Transformadas de Laplace

Tamanho: px
Começar a partir da página:

Download "Transformadas de Laplace"

Transcrição

1 Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric de um vriável complex "". equçõe diferecii mbém podem er rformd em equçõe lgébric rvé d rformd de plce. DEFINIÇÃO rformd de plce é um operção emelhe rformd logrímic. equçõe diferecii ão rformd em equçõe lgébric, em que pode-e relizr operçõe lgébric ormi o domíio "" e depoi reordo o domíio "" rvé d iver. Equemicmee: O memáico frcê Pierre Simo de plce decobriu um meio de reolver equçõe diferecii que coie em: Muliplicr cd ermo d equção por e Iegrr cd ermo em relção o empo de zero ifiio "" é um coe de uidde de um /empo. rformd de plce de um fução f é defiid como: [ ] F f f e d Ode: f F - Símbolo d rformd de plce - Fução do empo coíu pr < < - Operdor de plce

2 Trformd de plce Iver d rformd de plce [ ] f f Ode: f - Fução do empo que ão é defiid pr < - - Operdor de iver de plce PROPRIEDDES propriedde báic ão:. Som de du fuçõe [ f f ] [ f ] f F F [ ]. Muliplicção por coe [ f ] f F [ ]. Fução com ro o empo [ ] f e F [ ] f f e d e f e d [ ] f e F 4. Derivd primeir de um fução df F f ode f f d : df df d d [ ] e d f e d f e f df F f d f Modelo Diâmico Prof. Joemr do So 7

3 Trformd de plce. Derivd egud de um fução d f df d F f ode d d d f : fzedo φ df d ou φ F f d f d [ d φ d] φ φ ubiuido [ ] φ ' d f d F f F f f 6. Derivd -éim de um fução d d d f F S f S d f... f dd 7. Iegrl de um fução ere ie e f F F EXEMPOS DE TRNSFORMDS DE PCE. Fução coe f f [ f ] e d e F Modelo Diâmico Prof. Joemr do So 8

4 Trformd de plce. Fução de gru uiário f p/ < p/ F [ f ] e d e. F. Fução Pulo f < < F f f e d e d e e [ ] e F 4. Fução Impulo Del de Dirc f pr < < δ lim f pr < e > [ f ] lim e o Modelo Diâmico Prof. Joemr do So 9

5 Trformd de plce plicdo regr de Hôpil [ f ] lim d d [ e ] d d F. Fução expoecil F e b b [ ] b b b [ f ] e e d e d e F b b OBS.: rformd de plce ão é defiid pr b <. 6. Fução rigooméric F e coω jω e jω jω jω [ f ] [ e ] [ e ] jω jω F jω jω Modelo Diâmico Prof. Joemr do So

6 Trformd de plce TEOREM DO VOR FIN O eorem do vlor fil relcio o compormeo em regime ecioário de f, io é, o gho d fução. Teorem: Se um rformd de plce é muliplicd por, o vlor do produo fzedo eder zero é o vlor d rformd iver com ededo ifiio. lim f f F lim TEOREM DO VOR INICI O eorem do vlor iicil ão dá o vlor de f em, mi um empo ligeirmee uperior zero. Teorem: Se um rformd de plce é muliplicd por, o vlor do produo fzedo eder ifiio é o vlor d rformd iver com ededo zero. Exemplo: lim lim f f F G 4 G lim[ G ] lim G G lim[ ] lim 4 4 Modelo Diâmico Prof. Joemr do So

7 Trformd de plce TRNSFORMD INVERS DE PCE O proceo memáico de e pr d expreão com vriávei complex pr expreão o empo é chmd rformd iver. oção d rformd iver é : [ F ] f Um méodo coveiee pr e ober rformd iver de plce, coie em ur um bel de rformd de plce. Nee co, rformd de plce deve err em form imedimee recohecível bel. Se um rformd F ão puder ecord bel, eão deve-e expdir em frçõe prcii e ecrever F em ermo de fuçõe imple de "" qui rformd ão cohecid. EXPNSÃO EM FRÇÕES PRCIIS Pr reolver um expreão lgébric em frçõe prcii, o deomidor deve er fordo. O umerdor deve er pelo meo um gru bixo do deomidor. Qudo o gru do umerdor for igul ou mior do deomidor, o umerdor deve er dividido pelo deomidor pr dr ermo que ejm pelo meo um gru bixo do deomidor. Exiem rê ipo báico de frçõe prcii, form ão eguie:. Fore liere o deomidor Expreão: G z p p... p p i i : ríze dii Frçõe Prcii: G B... p p N p B N [ p G ] p [ p G ] p [ p G ] lim lim p lim Modelo Diâmico Prof. Joemr do So

8 Trformd de plce Exemplo G 6 6 B C D G lim B lim C lim 6 D lim 6 G 6 6.Fore liere repeido o deomidor Expreão: G z k p p... p Frçõe Prcii: G B N p p p k k p p k [ p G ] k lim p Modelo Diâmico Prof. Joemr do So

9 Trformd de plce d lim p d k k [ p G ] k d lim p k d [ ] k p G B N lim p lim p [ p G ] [ p G ] Exemplo G 4 4 B C G lim 4 d d B d d lim lim lim 4 C lim lim G 4 4.Fore complexo cojugdo o deomidor Qudo fução poui pólo complexo Nee co fução emporl empre evolve produo de um expoecil e um eo ou coeo como idicdo eguir: Modelo Diâmico Prof. Joemr do So 4

10 Trformd de plce Modelo Diâmico Prof. Joemr do So [ ] [ ] ω ω ω ω co B e e e Qudo fução poui pólo complexo e rei. Pr uilizrmo o reuldo d eçõe eriore devemo primeiro eprr o pólo complexo do rei d eguie form: Expreão: b p b p N F ode é obido como defiido o iem e e ão deermido por iguldde poliomil ribuido-e vlore. Exemplo G G pode er obido pelo procedimeo hbiul e vle /. e, podem er deermido implificdo equção erior e comprdo o poliômio: 6 Poro -/ e -6/. judo o ermo:, F uilizdo d bel de lplce, ecormo:

11 Trformd de plce f e co e SOUÇÃO DE EQUÇÕES DIFERENCIIS POR PCE O procedimeo que evolve uilizr rformd de plce pr ober olução de um equção diferecil é o eguie:. Trformr cd ermo d equção diferecil em u rformd de plce, io é, mudr fução do empo pr um fução de " ".. Pequir od mipulçõe - por exemplo, coiderr o que coece qudo um erd degru é plicd o iem.. Coverer fução de plce reule em um equção como fução do empo, io é, operção iver d rformção de plce. Pr ur bel de rformd de plce e im deermir coverão, é freqüeemee eceário decompor em frçõe prcii pr ober form pdrõe dd bel. Equemicmee: Modelo Diâmico Prof. Joemr do So 6

12 Trformd de plce Exemplo Sej equção diferecil d y d y dy 6 6y u d d d com eguie codiçõe iicii: d y dy y,, d d plique um degru uiário em u u Ep plicção d rformd de plce d y d y dy d d d [ y ] u 6 6 [ ] y y dy d y y y 6 d d y y 6y u [ ] y 6y y 6y u y u 6 6 [ u ] u Ep Operção com fução de rferêci dy d y y Modelo Diâmico Prof. Joemr do So 7

13 Trformd de plce y Ep Expão em frçõe prcii B C D y lim B lim C lim 6 D lim 6 y 6 6 Ep b plicção d rformd iver de plce [ y ] y e e e 6 6 Modelo Diâmico Prof. Joemr do So 8

14 Trformd de plce TBE DE TRNSFORMDS DE PCE F [ f ] f e d Fução Trformd f FS Impulo uiário δ Degru uiário Rmp Uiári 4,,,...! e 6 e 7 e,,,...! 8 e 9 e e b e e b b be e b b eω ω ω coω ω 4 Seóide morecid ω e eω ω Coeóide morecid e coω ω 6 ω ζω ω e e ω ζ ζ ζω ω Modelo Diâmico Prof. Joemr do So 9

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Escola Politécnica Universidade de São Paulo

Escola Politécnica Universidade de São Paulo Ecol Poliécic Uiveridde de São Pulo PSI323 Circuio Elérico II Bloco 3 Fuçõe de rede e Regime Permee Seoidl Prof Deie Cooi PSI323- Prof Deie Bloco 3 DESCRIÇÃO ENTRADA-SAÍDA DE UM CIRCUITO R, LINEAR E INVARIANTE

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras. UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES NOTS DE U - ÁGER INER TRIZES, DETERINNTES E SISTES DE EQUÇOES INERES ISE C C EITE SVDOR Profª Isel Crisi C eie Álger ier TRIZES Um mri é um grupmeo regulr de úmeros ri de ordem m por é um reâgulo de m

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trnformd de Lplce Mtemátic Aplicd Artur Miguel Cruz Ecol Superior de Tecnologi Intituto Politécnico de Setúbl 4/5 verão de Dezembro de 4 Trnformd de Lplce Nete cpítulo ver-e-á como trnformd de Lplce permitem

Leia mais

Introdução ao Controle por Realimentação

Introdução ao Controle por Realimentação EA66 Prof. Ferdo J. Vo Zube Itrodução o Cotrole por Relimetção Itrodução... lh Abert lh Fechd... 6 3 Cuto-beefício do cotrole por relimetção... 9 4 Cotrole ul Cotrole Automático... 3 5 Servomecimo Regulção...

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas.

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas. Teori o Grfo - BCC 204 Fluxo em Grfo Hrolo Gmini Sno Univerie Feerl e Ouro Preo - UFOP 19 e ril e 2011 1 / 19 Vlorção e Grfo Exemplo vlore eáio: iâni roovi que lig ie e ie é e 70 kilômero vlore inâmio:

Leia mais

Transformadores. Ligações e Esfasamentos. Nos transformadores trifásicos existe uma diferença de fase entre os fasores. Manuel Vaz Guedes.

Transformadores. Ligações e Esfasamentos. Nos transformadores trifásicos existe uma diferença de fase entre os fasores. Manuel Vaz Guedes. Tfomdoe Ligçõe e Efmeo Muel Vz Guede FEUP Fuldde de Egehi Uiveidde do Poo o fomdoe ifáio exie um difeeç de fe ee o foe epeeivo d eão o eolmeo pimáio e d eão o eolmeo eudáio. Ee âgulo de difeeç de fe depede

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec Hz Hmmig iser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS

MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Projeo Reenge - Eng. Eléric Aposil de Sisems de Conrole I IV- &$3Ì78/,9 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS 4.- INTRODUÇÃO Inicilmene é necessário que se defin o que é sisem, sisem dinâmico e sisem

Leia mais

PROJEÇÃO DE DOMICÍLIOS PARA OS MUNICÍPIOS BRASILEIROS EM 31/12/2004

PROJEÇÃO DE DOMICÍLIOS PARA OS MUNICÍPIOS BRASILEIROS EM 31/12/2004 PROJEÇÃO DE DOMICÍLIOS PARA OS MUNICÍPIOS BRASILEIROS EM 31/12/2004 SUMÁRIO 1. INRODUÇÃO... 1 2. FONE DE DADOS... 1 3. PROJEÇÃO DO NÚMERO DE DOMICÍLIOS... 2 3.1 Mucípo emacpado em 2001... 5 3.2 População

Leia mais

Unidade VI - Estabilidade de Sistemas de Controle com Retroação

Unidade VI - Estabilidade de Sistemas de Controle com Retroação Uidde VI - Etilidde de Sitem de Cotrole com Retroção Coceito de Etilidde; Critério de Etilidde de Routh-Hurwitz; A Etilidde Reltiv de Sitem de Cotrole com Retroção; A Etilidde de Sitem com Vriávei de Etdo;

Leia mais

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar:

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar: F6D - CONTROLE E SERVOMECAMISMOS II Prof. Crlo Rimdo Erig Lim SOLUÇÃO DAS EQUAÇÕES DE ESTADO. - Solção d eqção elr e d eqção mriil A eqção de edo A B ode er ed olção d eqção elr: Por Lle: A B X AX BU A

Leia mais

b) AB = 28cm; razão = 4 c) AB = 36cm; razão = 5 e) AB = 72cm; razão = 5

b) AB = 28cm; razão = 4 c) AB = 36cm; razão = 5 e) AB = 72cm; razão = 5 S RESPOSTS ESTÃO NO FINL DOS EXERÍIOS. Segeo Popoioi. Qui pe de egeo ão ioeuávei? = ; D = 9 =. Logo ão oeuávei poque D 9 zão ee ele é u úeo iol. = ; D = = ; D = = ; D = 6. O egeo, D, EF e GH, e ode, ão

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

Testes de Radiciação

Testes de Radiciação Testes de Rdicição ) O vlor de 7 9 é ) ) Vlor d epressão ) 7 0 é : ) O número. ) é rcionl e menor que é rcionl e mior que é rcionl e menor que é rcionl e mior que não é rel ) (UFRGS) Se = e = ) número

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec khz Hmmig kiser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

PL - Casos Especiais

PL - Casos Especiais PL - Csos Especiis MINIMIAÇÃO Eiste fors de solução: ) Método Siple: i Vriável pr etrr bse: quel que reduz (o ivés de uetr) fução iiteste de otilidde: verificr se pode diiuir o se uetr o vlor de lgu vriável

Leia mais

Questões dadas em Sala de Aula (para cada turma), nas aulas de Teoria:

Questões dadas em Sala de Aula (para cada turma), nas aulas de Teoria: Questões dadas em ala de Aula (para cada turma), nas aulas de Teoria: - Para turmas 4P, 4Q, 4X, 3P (1o horário das semanas "Par"): 1) Elabore um Programa em, e o que recebe (via teclado) dois valores e

Leia mais

/HYDQWDUÃDOJXQVÃWHPDVÃUHODWDUÃH[SHULrQFLDVÃHPÃWRUQRÃGHVVHVÃWHPDVÃGHEDWrORVÃDSRQWDGRÃ VXDÃGLPHQVmRÃHÃSRVVLELOLGDGHVÃGHÃWUDEDOKRVÃEXVFDÃGHÃXPÃGLDJQyVWLFRÃSDUDÃFRPSUHHQGHUÃ RÃFRPSOH[RÃGHQWURÃGHÃXPDÃUHDOLGDGHÃUHVJDWDQGRÃRÃFRWLGLDQRÃLQtFLRÃGDÃSUREOHPDWL]DomR

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

!!" "!#! " $ %"&!!$$# &! "! $$ & $ '!$# $' & &# & #$ & &' &$$ $' ' (" ' &!&& & ' & " $' $$ " $' $ "# )! * && ' $ " &+ $! "+ $$ $$ $! ' "$# $$ &#, -. /0 -,,.0 10, 02, 3,3,. /0-3,2 1/ - 3 3 3 / 00//, - /

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Aula Teste de Controle de Sistemas e Servomecanismos

Aula Teste de Controle de Sistemas e Servomecanismos Aul Tete de Controle de Sitem e Servomecnimo Crlo Edurdo de Brito Nove crlonov@gmil.com 3 de mio de 202 Expnão em frçõe prcii A expnão em frçõe prcii é um procedimento pr otenção de um frção lgéric de

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Análises de sistemas no domínio da frequência

Análises de sistemas no domínio da frequência prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

SISTEMA DE CONTROLE DE VELOCIDADE E POSIÇÃO PARA MESA COORDENADA CARTESIANA UTILIZADA EM MÁQUINAS FERRAMENTA

SISTEMA DE CONTROLE DE VELOCIDADE E POSIÇÃO PARA MESA COORDENADA CARTESIANA UTILIZADA EM MÁQUINAS FERRAMENTA Revi de Ciênci Ex e Tecnologi Vol. III, Nº. 3, Ano 8 SISTEMA DE CONTROLE DE VELOCIDADE E POSIÇÃO PARA MESA COORDENADA CARTESIANA UTILIZADA EM MÁQUINAS FERRAMENTA Dougl Dniel Smpio Snn Fculdde Anhnguer

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h) d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:

Leia mais

MATRIZES ... Exemplos: 1) A representação de um tabuleiro de xadrez pode ser feita por meio de uma matriz 8 8.

MATRIZES ... Exemplos: 1) A representação de um tabuleiro de xadrez pode ser feita por meio de uma matriz 8 8. MTRIZES Defiição Couo de úmeros reis ou complexos disposos em form de bel, iso é, disribuídos em m lihs e colus, sedo m e úmeros uris ão ulos m m m Noção: com i,,, m e,,, - elemeo geérico d mriz i - ídice

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Formatação de fonte. Teorema da amostragem

Formatação de fonte. Teorema da amostragem Formatação de ote 1 Teorema da amotragem Do aalógico para o digital A amotragem (itatâea) de um ial ou orma de oda aalógica é o proceo pelo qual o ial paa a er repreetado por um cojuto dicreto de úmero.

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Sinais e Sistemas. Env. Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with 4 6 8 0 4 6 8 0 Frequecy (khz) Hmmig kiser Chebyshev Siis e Sisems Power Specrl Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy (db/hz) Sie Wve Joi Acuor Joi Sesor Revolue Double

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

VELOCIDADE DE PROPAGAÇÃO DOS DISTÚRBIOS NA ATMOSFERA HIDROSTÁTICA. Vladimir Kadychnikov Darci Pegoraro Casarin Universidade Federal de Pelotas

VELOCIDADE DE PROPAGAÇÃO DOS DISTÚRBIOS NA ATMOSFERA HIDROSTÁTICA. Vladimir Kadychnikov Darci Pegoraro Casarin Universidade Federal de Pelotas VELOCIDADE DE PROPAGAÇÃO DOS DISTÚRBIOS NA ATMOSFERA HIDROSTÁTICA Vldiir Kdychikov Drci Pegorro Csri Uiversidde Federl de Pelos Absrc For cosrucig of he sble lgorihs of uericl iegrio of he hydroherodiyic

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

BCC201 Introdução à Programação ( ) Prof. Reinaldo Silva Fortes. Prática 01 Algoritmos Sequência Simples

BCC201 Introdução à Programação ( ) Prof. Reinaldo Silva Fortes. Prática 01 Algoritmos Sequência Simples BCC0 Itrodução à Progrmção (04-0) Prof. Reildo Silv Fortes Prátic 0 Algoritmos Sequêci Simples ) Um P.A. (progressão ritmétic) fic determid pel su rzão (r) e pelo primeiro P.A., ddo rzão e o primeiro termo.

Leia mais

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet LIMITE DE UMA FUNÇÃO Cristineguedes.pro.br/ceet Vizinhnç de um ponto Pr um vlor rbitrrimente pequeno >, vizinhnç de é o conjunto dos vlores de pertencentes o intervlo: - + OBS: d AB = I A B I Limite de

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores Máquins Elécrics Trnsformdores 4-- Trnsformdores Os rnsformdores são máquins elécrics esáics que elevm ou bixm um deermind ensão lernd.. rincípio de funcionmeno O funcionmeno do rnsformdor bsei-se nos

Leia mais

Lista de Exercícios - Potenciação

Lista de Exercícios - Potenciação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 14 - Potenciação ou Exponenciação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=20lm2lx6r0g Gabaritos

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Lista de Exercícios 01 Algoritmos Seqüência Simples

Lista de Exercícios 01 Algoritmos Seqüência Simples Discipli: Algoritmos e Estrutur de Ddos I CIC0 List de Exercícios 0 Algoritmos Seqüêci Simples ) Um P.A. (progressão ritmétic) fic determid pel su rzão (r) e pelo primeiro termo( ). Escrev um lgoritmo

Leia mais

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletrotécnic Módulo III Prte I Motores CC Prof. 2 3 Máquin CC Crcterístics Básics Muito versáteis (bos crcterístics conjugdo X velocidde) Elevdos conjugdos de prtid Aplicções em sistems de lto desempenho

Leia mais

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s). 2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais