somente se, x é elemento de C. Para que as duas afirmações sejam verdadeiras para todo x inteiro, os conjuntos, B e C podem ser dados por a) = {,, 5, 0}, B = {,, 5,0} e C = {,, 5,0}. b) = {,, 5, 0}, B = {,, 0} e C = {, 0}. c) = {, 0}, B = {,, 5, 0} e C = {, 0}. d) = {, 0}, B = {, 0} e C = {, 0}. e) = {, 0}, B = {,, 0} e C = {, 5,0}. s situações apresentadas no enunciado podem ser reescritas como: ( ) B ( ) (x B) (x = par ) x C Note que a segunda situação representa uma bi-implicação, que deve ser validada duplamente, nos dois sentidos. única alternativa que satisfaz às três condições é a C: todos elementos que fazem parte de fazem parte simultaneamente de B; todos elementos pares de B fazem parte de C; e todos elementos de C fazem parte da porção par de elementos de B. lternativa C DISTRIBUIÇÃO DS QUESTÕES Probabilidade 7,5% nálise Combinatória 5% Porcentagem 5% Trigonometria 7,5% Geometria Espacial 0% Geometria Plana 7,5% Geometria nalítica 0% o bar não é bom o chopp não é Tathurana Observe que as associações corretas são duas: Se o bar é bom, então o chopp é Tathurana e Se o chopp não é Tathurana, então o bar não é bom. Por outro lado, as condições se o chopp é Tathurana e se o bar não é bom não têm implicações lógicas definitivas, pois podem associar-se a mais que um box acima. Logaritmos 0% Números Complexos Equação 5% de o Grau 5% Funções 5% Progressão Geométrica,5% Lógica 0% ssim, o Bar utêntico, que não serve Tathurana, é seguramente um bar que não é bom, enquanto o Bar Matriz, que serve Tathurana, pode ser um bar bom ou não-bom. lternativa D ibmecjun007

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS. ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

Caderno de Prova TECNOLOGIA E ANÁLISE DE DESENVOLVIMENTO DE SISTEMAS. Nome do Candidato:

Caderno de Prova TECNOLOGIA E ANÁLISE DE DESENVOLVIMENTO DE SISTEMAS. Nome do Candidato: Universidade do Estado de Santa Catarina Vestibular Vocacionado 1. Caderno de Prova ª FASE 1ª Etapa TECNOLOGIA E ANÁLISE DE DESENVOLVIMENTO DE SISTEMAS Nome do Candidato: INSTRUÇÕES GERAIS Confira o Caderno

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

no de Questões A Unicamp comenta suas provas

no de Questões A Unicamp comenta suas provas Cad no de Questões A Unicamp comenta suas provas 99 SEGUNDA FASE 4 de Janeiro de 998 Matemática 0 prova de Matemática do Vestibular Unicamp procura identificar nos candidatos um conhecimento crítico e

Leia mais

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B 1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,

Leia mais

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. EP FISL Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Exercícios Resolvidos de GEOMETRI 0 Exercícios

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO O medidor de energia elétrica de uma residência,

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM /dezembro/20 MATEMÁTICA APLICADA 0. A Espaço Inteligente Empreendimentos Imobiliários fez o lançamento de um edifício, com conjuntos comerciais a R$.800,00

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Sistemas de Informação. Matemática. Redação

Sistemas de Informação. Matemática. Redação Universidade do Estado de Santa Catarina Vestibular Vocacionado 1. Caderno de Prova ª FASE 1ª Etapa SISTEMAS DE INFORMAÇÃO Nome do Candidato: INSTRUÇÕES GERAIS Confira o Caderno de Prova, as Folhas de

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 17/dezembro/006 RACIOCÍNIO MATEMÁTICO 01. Em uma pesquisa de mercado feita com 50 entrevistados, todos responderam o seguinte questionário: I. Assinale

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010

MATEMÁTICA FURG COPERVE PROCESSO SELETIVO 2010 FURG COPERVE PROCESSO SELETIVO 00 MATEMÁTICA ) Em uma Instituição de Ensino Superior, um aluno do curso de Engenharia Metalúrgica anotou suas médias bimestrais nas disciplinas: Cálculo I (CI), Álgebra

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 31- A afirmação: João não chegou ou Maria está atrasada equivale logicamente a: a) Se João não chegou, Maria está atrasada. b) João chegou e Maria não está atrasada. c) Se

Leia mais

x se x = n se x e n< x< n+ 1, n que associa a cada número real x o maior inteiro não superior a x.

x se x = n se x e n< x< n+ 1, n que associa a cada número real x o maior inteiro não superior a x. RELATÓRIO VESTIBULAR UFS/03 MATEMÁTIA (Prova AMARELA). INTRODUÇÃO As questões foram elaboradas visando incluir todos os tópicos do programa, com ênfase nos conceitos e suas conexões entre os diversos campos

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3

1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3 ) Na figura abaixo, a reta r tem equação x+y-6=0 e a reta s passa pela origem e tem coeficiente angular. A área do triângulo OAB, em unidades de área, é igual a: a) b) c) d)4 (correta) e)5 O(0,0) 0 6 0

Leia mais

MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS PROVA DE MATEMÁTICA 2009

MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS PROVA DE MATEMÁTICA 2009 MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS À MATRÍCULA NA 1ª SÉRIE DO ENSINO MÉDIO REGULAR DIURNO PROVA DE MATEMÁTICA 2009

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 8ª série do Ensino Fundamental TEMA I ESPAÇO E FORMA Comentários sobre os Temas e seus Descritores Exemplos de Itens Os conceitos geométricos constituem parte importante

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

12) A círculo = π r 2. 1 13) A lateral cone = π.r.g. 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 1 13) A lateral cone = π.r.g. 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA (Prova AMARELA). INTRODUÇÃO A prova de Matemática do Vestibular 04 foi elaborada com o intuito de contemplar todos os tópicos do programa, associando convenientemente a parte teórica com as

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A MTEMÁTIC ViajeBem é uma empresa de aluguel de veículos de passeio que cobra uma tarifa diária de R$ 60,00 mais R$,50 por quilômetro percorrido, em carros de categoria. lucar é uma outra empresa que cobra

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 08.12.13

RESOLUÇÃO Matemática APLICADA FGV Administração - 08.12.13 VESTIBULAR FGV 2014 08/12/2013 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DISCURSIVO QUESTÃO 1 Considere, no espaço cartesiano bidimensional, os movimentos unitários N, S, L e O

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

Função Logarítmica Função Exponencial

Função Logarítmica Função Exponencial ROTEIRO DE ESTUDO MATEMÁTICA 2014 Aluno (a): nº 1ª Série Turma: Data: /10/2014. 3ª Etapa Professor: WELLINGTON SCHÜHLI DE CARVALHO Caro aluno, O objetivo desse roteiro é orientá-lo em relação aos conteúdos

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito no INSPER INSPER Resolvida 6/junho/03 Prova A (Marrom) ANÁLISE QUANTITATIVA E LÓGICA 0. Na figura está representado o preço de um console de video game, em função do tempo decorrido

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Prova de Matemática: 13/12/12 PROVA ITA

Prova de Matemática: 13/12/12 PROVA ITA Prova de Matemática: // PROVA ITA matemática Gabarito ITA Prova de Matemática: // matemática : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números reais M m x n ( ): conjunto

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

MATEMÁTICA FORMULÁRIO

MATEMÁTICA FORMULÁRIO MATEMÁTICA FORMULÁRIO 30 o 45 o 60 o cosec x =, sen x 0 sen x sen 3 sec x =, cos x 0 cos x cos 3 sen x tg x =, cos x 0 cos x tg 3 cos x 3 cotg x =, sen x 0 3 sen x sen x + cos x = ) A círculo = π.r ) )

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

= volume do cone => Vc. 48.000 80 N = 25, 47 (se π 3,14)

= volume do cone => Vc. 48.000 80 N = 25, 47 (se π 3,14) ) Fernando utiliza um recipiente, em forma de um cone circular reto, para encher com água um aquário em forma de um paralelepípedo retângulo. As dimensões do cone são: 0 cm de diâmetro de base e 0 cm de

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais