UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. /Coroa

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. /Coroa"

Transcrição

1 UNIVERSIDDE FEDERL DO RIO DE JNEIRO Deprmeo de Egehri Mecâic Elemeos de Máquis II Trsmissão Sem-fim/ /oro

2 1

3 2

4 3

5 4

6 5

7 6

8 5.1. rcerísics d rsmissão 1. GRNDES reduções (i > 100). 2. ios redimeos, devidos s perds por rio. 3. Eios ormlmee 90º e sem iercepção (ouros âgulos podem ser obidos). 7

9 5.2. Nomeclur F G - lrgur ou fce d coro d c - diâmero omil d coro d - diâmero omil do sem-fim λ -âgulo de iclição do S.F. p - psso il do S.F. p - psso circulr rsversl d coro ψ - âgulo de hélice do S.F. ψ c - âgulo de hélice d coro l - vço do prfuso c - disâci ere ceros - o de erds (ou dees) do S.F. 8

10 5.3. Relções Pricipis p p c p d c π d c + d c 2 Σ ψ + ψ c λ ψ c l g λ π d d l.p p. 2 âgulo ere os eios - recomedção pr o diâmero do sem-fim: c d c ode c disâci ere ceros 9

11 5.3. Relções Pricipis Tbel 1 Âgulos de pressão orml e dimesões do dee recomeddos pr oro. - Vlores recomeddos pr λ; φ ; G e b G : Âgulo de iclição d rosc - λ [ o ] Âgulo de pressão orml φ [ o ] p p p p p p p p p p dedo G [mm] Dededo b G [mm] 10

12 5.3. Relções Pricipis Tbel 2 Eficiêci d rsmissão - μ 0.05 Âgulo de hélice ψ [ o ] Eficiêci η [%]

13 5.4. álise dos Esforços F F X Y F F R r r F Y F R 12

14 5.4. álise dos Esforços sem rio (μ 0) coro r..cos. f..se cos φ seλλ sem-fim seφ r r cosφ cos λ 13

15 5.4. álise dos Esforços com rio (μ 0) coro r..cos. f..se sem-fim cos φ se λ + μ cos λ ( cosφ λ + μ cosλ) se se φ r r cosφ cos λ μ seλ ( cos φ cos λ μ se λ ) cos 14

16 5.4. álise dos Esforços cálculo d forç de rio - f ( cos φ cos λ μ se λ ) ( μ seλ cosφ cosλ) ( μ) ( μ) μ μ μ seλ cosφ cosλ ( ) f ( cosφ λ μ seλ) cos cosφ seλ + μ cosλ μ seλ cosφ cosλ 15

17 5.4. álise dos Esforços com rio (μ 0) coro r..cos. f..se sem-fim f μ μ seλ cosφ cosλ 16

18 5.4. álise dos Esforços - eficiêci cos φ se λ + μ cos λ μ seλ cosφ cosλ η cosφ seλ ( μ 0) cosφ cosλ cosφ μ λ ( μ 0) cos φ λ μ cos λ cos φ + μ co λ se + μ seλ cosφ cosλ η P P síd erd T T síd erd Quo mior ψ mior eficiêci 17

19 5.5. álise do rio em fução d velocidde V V + V S V S V cos( λ) 18

20 5.5. álise do rio em fução d velocidde (co.) Gráfico 1: μ f (V s, cbmeo superficil, lubrificção, ec.) urv : - meriis de pior qulidde urv : - meriis de melhor qulidde de rio μ oeficiee Velocidde de Escorregmeo V s [m/s] 19

21 5.6. Eemplo N rsmissão mosrd bio, o prfuso sem-fim rsmie poêci de 0.75 k pr coro. s crcerísics d rsmissão são s seguies: Prfuso sem-fim: 2 hélice direi 1200 rpm d 50 mm F 63 mm oro: 30 d 50 mm F 25 mm φ 14.5º p 13 mm Sbedo que os meriis são de bo qulidde (curv ), deermie: ) O psso il do sem-fim, disâci ere ceros, vço e âgulo de iclição; b) s reções os mcis d coro e e ; c) O orque de síd e eficiêci d rsmissão. 20

22 5.6. Eemplo ) p p 13 mm c d c + d c 87.1 mm 2 2 d c c π p d 50 mm π d c mm l p 13 2 l 26 mm g l l λ 26 λ g g λ 9.4º π d π d π 50 21

23 F F X 5.6. Eemplo b) Reções os poios F R Y F r r F P V Y F R 22

24 5.6. Eemplo P N V álculo de v: d π 3 π 50 ( 10 ) 1200 v v 314m/s álculo de V s : V S V cos( λ) 3.14 V S cos o ( 9.4 ) 3.18 oeficiee de ri io μ 0.03 m/s - álculo de μ: Gráfico μ 0.03 Velocidde de Escorregmeo V s [m/s] 23

25 5.6. Eemplo - álculo de φ : cosψ gφ gφ φ g o o ( gφ cosψ ) g( g14.5 cos 9.4 ) φ 14.3º λ ψ c - ssim, cosφ seλ + μ cos λ ( ) 1270 N se φ 314 N φ cosφ cos λ 1210 N 24

26 5.6. Eemplo - ssim, em-se: 239 N r r 314 N N r 25

27 5.6. Eemplo - Equções de equilíbrio: - rg il: Σ F 0 F F F 239N r 26 F

28 5.6. Eemplo - Plo : ΣM 0 - Equções de equilíbrio: r r ( 62.5) + ( 37.5) F ( ) 0 F F ( 239) ( 62.5) + ( 314) ( 37.5) 266N 100 F Y ΣF r 0 F + F 0 r F F F 48 N F Y 27

29 5.6. Eemplo - Equções de equilíbrio: - Plo : ΣM ( 37.5) F ( ) 0 0 F ( 1210) ( 37.5) 100 F 454N r F ΣF 0 F + F 0 F F F 756N F F F 28

30 5.6. Eemplo - álculo ds crgs resules os mcis: F ( F ) + ( F ) ( 454) + ( 266) F N r F F F ( F ) + ( F ) ( 756) + ( 48) F F F 758N F F 29

31 6. Dimesiomeo 6.1. O dee do prfuso sem-fim é mis resisee do que o d coro devido à própri geomeri. Pr dimesioá-lo podem ser empregdos os mesmos méodos e criérios uilidos pr deermição de esões em roscs. 30

32 6. Dimesiomeo 6.2. Fleão o dee d coro: 1. Equção de uckigh (Eq. de Lewis dpd) σ p F c ode: σ esão ue o dee d egregem crregmeo rsmiido p psso circulr orml p p cos(λ) F c fce d coro for de form de Lewis f(φ ) φ 14.5º º º º Tbel 1 31

33 6. Dimesiomeo 6.2. Fleão o dee d coro: 2. Equção de uckigh id esá sedo uilid pel GM. Porém os vlores ds vriáveis des equção são forecidos pes em uiddes igless o pel GM quo pelo livro eo. Por es rão, recomed-se que coro d rsmissão sej dimesiod como um egregem helicoidl. 32

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Revisão: Lei da Inércia 1ª Lei de Newton

Revisão: Lei da Inércia 1ª Lei de Newton 3-9-16 Sumário Uidde I MECÂNICA 1- d prícul Moimeos sob ção de um forç resule cose - Segud lei de Newo (referecil fio e referecil ligdo à prícul). - As compoees d forç. - Trjeóri cosoe s orieções d forç

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

1 a. Lista de Exercícios

1 a. Lista de Exercícios Úlim ulição 7/8/ ÁREA FACULDADE DE CIÊNCIA E TECNOLOGIA Engenhri de Produção Engenhri Eléric e Engenhri de Compução Disciplin: Álger Liner Professor(: D / / Aluno(: Turm Lis de Eercícios O início d eori

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec Hz Hmmig iser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Assíntotas horizontais, verticais e oblíquas

Assíntotas horizontais, verticais e oblíquas Assíntots horizontis, verticis e olíqus Méricles Thdeu Moretti MTM/PPGECT/UFSC INTRODUÇÃO Dizemos que um ret é um ssíntot de um curv qundo um ponto o mover-se o longo d prte etrem d curv se proim dest

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

REQUISITOS ACÚSTICOS NOS EDIFÍCIOS

REQUISITOS ACÚSTICOS NOS EDIFÍCIOS REQUISITOS ACÚSTICOS NOS EDIFÍCIOS MODELOS DE PREVISÃO Albano Neves e Sousa 22 de Maio de 2009 ÍNDICE QUALIDADE ACÚSTICA DE ESPAÇOS FECHADOS Tempo de reverberação: EN 12354-6:2003 ISOLAMENTO SONORO Ruído

Leia mais

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1).

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1). UJ OURSO VSTIULR 0- RITO PROV ISURSIV TÁTI Questão o plno crtesino, considere u hste etálic rígid, de espessur desprezível, co extreiddes nos pontos (,) e (5,) ) eterine equção d circunferênci de centro

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec khz Hmmig kiser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Sobre o teorema de classificação das cônicas pela análise dos invariantes

Sobre o teorema de classificação das cônicas pela análise dos invariantes Revist Ffibe On Line n go 7 ISSN 88-699 wwwffibebr/revistonline Fculddes Integrds Ffibe Bebedouro SP Sobre o teorem de clssificção ds cônics pel nálise dos invrintes (About the conics clssifiction theorem

Leia mais

Física A Semi-Extensivo V. 3 Exercícios

Física A Semi-Extensivo V. 3 Exercícios Semi-Etensio V. 3 Eercícios ) D ) 94 F = = m. g =. = 5. 9, 8 35, = 4 F = 4 =. = 4.,35 = 35 3) 56. Incorret. Se elocidde é constnte, forç resultnte no liro é zero; logo, s forçs que tum no liro são o peso

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO FLAMBAGEM POR FLEXÃO FLAMBAGEM POR TORÇÃO FLAMBAGEM POR FLEXO-TORÇÃO FLAMBAGEM LATERAL FLAMBAGEM

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletrotécnic Módulo III Prte I Motores CC Prof. 2 3 Máquin CC Crcterístics Básics Muito versáteis (bos crcterístics conjugdo X velocidde) Elevdos conjugdos de prtid Aplicções em sistems de lto desempenho

Leia mais

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO Vlor 2,0 omponente urriulr: Professor(): Turno: Dt: Mtemáti PULO EZR Mtutino luno(): Nº do Série: Turm: luno: 9º no Suesso! Pontução EXTR List de Eeríios ONTINUÇÂO List de eeríios do teorem de Tles. Semelhnç

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES NOTS DE U - ÁGER INER TRIZES, DETERINNTES E SISTES DE EQUÇOES INERES ISE C C EITE SVDOR Profª Isel Crisi C eie Álger ier TRIZES Um mri é um grupmeo regulr de úmeros ri de ordem m por é um reâgulo de m

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Cinemática. s... distância percorrida v s... velocidade instantânea dv a v s v... aceleração instantânea

Cinemática. s... distância percorrida v s... velocidade instantânea dv a v s v... aceleração instantânea Trslção recilíe s... disâci percorrid v s... velocidde isâe dv v s v... celerção isâe dx Ciemáic, s s v d s, sds v v s v v d iorme, v cos, s s v iormemee celerdodescelerdo cos, v v, Trslção crvilíe r...

Leia mais

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IO Educção Infntil - Ensino Fundmentl - Ensino Médio Roteiro de Estudo pr Avlição do 3ºTrimestre - 015 Disciplin: Mtemátic e Geometri Série: 1ª Série EM Profª Cristin Nvl Orientção de Estudo:

Leia mais

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IO Educção Infntil - Ensino Fundmentl - Ensino Médio Roteiro de Estudo pr Avlição do 3ºTrimestre - 016 Disciplin: Mtemátic e Geometri Série: 1ª Série EM Profª Cristin Nvl Orientção de Estudo:

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

Aplicações de Conversores Estáticos de Potência

Aplicações de Conversores Estáticos de Potência Universidde Federl do ABC Pós-grdução em Engenhri Elétric Aplicções de Conversores Estáticos de Potênci José L. Azcue Pum, Prof. Dr. Acionmento de Mquins CC 1 Conversores pr cionmento de motores Acionmento

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de ngenhri létric Aul 5.3 Gerdores de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGRALD, A.., KINGSLY Jr. C. UMANS, S. D. Máquins létrics: com Introdução à letrônic De Potênci.

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid

Leia mais

Modelagem da Cinética. Princípios da Modelagem e Controle da Qualidade da Água Superficial Regina Kishi, 10/10/2014, Página 1

Modelagem da Cinética. Princípios da Modelagem e Controle da Qualidade da Água Superficial Regina Kishi, 10/10/2014, Página 1 Modelgem d inétic Princípios d Modelgem e ontrole d Qulidde d Águ Superficil Regin Kishi, 1/1/214, Págin 1 Definições Equilíbrio descreve composição químic finl esperd no volume de controle. inétic descreve

Leia mais

CRITÉRIO DE AVALIAÇÃO ENSINO MÉDIO 1ª e 2ª Séries

CRITÉRIO DE AVALIAÇÃO ENSINO MÉDIO 1ª e 2ª Séries AVALIAÇÃO DIAGNÓSTICA - Dts: 19, 20, 21, 22 e 24 de fevereiro ETAPA 1ª PERÍODO de fevereiro 18 de mio NÚMERO DE SEMANAS 17 AVALIAÇÃO PROCESSUAL Vlor 05 cd CRITÉRIO DE AVALIAÇÃO ENSINO MÉDIO 1ª e 2ª Séries

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Departamento de Engenharia Sanitária e Ambiental Hidráulica Geral (ESA04A) º semestre 011 Terças de 10 às 1 h Quintas de 08 às 10h Análise dos Sistemas de Recalque Objetivos -Analisar as condições de funcionamento

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

Aula 3 - Controle de Velocidade Motor CC

Aula 3 - Controle de Velocidade Motor CC 1 Acionmentos Eletrônicos de Motores Aul 3 - Controle de Velocidde Motor CC Prof. Márcio Kimpr Prof. João Onofre. P. Pinto Universidde Federl de Mto Grosso do Sul/FAENG BATLAB Cmpo Grnde MS Prof. Mrcio

Leia mais

Condução elétrica em metais

Condução elétrica em metais Condução elétric em metis Elétrons livres no metl gás de e - em um poço 3D. Movimento letório dentro do poço. Cmino livre médio: λ. E externo plicdo celerção entre colisões velocidde de rrsto: v d. 3 5

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Estruturas de Contenção. Marcio Varela

Estruturas de Contenção. Marcio Varela Estruturas de Contenção arcio Varela A designação uros de Arrimo é utilizada de uma forma genérica para referir-se a qualquer estrutura construída com a finalidade de servir de contenção ou arrimo a uma

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Rolamentos com uma fileira de esferas de contato oblíquo

Rolamentos com uma fileira de esferas de contato oblíquo Rolmentos com um fileir de esfers de contto oblíquo Rolmentos com um fileir de esfers de contto oblíquo 232 Definições e ptidões 232 Séries 233 Vrintes 233 Tolerâncis e jogos 234 Elementos de cálculo 236

Leia mais

Como calcular a área e o perímetro de uma elipse?

Como calcular a área e o perímetro de uma elipse? Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv 8 de gosto de 14 Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

8kN/m V C V A V B. 3 m 1 5 m. 3 m 5 m. 3 m 5 m. 1 - Calcule as reações de apoio da viga hiperestática representada pela figura abaixo: X 1.

8kN/m V C V A V B. 3 m 1 5 m. 3 m 5 m. 3 m 5 m. 1 - Calcule as reações de apoio da viga hiperestática representada pela figura abaixo: X 1. Lista de Eercícios - alcule as reações de apoio da viga hiperestática representada pela figura abaio: m m kn/m M z ( ) 4 6 ( ) m m kn/m Na tabela: ( ) 4 ( 4 9 () ) m m Pb Na tabela: ( b ) 6 X ( 6 9,7 X

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco;

PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco; PLANO INCLINADO 1. Um corpo de massa m = 10kg está apoiado num plano inclinado de 30 em relação à horizontal, sem atrito, e é abandonado no ponto A, distante 20m do solo. Supondo a aceleração da gravidade

Leia mais

Escola Politécnica Universidade de São Paulo

Escola Politécnica Universidade de São Paulo Ecol Poliécic Uiveridde de São Pulo PSI323 Circuio Elérico II Bloco 3 Fuçõe de rede e Regime Permee Seoidl Prof Deie Cooi PSI323- Prof Deie Bloco 3 DESCRIÇÃO ENTRADA-SAÍDA DE UM CIRCUITO R, LINEAR E INVARIANTE

Leia mais

ESTRUTURAS DE CONTENÇÃO PARTE 2

ESTRUTURAS DE CONTENÇÃO PARTE 2 ESTRUTURAS DE CONTENÇÃO ARTE uro de Arrimo A designção uros de Arrimo é utilizd de um form genéric pr referir-se qulquer estrutur construíd com finlidde de servir de contenção ou rrimo um determind mss

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010 1. Função Eponencial Dado um número rela a > 0, e a 1, então chamamos de função eponencial de base a, a função f: R R tal que: f = a Por eemplo: f = 5 g = 1 2 = 3 Gráfico de uma função eponencial Para

Leia mais

CONVERSORES CC-CA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

CONVERSORES CC-CA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável CONVERSORES ELECTRÓNCOS DE POTÊNCA A ALTA FREQUÊNCA CONVERSORES CC-CA - versores CONVERSORES CC-CA CA Aplicções: Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção

Leia mais

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras. UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

Dimensionamento Estatico de Molas Helicoidais

Dimensionamento Estatico de Molas Helicoidais Dimensionamento Estatico e Molas Helicoiais sob Carregamento Compressivo ELEMENTOS DE MAQUINAS I Faculae e Engenharia Mecanica a Unicamp Prof Dr Auteliano Antunes os Santos Junior Objetivos a Aula: Ao

Leia mais

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total. 46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Proteção Passiva Contra Incêndios Proteção de cablagens

Proteção Passiva Contra Incêndios Proteção de cablagens Proteção Pssiv Contr Incênios Proteção e cblgens TRIA PSC LS Proteção e cblgens TRIA PSC LS /50 cble 90 e 0 minutos com fogo pelo exterior. Ensio AIDICO IE0700 Descrição Detlhe A - Secção trnsversl TRIA

Leia mais

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que: MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

Métodos de Modulação em Largura de Pulsos

Métodos de Modulação em Largura de Pulsos Méodos de Modulação e Largura de Pulsos Prof. Paulo Ferado Seixas Prof. Marcos Aôio Seero Medes Prof. Paulo Ferado Seixas SI Siseas de ergia Iierrupa 94 Coersor e Meia Poe PWM Naural / Poradora Modulae

Leia mais

Documento Auxiliar do Conhecimento de Transporte Eletrônico

Documento Auxiliar do Conhecimento de Transporte Eletrônico Documento Auxiliar do Conhecimento de Transporte Eletrônico 8338 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8339 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8340 Documento

Leia mais

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido.

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido. Estátic de Fluidos Um fluido é considerdo estático qundo s rtículs não se deformm, isto é, estão em reouso ou em movimento de coro ríido. Como um fluido não suort tensões cislhntes sem se deformr, em um

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm = 1,4.

Leia mais

Tópicos de Física Moderna Engenharia Informática

Tópicos de Física Moderna Engenharia Informática EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.

Leia mais