(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

Tamanho: px
Começar a partir da página:

Download "(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E."

Transcrição

1 (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

2 (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse meio ou metade. Geraldo Cássio Carla Fernando 1 2 0,5 1,2 0,005 Os alunos que acertaram o exercício foram A) Cássio e Carla. B) Geraldo e Cássio. C) Carla e Geraldo. D) Geraldo e Fernando.

3 (M120113A8) Uma pessoa pegou um empréstimo de R$ 4.000,00, na condição de pagar de juro 3,5%, ao final do período previsto para o empréstimo. Qual o valor desse juro? A) R$ 1,40 B) R$ 14,00 C) R$ 140,00 D) R$ 1400,00 E) R$ 14000,00

4 (M8D19I0060) Em uma fábrica, 2 máquinas produzem parafusos. Sabendo que uma máquina produz 350 parafusos por dia e que a outra produz a metade desse número no mesmo tempo, quantos parafusos serão produzidos em 10 dias por essas duas máquinas? A) 525 B) C) D)

5 (M110056CE) José aplicou R$ 1.000,00 à taxa de juro simples de 4% ao mês durante 2 meses. Qual é o montante no fim dessa aplicação? A) R$ 80,00 B) R$ 1.008,00 C) R$ 1.080,00 D) R$ 1.800,00 E) R$ 8.000,00

6 (M120109A8) O valor de A) 1 e 2 B) 2 e 3 C) 3 e 4 D) 4 e 5 E) 5 e 6 7 é um número irracional. Esse valor está localizado entre os números naturais

7 (M090259A8) O estacionamento de um supermercado possui 350 vagas no total, sendo 300 vagas para carros e 50 vagas para motos. Num determinado horário de um dia, uma placa luminosa informava que existiam apenas 100 vagas disponíveis nesse estacionamento. Passados alguns minutos, chegaram 3 motos no estacionamento, e as vagas de motos foram todas ocupadas. Quantos carros estavam estacionados? A) 197 B) 203 C) 253 D) 303

8 (M120228A8) Considere a reta de equação y = x 2. O gráfico que representa essa reta é A) B) C) D) E)

9 (M11276RJ) A Confecção de calças Veste Bem produz o número y de calças por mês em função do número x de funcionários, de acordo com a lei y = 100 x. Para a produção de calças, esta confecção conta com 225 funcionários. Qual é a produção mensal de calças da confecção Veste Bem? A) 150 calças. B) 250 calças. C) calças. D) calças. E) calças.

10 (M11482SI) O esboço do gráfico que melhor representa a função do 2º grau definida por y = x 2 x 1 é A) B) C) D) E)

11 (M120031A8) O congelador de uma geladeira especial precisa, nas primeiras horas de funcionamento (t), ter sua temperatura (T) variando entre valores negativos e positivos, para que os alimentos não percam suas propriedades, de acordo com a função T(t) = t² - 4t + 3. Ao ligar a geladeira, o congelador atinge a temperatura de 0 C depois de A) 1 hora e 3 horas. B) 2 horas e 6 horas. C) 7 horas e 9 horas. D) 6 horas e 10 horas. E) 12 horas e 20 horas.

12 (M120191A8) O gráfico de uma função quadrática teve uma parte apagada, como representado abaixo. Para essa função, as coordenadas do ponto de mínimo são A) c3, - 1 m 2 4 B) c3 1, m 2 4 C) (3, 2) D) (2, 3) E) (5, 3)

13 (M120370A8) O gráfico que pode representar a função dada por y = 5 x é A) B) C) D) E)

14 (M120199A8) Denise precisa resolver exercícios de matemática. Para incentivá-la, sua professora montou um esquema diferente de estudo, como mostra o quadro abaixo. PROPOSTA DE ESTUDO - 1º dia: resolver 1 exercício. - 2º dia: resolver 3 exercícios. - 3º dia: resolver 9 exercícios. Continuar nos próximos dias, sempre multiplicando por três a quantidade de exercícios do dia anterior. Qual operação deve ser feita para determinar o número de exercícios que Denise resolverá no 10º dia de estudo? A) 3 x 11 B) 3 x 10 C) 3 x 9 D) 3 10 E) 3 9

15 (M100031CE) A figura abaixo representa o gráfico de uma função definida em R. A expressão que melhor define essa função é A) f(x) = a x B) f(x) = sen x C) f(x) = cos x D) f(x) = log a x E) f(x) = ax 2 + bx + c

16 (M090233A8) Um reservatório, contendo inicialmente 200 litros de água, recebe água de uma torneira, que despeja nele 20 litros de água por minuto. Todos os valores possíveis dos tempos, representados por t, em minutos, para os quais o volume de água no reservatório fica acima de 300 litros são dados pela desigualdade A) 20t > 300 B) t > 0 C) t > 0 D) t > 300

17 (M120328A8) O primeiro e o sétimo termos de uma progressão aritmética são, respectivamente, - 8 e 22. O quinto termo dessa progressão aritmética é A) 10 B) 12 C) 16 D) 17 E) 48

18 (M100013CE) Considere a função y = f(x), no intervalo [-6,6] A função y=f(x) é constante no intervalo A) [0,4] B) [-1,0] C) [-1,2] D) [2,4] E) [4,6]

19 (M100047CE) A figura ABCD abaixo é um retângulo e o segmento EF é paralelo ao lado AD. O comprimento do segmento EC, em metros, indicado por x é A) 5 B) 7 C) 11 D) 12 E) 17

20 (M120159A8) Um avião decola de um aeroporto formando um ângulo de 30 com o solo, como mostra a figura abaixo. Para atingir a altitude de 10 km, qual a distância que esse avião deverá percorrer? A) 10 km B) 20 km C) 35 km D) 50 km E) 60 km

21 (PAMA11206MS) Observe os pontos N, M, O, P e Q representados no plano cartesiano abaixo Um ponto que está situado no 2º Quadrante é A) N B) M C) O D) P E) Q

22 (M120339A8) O pátio de uma escola tem o formato da figura ABCDEFGH e possui dimensões CD = EF = 4m e AB = BC = DE = FG = 2m. O perímetro desse pátio, em metros, é A) 16 B) 30 C) 32 D) 36 E) 44

23 (M11487SI) Na figura abaixo, ABCD é um retângulo, com 8,6 centímetros de comprimento e 4,2 centímetros de altura. A área, em cm 2, da superfície colorida de cinza é A) 12,80 B) 18,06 C) 25,60 D) 36,12 E) 53,76

24 (M120027A8) Ao fazer uma pesquisa a respeito do mês do nascimento dos 25 alunos da 3ª série de uma escola estadual, a professora obteve os resultados mostrados na tabela abaixo. Mês Número de alunos Janeiro 3 Março 2 Abril 6 Junho 1 Julho 3 Setembro 2 Novembro 6 Dezembro 2 A porcentagem desses alunos da 3ª série que nasceram no mês de abril é A) 44% B) 25% C) 24% D) 19% E) 6%

25 (M120445A8) Uma pesquisa foi realizada entre os 30 alunos da segunda série do colégio Estudar para saber a preferência deles por um dos seguintes esportes: futebol de campo, futebol de salão, vôlei, tênis e natação. Cada aluno escolheu somente um esporte e os resultados dessa pesquisa estão apresentados no gráfico abaixo. O quadro que apresenta esses mesmos resultados é A) Esporte Nº de alunos que preferem Vôlei 10 Tênis 4 Natação 8 Futebol de salão 2 Futebol de campo 6 B) C) D) E) Esporte Nº de alunos que preferem Vôlei 8 Tênis 4 Natação 10 Futebol de salão 2 Futebol de campo 6 Esporte Nº de alunos que preferem Vôlei 8 Tênis 6 Natação 2 Futebol de salão 4 Futebol de campo 10 Esporte Nº de alunos que preferem Vôlei 8 Tênis 2 Natação 6 Futebol de salão 4 Futebol de campo 10 Esporte Nº de alunos que preferem Vôlei 4 Tênis 2 Natação 6 Futebol de salão 8 Futebol de campo 10

26 3 (M090478A9) Qual é o número decimal correspondente a? 4 A) 0,25 B) 0,34 C) 0,43 D) 0,75

27 (M8D19I0060) Em uma fábrica, 2 máquinas produzem parafusos. Sabendo que uma máquina produz 350 parafusos por dia e que a outra produz a metade desse número no mesmo tempo, quantos parafusos serão produzidos em 10 dias por essas duas máquinas? A) 525 B) C) D)

28 (M PUB) Mauro efetuou a operação indicada abaixo Qual resultado que Mauro encontrou? A) 3,1 B) 4,5 C) 5,1 D) 6,2

29 (M11278SI) Sobre a reta numérica abaixo estão marcados os pontos H e N. As coordenadas dos pontos H e N, nessa ordem, são A) 4 e 2. B) 4 e 2. C) 2 e 2. D) 0,2 e 0,2. E) 0,4 e 0,2.

30 (M120228A8) Considere a reta de equação y = x 2. O gráfico que representa essa reta é A) B) C) D) E)

31 (3M2D030) Observe o gráfico abaixo. A função trigonométrica representada nesse gráfico é A) y = sen x B) y = cos x C) y = tg x D) y = - sen x E) y = - cos x

32 (M120633A9) Resolva o sistema abaixo. * x+ 2y+ z = 4 x-z = -2 2x =-2 Qual é a solução desse sistema? A) (-1, 1, 3) B) (1, 0, 3) C) (-1, 3, 3) D) (0, 1, 2) E) (-1, 2,1)

33 (CE_JAAF3M26) Um restaurante oferece em seu cardápio 2 saladas distintas, 4 tipos de pratos de carne, 5 variedades de bebidas e 3 sobremesas diferentes. Uma pessoa deseja uma salada, um prato de carne, uma bebida e uma sobremesa. O número de maneiras diferentes para fazer seu pedido é A) 40 B) 60 C) 80 D) 100 E) 120

34 (M11454SI) Caroline ganhou uma caixa de bombons. A caixa contém 7 bombons de caramelo, 5 de coco, 6 de morango e 2 de banana. Ela pegou, sem olhar, um bombom da caixa. A probabilidade desse bombom ser de coco é A) B) C) D) E)

35 (M120735A9) Veja, abaixo, o ciclo trigonométrico. y x 3r O ponto que corresponde ao arco rad é 4 A) P. B) Q. C) R. D) S. E) T.

36 (M090006A8) Veja a planificação do poliedro abaixo. Quantas arestas esse poliedro possui? A) 5 B) 7 C) 8 D) 12

37 (M100047CE) A figura ABCD abaixo é um retângulo e o segmento EF é paralelo ao lado AD. O comprimento do segmento EC, em metros, indicado por x é A) 5 B) 7 C) 11 D) 12 E) 17

38 (M120153A8) Para reforçar a estrutura PQR, foi colocada uma trave PM, como mostra a figura abaixo. Qual a medida do comprimento da trave PM? A) 1,0 m B) 2,4 m C) 3,0 m D) 3,5 m E) 5,0 m

39 (PAMA08096MS) Observe a figura abaixo, formada por seis pentágonos regulares e um losango. Nessa figura, a medida do ângulo x, em graus, é A) 36º B) 42º C) 48º D) 108º

40 (M090167A8) Observe, abaixo, a representação de um prisma e sua respectiva planificação, em que as faces estão numeradas. Nessa planificação, os pares de faces paralelas são A) 1 e 2, 4 e 6, 5 e 8. B) 1 e 2, 6 e 8, 7 e 4. C) 2 e 3, 4 e 7, 5 e 8. D) 3 e 6, 4 e 7, 5 e 8.

41 (M120159A8) Um avião decola de um aeroporto formando um ângulo de 30 com o solo, como mostra a figura abaixo. Para atingir a altitude de 10 km, qual a distância que esse avião deverá percorrer? A) 10 km B) 20 km C) 35 km D) 50 km E) 60 km

42 (M090404A9) Para preparar um suco, Carlos colocou no liquidificador 1L de suco de laranja, 150 ml de leite e 500 ml de água. Quantos mililitros desse suco Carlos preparou? A) 615 B) 750 C) D) 2 100

43 (M120294A8) O trapézio ABCD, representado abaixo, tem as medidas dos lados AB = 6, BC = 5, CD = 2 e DA = 3. O perímetro desse trapézio é A) 11 B) 12 C) 13 D) 16 E) 18

44 (M11487SI) Na figura abaixo, ABCD é um retângulo, com 8,6 centímetros de comprimento e 4,2 centímetros de altura. A área, em cm 2, da superfície colorida de cinza é A) 12,80 B) 18,06 C) 25,60 D) 36,12 E) 53,76

45 (M11301MG) Para desenvolver a visão espacial dos alunos, o professor ofereceu-lhes uma planificação de uma pirâmide de base quadrada como a da figura: A área da base dessa pirâmide é 100 cm² e a área de cada face é 80 cm² A área total, no caso da pirâmide considerada é igual a A) 320 cm 2 B) 340 cm 2 C) 360 cm 2 D) 400 cm 2 E) 420 cm 2

46 (PAMA11043AC) Observe o paralelepípedo abaixo. O volume deste paralelepípedo será A) 320 cm³. B) 80 cm³. C) 40 cm³. D) 32 cm³. E) 22 cm³.

47 (M120027A8) Ao fazer uma pesquisa a respeito do mês do nascimento dos 25 alunos da 3ª série de uma escola estadual, a professora obteve os resultados mostrados na tabela abaixo. Mês Número de alunos Janeiro 3 Março 2 Abril 6 Junho 1 Julho 3 Setembro 2 Novembro 6 Dezembro 2 A porcentagem desses alunos da 3ª série que nasceram no mês de abril é A) 44% B) 25% C) 24% D) 19% E) 6%

48 (M8D37I0185) A tabela, abaixo, mostra a preferência de algumas pessoas em relação a alguns jornais que circulam na cidade. JORNAL I II III IV NÚMERO DE PESSOAS O gráfico de barras que corresponde a essa tabela é A) B) C) D)

49 3 (M090478A9) Qual é o número decimal correspondente a? 4 A) 0,25 B) 0,34 C) 0,43 D) 0,75

50 (M110056CE) José aplicou R$ 1.000,00 à taxa de juro simples de 4% ao mês durante 2 meses. Qual é o montante no fim dessa aplicação? A) R$ 80,00 B) R$ 1.008,00 C) R$ 1.080,00 D) R$ 1.800,00 E) R$ 8.000,00

51 Sandro fez um empréstimo de R$ 1.000,00 em uma financeira, para ser pago, em uma única prestação, daqui a 2 meses. Essa financeira cobrou juros compostos de 9% ao mês. O valor a ser pago por Sandro, daqui a 2 meses, para quitar esse empréstimo, é A) R$ 1.018,00. B) R$ 1.180,00. C) R$ 1.188,10. D) R$ 2.180,00.

52 (M090041CE) Ao fatorar e simplificar a expressão algébrica a² + ab, a expressão obtida será a² b² A) b B) a b C) a a b D) a + b a b

53 (M120228A8) Considere a reta de equação y = x 2. O gráfico que representa essa reta é A) B) C) D) E)

54 (PAMA11166MS) Um polinômio p(x) de terceiro grau tem raízes iguais a - 3, 2 e 4. Qual das expressões abaixo pode representar p(x)? A) (x - 3) (x + 2) (x + 4) B) (x + 3) (x - 2) (x - 4) C) (x + 3) (x + 2) (x + 4) D) (x - 3) (x - 2) (x - 4) E) (x - 3) (x - 2) (x + 4)

55 (M11454SI) Caroline ganhou uma caixa de bombons. A caixa contém 7 bombons de caramelo, 5 de coco, 6 de morango e 2 de banana. Ela pegou, sem olhar, um bombom da caixa. A probabilidade desse bombom ser de coco é A) B) C) D) E)

56 (M100047CE) A figura ABCD abaixo é um retângulo e o segmento EF é paralelo ao lado AD. O comprimento do segmento EC, em metros, indicado por x é A) 5 B) 7 C) 11 D) 12 E) 17

57 (PAMA11260MS) Na figura abaixo, ABCD é um retângulo, e AC sua diagonal. Qual é a distância x do vértice B até a diagonal? A) 4 cm B) 3,6 cm C) 4,8 cm D) 5 cm E) 10 cm

58 (PAMA08096MS) Observe a figura abaixo, formada por seis pentágonos regulares e um losango. Nessa figura, a medida do ângulo x, em graus, é A) 36º B) 42º C) 48º D) 108º

59 (M090167A8) Observe, abaixo, a representação de um prisma e sua respectiva planificação, em que as faces estão numeradas. Nessa planificação, os pares de faces paralelas são A) 1 e 2, 4 e 6, 5 e 8. B) 1 e 2, 6 e 8, 7 e 4. C) 2 e 3, 4 e 7, 5 e 8. D) 3 e 6, 4 e 7, 5 e 8.

60 (M120159A8) Um avião decola de um aeroporto formando um ângulo de 30 com o solo, como mostra a figura abaixo. Para atingir a altitude de 10 km, qual a distância que esse avião deverá percorrer? A) 10 km B) 20 km C) 35 km D) 50 km E) 60 km

61 (M120008CE) Qual é a área de um triângulo cujos vértices são A(2,-3), B(-1,2) e C(4,5)? A) 4 B) 12 C) 14 D) 17 E) 21

62 (PAMA11218MS) Observe a função representada no gráfico abaixo. A função representada nesse gráfico é A) y = x B) y = x +1 C) y = 2 x D) y = -x +1 E) y = -2 x

63 (3M2D010) Observe a circunferência abaixo. Qual é a equação que representa essa circunferência? A) x² + y² + 6x + 6y + 9 = 0 B) x² + y² - 6x - 6y + 9 = 0 C) x² + y² + 6x + 6y + 27 = 0 D) x² + y² - 6x - 6y + 27 = 0 E) x² + y² - 6x - 6y + 18 = 0

64 (PAMA11207MS) Em qual das representações abaixo, o ponto N de coordenadas x = -1 e y = 2,5 está mais adequadamente representado? A) B) C) D) E)

65 (M1D23I0125) O gráfico que representa a função y = 2x 3 é A) y B) y 3-3 C) y D) y 3-3

66 (M090404A9) Para preparar um suco, Carlos colocou no liquidificador 1L de suco de laranja, 150 ml de leite e 500 ml de água. Quantos mililitros desse suco Carlos preparou? A) 615 B) 750 C) D) 2 100

67 (M120294A8) O trapézio ABCD, representado abaixo, tem as medidas dos lados AB = 6, BC = 5, CD = 2 e DA = 3. O perímetro desse trapézio é A) 11 B) 12 C) 13 D) 16 E) 18

68 (M120172A8) A figura abaixo representa um pátio em forma de trapézio. Para pavimentar esse pátio, quantos metros quadrados de cerâmica são necessários? A) 11 m 2 B) 14 m 2 C) 16 m 2 D) 20 m 2 E) 22 m 2

69 (M11301MG) Para desenvolver a visão espacial dos alunos, o professor ofereceu-lhes uma planificação de uma pirâmide de base quadrada como a da figura: A área da base dessa pirâmide é 100 cm² e a área de cada face é 80 cm²a área total, no caso da pirâmide considerada é igual a A) 320 cm 2 B) 340 cm 2 C) 360 cm 2 D) 400 cm 2 E) 420 cm 2

70 (PAMA11043AC) Observe o paralelepípedo abaixo. O volume deste paralelepípedo será A) 320 cm³. B) 80 cm³. C) 40 cm³. D) 32 cm³. E) 22 cm³.

71 (M8D37I0185) A tabela, abaixo, mostra a preferência de algumas pessoas em relação a alguns jornais que circulam na cidade. JORNAL I II III IV NÚMERO DE PESSOAS O gráfico de barras que corresponde a essa tabela é A) B) C) D)

72 (M11459SI) Lewis Hamilton piloto de Fórmula 1, obteve os seguintes pontos: 6, 8, 8, 8, 8, 10,10, 6 e 6, nas 9 primeiras provas do campeonato de A média de pontos por prova deste piloto é, aproximadamente, A) 2,9 B) 6,0 C) 7,5 D) 7,8 E) 8,0

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Gabarito - Matemática - Grupos I/J

Gabarito - Matemática - Grupos I/J 1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Para a estréia de um espetáculo foram emitidos 1800 ingressos, dos quais 60% foram vendidos até a véspera do dia de sua realização por um preço unitário de R$

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES

1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 01. Dadas as funções definidas por f(x) = 1 2 x 2 x + e g(x) = + 1 2 5, determine o valor de f(2) + g(5). 02. Dada a função

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

EXAMES SUPLETIVOS DO ENSINO MÉDIO 2º SEMESTRE / 2010 FOLHA DE RESPOSTAS

EXAMES SUPLETIVOS DO ENSINO MÉDIO 2º SEMESTRE / 2010 FOLHA DE RESPOSTAS EXAMES SUPLETIVOS DO ENSINO MÉDIO º SEMESTRE / FOLHA DE RESPOSTAS Nº DE INSCRIÇÃO DO CANDIDATO NOME DO CANDIDATO DATA DE NASCIMENTO Nº DO DOCUMENTO DE IDENTIFICAÇÃO SRE MUNICÍPIO ESTABELECIMENTO DE ENSINO

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em

Leia mais

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA COLÉGIO MILITAR DO RECIFE DE OUTUBRO DE 005 Página 1/10 ITEM 01. A figura abaixo mostra um pedaço de terreno plano com plantação de cana-deaçucar que deve

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS. ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Provas MATEMÁTICA Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número do seu

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

Algoritmos com Estrutura Sequencial

Algoritmos com Estrutura Sequencial Algoritmos com Estrutura Sequencial 1. A partir da diagonal de um quadrado, deseja-se elaborar um algoritmo que informe o comprimento do lado do quadrado. Construa um algoritmo que leia o valor da diagonal

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados

Leia mais

MATEMÁTICA PRIMEIRA ETAPA - 1999

MATEMÁTICA PRIMEIRA ETAPA - 1999 MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas

Leia mais

Matemática. Introdução. Questão 1. Resposta esperada. Exemplo acima da média

Matemática. Introdução. Questão 1. Resposta esperada. Exemplo acima da média 2ª Fase Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades e conteúdos

Leia mais

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A Questão 1 Paulo comprou um automóvel fle ue pode ser abastecido com álcool ou com gasolina. O manual da montadora informa ue o consumo médio do veículo é de km por litro de álcool ou 1 km por litro de

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

935 MATEMÁTICA Prova escrita

935 MATEMÁTICA Prova escrita 935 MATEMÁTICA Prova escrita PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Duração: 120 minutos Ano: 2014 2ª fase - julho 11º e 12º anos Identifique claramente os grupos e os itens a que responde e apresente o seu

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 18 DE JULHO 2013 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 18 DE JULHO 2013 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 6 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais