Análise Combinatória. Prof. Thiago Figueiredo

Tamanho: px
Começar a partir da página:

Download "Análise Combinatória. Prof. Thiago Figueiredo"

Transcrição

1 Análise Combinatória Prof. Thiago Figueiredo

2 (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as faixas consecutivas não sejam da mesma cor é: a) 256 b) 384 c) 520 d) 6561 e) 8574

3 Logo pelo principio multiplicativo temos que o número de maneiras de pintar o tapete é: = 384

4 Logo pelo principio multiplicativo temos que o número de maneiras de pintar o tapete é: = 384 a) 256 b) 384 c) 520 d) 6561 e) 8574

5 A figura mostra um mapa com 4 regiões. a) De quantos modos esse mapa pode ser colorido (cada país com uma cor e países com uma linha fronteira comum não podem ter a mesma cor) se dispomos de b cores diferentes? b) Qual o menor valor de b que permite colorir o mapa?

6 a) b-1 b-2 b b-3 Portanto, Total = b.(b-1).(b-2).(b-3)

7 b) Como, total = b.(b-1).(b-2).(b-3), necessitamos de no mínimo 4 cores. Se b = 4, teremos 24 maneiras de pintar o mapa

8 a)de quantos modos é possível colocar um rei negro e um rei branco em casas não adjacentes de um tabuleiro de xadrez (8x8)? b) Qual seria a resposta se fossem dois reis brancos iguais?

9 1 caso: rei negro ocupa as casas dos vértices: Rei negro: 4 opções Rei Branco: 60 opções

10 2 caso: rei negro ocupa borda mas não vértice: Rei negro: 24 opções Rei Branco: 58 opções

11 3 caso: rei negro ocupa casa interna: Rei negro: 36 opções Rei Branco: 55 opções

12 Portanto, Total = = b) Agora passa a ser metade da anterior e, Portanto: 1.806

13 Quantos elementos têm o conjunto A, subconjunto do conjunto dos números racionais, onde: p A = / p, q N;1 p 10 e 1 q 10 q a) 20 b) 50 c) 63 d) 83 e) 100

14 Fixamos os numeradores com os números naturais de 1 a 10, e depois colocamos os denominadores, de forma que numerador e denominador sejam primos entre si, pois caso contrário, simplificaremos e ficamos com uma com um número racional já contado.

15 numerador 1 : 10 possibilidades, todos os números de 1 a 10. numerador 2 : numerador 3 : numerador 4 : 5 possibilidades, eliminamos os pares. 7 possibilidades, eliminamos os múltiplos de 3. 5 possibilidades, eliminamos os pares.

16 numerador 5 : 8 possibilidades, eliminamos 5 e 10. numerador 6 : 3 possibilidades, eliminamos os pares ou os múltiplos de 3. numerador 7 : numerador 8 : 9 possibilidades, eliminamos 7. 5 possibilidades, eliminamos os pares.

17 numerador 9 : 7 possibilidades, eliminamos os múltiplos de 3. numerador 10 : 4 possibilidades, eliminamos os pares ou os múltiplos de 5. Total = = = 63 elementos

18 Total = = = 63 elementos a) 20 b) 50 c) 63 d) 83 e) 100

19 (ITA 2001) Considere os números de 2 a 6 algarismos distintos formados utilizando-se apenas 1, 2, 4, 5, 7 e 8. Quantos destes números são ímpares e começam com um dígito par? a) 375 b) 465 c) 545 d) 585 e) 625

20 2 algarismos : 3. 3 = 9 3 algarismos : 4 algarismos : = = algarismos : = algarismos : = 216

21 Total = = 585 a) 375 b) 465 c) 545 d) 585 e) 625

22 (ITA 2003) O número de divisores de que, por sua vez, são divisores por 3 é: a) 24 b) 36 c) 48 d) 54 e) 96

23 = Para a escolha do expoente: do 2: temos 4 possibilidades (0 ou 1 ou 2 ou 3) do 3: do 5: do 7: temos só 2 possibilidades pois o número deve ser divisível por 3 (1ou 2) temos, 2 possibilidades (0 ou 1) temos, 3 possibilidades (0 ou 1 ou 2)

24 Número de divisores positivos que são divisíveis por 3 é: = 48 O número de divisores é 96 (48 positivos e 48 negativos). a) 24 b) 36 c) 48 d) 54 e) 96

25 (ITA 2007) Determine quantos números de 3 algarismos podem ser formados com os algarismos 1,2,3,4,5,6, e 7 satisfazendo à seguinte regra: O número não pode ter algarismos repetidos, exceto quando iniciar com 1 ou 2, caso em que o 7 (e apenas o 7 ) pode aparecer mais de uma vez. Assinale o resultado obtido: a) 204 b) 206 c) 208 d) 210 e) 212

26 Do enunciado, ou os números tem 3 algarismos distintos, ou o número é 177, ou o número é 277. Assim: 3 algarismos distintos: = 210 Portanto, total = = 212 números a) 204 b) 206 c) 208 d) 210 e) 212

27 Um ministro brasileiro organiza uma recepção. Metade dos convidados são estrangeiros cuja língua oficial não é o português e, por delicadeza, cada um deles diz Bom Dia a cada um dos outros na língua oficial de quem a se dirige. O ministro responde Seja Bem Vindo a cada um dos convidados. Sabendo que no total forma ditos 78 bons dias em português o número de convidados na recepção foi:

28 a) 9 b) 10 c) 11 d) 12 e) 13 Resolução: Brasileiros - Brasileiros = n. (n 1) Estrangeiros - Brasileiros= n. n Convidados - Ministro = 2. n

29 ( ) n n n + 2n = 78 2n + n 78 = 0 n = 6 13 ou n = ( não convém ) 2 total de convida dos = =2 n = 2. 6 = 12

30 total de convida dos = =2 n = 2. 6 = 12 a) 9 b) 10 c) 11 d) 12 e) 13

31 Há 4 livros de Matemática, 2 livros diferentes de Química e 5 livros diferentes de Física. De quantas maneiras podemos arrumar esses livros numa prateleira, de modo que os livros de Física fiquem todos separados? a) d) b) 21 e) c)

32 Colocamos em fila os livros de Matemática e de Química deixando os espaços para colocarmos os livros de Física: _M_M_M_M_Q_Q_ 7 espaços para 5 livros: 7! C 7,5 = 5! 5! = ( 7 ) 21

33 Como os livros de uma mesma disciplinas são diferentes, então devemos multiplicar pelas permutações: Permutações dos livros de Matemática e de Química: P 6 : 6! = 720 Permutações dos livros de Física: P 5 : 5! = 120

34 Total = = a) d) b) 21 e) c)

35 Um campeonato é disputado por 10 clubes em rodadas de 5 jogos cada. De quantos modos é possível selecionar os jogos da primeira rodada? a) 315 b) 925 c) 720 d) e) 120

36 Selecionar os jogos da primeira rodada é dividir os 10 clubes em 5 grupos de 2. Mas isso pode ser feito, permutando os 10 clubes e dividindo por 5!. (2!) 5. Total = 10! = 945 5! 2! ( ) 5

37 Total = 10! = 945 5! 2! ( ) 5 a) 315 b) 945 c) 720 d) e) 120

38 Quantos dados diferentes podemos formar gravando números de 1 a 6 sobre as faces indistinguíveis de um cubo de madeira? Resolução: Façamos de conta que as faces são diferentes e sendo assim: P 6 = 6! = 720.

39

40 Mas as faces são indistinguíveis e então, por exemplo, 1 na face de cima e 6 na de baixo e igual a 1 na de baixo e 6 na de cima. Sendo assim, temos: Total 720 = = maneiras

41 (ITA 2007) Dentre 4 moças e 5 rapazes deve-se formar uma comissão de 5 pessoas com, pelo menos, 1 moça e 1 rapaz. De quantas formas distintas tal comissão poderá ser formada? Resolução: Do enunciado, para ter, pelo menos uma moça e um rapaz, a comissão formada só não pode ter cinco rapazes. Assim:

42 C 9! C = 1 = 9 5! 5! 9,5 5,5 ( ) = 125 comissões

43 (ITA 2004) Considere 12 pontos distintos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos? a) 210 b) 315 c) 410 d) 415 e) 521

44 C 12! 5! C = = 12 3! 3! 5 3! 3! 12,3 5,3 ( ) ( ) = 210 triângulos

45 C Resolução: 12! 5! C = = 12 3! 3! 5 3! 3! 12,3 5,3 ( ) ( ) = 210 triângulos a) 210 b) 315 c) 410 d) 415 e) 521

46 (ITA 2002) Quantos anagramas com 4 letras distintas podemos formar com as 10 primeiras letras do alfabeto e que contenham 2 das letras a,b e c? a) b) c) d) e) 1392

47 Para escolhermos 4 letras, sem importar a ordem, de modo que contenham duas das letras a, b e c, temos: C 3! 7! C = 3 2! 2! 7 2! 2! 3,2 7,2 ( ) ( ) Como os anagramas são as permutações das 4 letras escolhidas, o número de anagramas é:

48 C C 4! = = ,2 7,2 a) b) c) d) e) 1392

49 Em uma urna há fichas numeradas de 1 a 10. De quantos modos se podem retirar 3 fichas de modo que a soma dessas fichas não seja menor que 9? a) 116 b) 120 c) 87 d) 88 e) 89

50 O número de modos de retirar 3 fichas é: 10! C = = ,3 10 3! 3! ( ) São 4 os grupos de 3 fichas cuja a soma é inferior a 9: ( + + ) ( + + ) 1 2 3, 1 2 4, ( ) e ( )

51 O número de modos de retirar 3 fichas é: C 4 = = ,3 a) 116 b) 120 c) 87 d) 88 e) 89

52 Sobre os lado AB, AC e BC de um triangulo ABC, consideram-se, respectivamente, 3 pontos, 4 pontos e 5 pontos, distintos e não coincidentes com os vértices. Quantos segmentos podem ser traçados cujas extremidades sejam os centros das circunferências determinadas pelos 12 pontos?

53 Total de circunferências: C C C C = 12,3 3,3 4,3 5,3 205

54 Como cada dois centros determinam um segmento, temos: Total de circunferências: C = 205,

55 Cinco amigos, Arnaldo, Bernaldo, Cenaldo, Denaldo e Ernaldo, devem formar uma fila com outras 30 pessoas. De quantas maneiras podemos formar esta fila de modo que Arnaldo fique na frente de seus 4 amigos? (Obs.: Os amigos não precisam ficar em posições consecutivas.) 35! 35! a) 35! b) c) 5! 5 d 35 ) 5! e) e π 5 163

56 O número de filas nas quais Arnaldo fica na frente de seus amigos é igual ao número de filas nas quais Bernaldo fica na frente de seus amigos. E o mesmo ocorre se o amigo que fica na frente é Cenaldo ou Denaldo ou Ernaldo, respectivamente. 35! 5

57 35! 5 35! 35! a) 35! b) c) 5! 5 d 35 ) 5! e) e π 5 163

58 Convenciona-se transmitir sinais luminosos de uma ilha para a costa por meio de 6 lâmpadas brancas e 6 vermelhas, colocadas nos vértices de um hexágono regular, de tal modo que: Em cada vértice haja 2 lâmpadas de cores diferentes. Em cada vértice não haja mais do que uma lâmpada acesa. O número mínimo de vértices iluminados seja 3. Determine o número total de sinais que podem ser transmitidos.

59 Para calcular o número de sinais com 3 vértices iluminados. Consideramos os seguintes acontecimentos e seus respectivos números de ocorrências: Acontecimentos A 1 : escolha de 3 vértices para serem iluminados A 2 : escolha da lâmpada após ter ocorrido A 1 Nº de Ocorrências C 6,3 2 3, pois em cada vértice devemos escolher uma lâmpada dentre duas para ser acesa.

60 O número de sinais com 3 vértices iluminados é C 6, O número de sinais com 4 vértices iluminados é C 6, O número de sinais com 5 vértices iluminados é C 6, O número de sinais com 6 vértices iluminados é C 6,

61 = ,3 6,4 6,5 6,6 C + C + C + C =

62 O número máximo de pontos de intersecção entre circunferências distintas é: a) b) c) d) e)

63 Duas circunferências distintas se cortam em, no máximo, dois pontos distintos. Portanto, o número máximo de pontos de interseção de circunferências distintas é: 2 C = ,2

64 a) b) c) d) e) C = ,2

65 Na figura temos o primeiro quadrante de um sistema de coordenadas cartesianas com 7 pontos no eixo das abscissas e 6 pontos no eixo das ordenadas. Utilizando um dos 6 pontos do eixo das ordenadas, e um dos 7 pontos do eixo das abscissas podemos formar 42 retas. Na intersecção dessas retas algumas ocorrem nesse primeiro quadrante. Determine o total de intersecções no primeiro quadrante.

66

67 Para cada quatro pontos escolhidos (dois no eixo das abscissas e dois no eixo das ordenadas), é determinado um ponto de intersecção dessas retas. C C = = 315 7,2 6,2

68 Uma prova consta de 3 partes, cada uma com 5 questões. Cada questão, independentemente da parte a que pertença, vale 1 ponto, sendo o critério de correção certo ou errado. De quantas maneiras diferentes podemos alcançar 10 pontos nessa prova, se devem ser resolvidas pelo menos 3 questões de cada parte e 10 questões no total? a) b) 500 c) d) 50 e) 3.000

69 Como devem ser resolvidas pelo menos 10 questões, será necessário resolver 3 questões em duas partes e 4 questões em uma das partes. (4, 3, 3,), (3, 4, 3,) ou (3, 3, 4) 3. C. C. C = ,3 5,3 5,4 a) b) 500 c) d) 50 e) 3.000

70 De quantos modos se pode pintar as faces de uma pirâmide pentagonal regular usando seis cores diferentes, sendo cada face de uma cor? a) 144 b) 288 c) 720 Resolução: d) 340 e) 72 Consideramos os seguintes acontecimentos e seus respectivos números de ocorrências:

71 Acontecimentos A 1 : Escolha da cor para base da pirâmide A 2 : Permutação circulares das 5 cores sobre as faces laterais. Nº de Ocorrências 6 4!

72 6 4! = 6 24 = = 144 modos de pintar a) 144 b) 288 c) 720 d) 340 e) 72

73 Numa demonstração de pára-quedismo, durante a queda livre, participam 10 páraquedistas. Em, certo momento, 7 deles devem dar as mãos e formar um círculo. De quantas formas distintas eles poderão ser escolhidos e dispostos nesse círculo? a) 120 b) 720 c) d) e)

74 Escolha dos 7 pára-quedistas para formar o círculo: C 10,7 = 120 Após a escolha dos 7 pára-quedistas, determinam o total de posições no circulo, através de permutações circulares: 6! = 720 Portanto, =

75 Portanto, = a) 120 b) 720 c) d) e)

76 Uma partícula estando no ponto (x, y), pode-se mover para o ponto (x +1, y) ou para (x, y + 1).Quantos são os caminhos que a partícula pode tomar para, partindo do ponto (0, 0), chegar ao ponto (a, b), onde a > 0 e b > 0? Resolução: A partícula deve se mover a vezes para a direita e b vezes para a esquerda. ( a + b)! a! b!

77 Quantos números de 5 algarismos podem ser formados usando apenas os algarismos 1, 1, 1, 1, 2 e 3? Resolução: Utilizando os algarismos: 1, 1, 1, 1, 2 : 1, 1, 1, 1, 3 : 30 1, 1, 1, 2, 3 :

78 De quantas maneiras é possível colocar 6 anéis diferentes em 4 dedos? Resolução: Primeiramente, devemos decidir quantos anéis haverá em cada dedo, o que equivale: x 1 + x 2 + x 3 + x 4 = 6 Sendo assim, temos 84 opções. Depois, devemos permutar os anéis: P 6 = 6! = 720 Portanto, = maneiras

79 De quantos modos é possível comprar 4 sorvetes em uma loja que os oferece em 7 sabores? Resolução: x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 = 4 10! = 6! 4! 210

80 Quantas são as soluções inteiras e não negativas da inequação x + y + z 5 Resolução: x + y + z = 5 x + y + z = 2 x + y + z = 4 x + y + z = 1 x + y + z = 3 x + y + z = 0

81 x y z = x + y + z = 4 15 x + y + z = 3 10 x + y + z = 2 6 x + y + z = 1 3 x + y + z =

82 Uma livraria vai doar 15 livros iguais a 4 bibliotecas. Cada biblioteca deve receber ao menos dois livros. O número de modos que esses dois livros pode ser repartidos nessa doação, é igual a: a) b) 840 c) 240 d) 120 e) 35

83 Se considerarmos a equação: x 1 + x 2 + x 3 + x 4 = 15 Como cada biblioteca deve receber ao menos dois livros, então x i 2. Façamos então a substituição por x i = y + 2 i A quantidade de soluções da equação, com é igual a quantidade de soluções inteiras não negativas de: y 1 + y 2 + y 3 + y 4 = 7

84 Portanto, 120 soluções. a) b) 840 c) 240 d) 120 e) 35

85 Sejam r 1 e r 2 distintas paralelas, P 1...P m pontos distintos em r 1 e S 1... S n pontos distintos em r 2. Determine o valor de m + n se 18 e 30 são, respectivamente, o número de quadriláteros convexos e de triângulos que se pode construir com vértices nos pontos acima considerados. a) 10 b) 13 c) 5 d) 7 e) 15

86 De acordo com as informações, temos: Quadriláteros: C C = 18 m,2 n,2 ( n m n ) mn m + 1 = 72 Triângulos: n C + m C = 30 m,2 n,2 ( + n 2) mn m = 60 Dividindo as duas equações, temos:

87 mn mn m ( + n ) ( mn m n + ) 2 60 = 1 72 ( m n ) 5mn = Substituindo esta equação na anterior: ( m n ) ( m n ) = 300 Substituindo (m + n 2) por r, temos:

88 2 11 r + 5r 300 = 0 r 60 = 5 ou r = (não convém) 11 m + n 2 = 5 m + n = 7 a) 10 b) 13 c) 5 d) 7 e) 15

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

ANÁLISE COMBINATÓRIA - ITA. Princípios Fundamentais

ANÁLISE COMBINATÓRIA - ITA. Princípios Fundamentais ANÁLISE COMBINATÓRIA - ITA Princípios Fundamentais...Pag.01 Permutações..Pag.04 Combinações.Pag.07 Permutações com Repetição...Pag.11 Princípios Fundamentais 01. Determine o número de maneiras de um professor

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

B 01. Combinações e Permutações

B 01. Combinações e Permutações IME ITA Apostila ITA B 0 Combinações e Permutações Introdução Neste capítulo são apresentadas as ferramentas básicas que nos permitem determinar o número de elementos de conjuntos formados de acordo com

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem

Leia mais

Existe, mas não sei exibir!

Existe, mas não sei exibir! Existe, mas não sei exibir! Você já teve aquela sensação do tipo ei, isso deve existir, mas não sei exibir um exemplo quando resolvia algum problema? O fato é que alguns problemas existenciais são resolvidos

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Módulo 1 Combinações Completas

Módulo 1 Combinações Completas Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Análise Combinatória - Outros Métodos de Contagem Material exclusivo para preparação do vestibular para o IME Módulo 1 Combinações

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão

Leia mais

Princ ıpios b asicos Exemplo 1. Exemplo 2. Exemplo 3.

Princ ıpios b asicos Exemplo 1. Exemplo 2. Exemplo 3. Capítulo 6 Combinatória 1 Princípios básicos O princípio fundamental da contagem diz que se há x modos de tomar uma decisão D ½ e, tomada a decisão D ½,há y modos de tomar a decisão D ¾, então o número

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio 36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 ALTERNATIVA B A diferença entre o que há na primeira balança e o que há a balança do meio é exatamente o que há na última balança; logo, na última balança deve aparecer a marcação 64 41 = 23

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

QUESTÃO 1 ALTERNATIVA D

QUESTÃO 1 ALTERNATIVA D OBMEP 015 Nível 3 1 QUESTÃO 1 Como,5 = 5 x 0,5, o tempo que o frango deve ficar no forno é 5 x 1 = 60 minutos. Logo, Paula deve colocar o frango no forno às 19 h, mas 15 minutos antes deve acender o forno.

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

Problemas de Jogos e Tabuleiros

Problemas de Jogos e Tabuleiros Problemas de Jogos e Tabuleiros Professor Emiliano Augusto Chagas Para esquentar! 01) Duas crianças se revezam em turnos quebrando uma barra retangular de chocolate, com seis quadrados de altura e oito

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de

Leia mais

NOTAS DE AULA ANÁLISE COMBINATÓRIA. Prof. Benedito Tadeu V. Freire

NOTAS DE AULA ANÁLISE COMBINATÓRIA. Prof. Benedito Tadeu V. Freire UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA Fones: (84) 15-380 / 15.3819 FAX: (84) 11. 919 NOTAS DE AULA ANÁLISE COMBINATÓRIA Prof. Benedito

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Revisão de combinatória

Revisão de combinatória A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 GRUPO DISCIPLINAR DE MATEMÁTICA MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 (Em conformidade com o Programa de Matemática homologado em 17 de junho de 2013 e com as de Matemática homologadas em 3

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Princípio da Casa dos Pombos II

Princípio da Casa dos Pombos II Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA) RESOLUÇÃO DA a AVALIAÇÃO DE MATEMÁTICA COLÉGIO ANCHIETA-BA - UNIDADE II-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. (UEPB) Dados os conjuntos A = {1,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

ANÁLISE COMBINATÓRIA. 9 9 8 7 4536 números, já que os algarismos PRÍNCIPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA. 9 9 8 7 4536 números, já que os algarismos PRÍNCIPIO FUNDAMENTAL DA CONTAGEM 1 ANÁLISE COMBINATÓRIA Considere os dois problemas abaixo: Em uma corrida envolvendo quatro corredores, quantas são as possibilidades de pódio? Para cada possível 1º lugar, existem três possíveis 2ºs lugares

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 2º ciclo PCA - 6º ano Planificação Anual 2013-2014 MATEMÁTICA METAS CURRICULARES

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Considere o produto dos números naturais ímpares, 19 17 15... 3 1: Como pode ser reescrito utilizando fatorial? (a) 19! (b) 19! 20! (c) 19! 18 16... 2 (d) 19! 20 Exercício 2

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Instruções: XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo

Leia mais

Quem conta um conto aumenta vários pontos

Quem conta um conto aumenta vários pontos Quem conta um conto aumenta vários pontos Carlos Shine 1 Princípio aditivo e multiplicativo O modo matemático mais eficaz de se modelar problemas de contagem é utilizar conjuntos, de modo que todo problema

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal?

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? Temos 5 grupos com 5 possibilidades cada uma, então: 5.5=25 casais Se fossem duplas: Teríamos 10

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO ALUNO(A): COMBINATÓRIA

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO ALUNO(A): COMBINATÓRIA INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO ALUNO(A): COMBINATÓRIA A Combinatória é a parte da Matemática responsável pelo estudo de estruturas e relações discretas.

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA ENSINO MÉDIO ÁREA CURRICULAR: CIÊNCIA DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS DISCIPLINA: MATEMÁTICA I SÉRIE 1.ª CH 68 ANO 2012 COMPETÊNCIAS:.

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

Pré-Seleção OBM Nível 3

Pré-Seleção OBM Nível 3 Aluno (a) Pré-Seleção OBM Nível 3 Questão 1. Hoje é sábado. Que dia da semana será daqui a 99 dias? a) segunda-feira b) sábado c) domingo d) sexta-feira e) quinta feira Uma semana tem 7 dias. Assim, se

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE 1. NÚMEROS NATURAIS ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE CRITÉRIOS DE AVALIAÇÃO ESPECÍFICOS (Aprovados em Conselho Pedagógico a 21 de Outubro de 2014) No caso específico da disciplina de Matemática,

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B 1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais