Matemática Aplicada Geoprocessamento/Professor: Lourenço Gonçalves LISTA-1 (03/04/2009)

Tamanho: px
Começar a partir da página:

Download "Matemática Aplicada Geoprocessamento/Professor: Lourenço Gonçalves LISTA-1 (03/04/2009)"

Transcrição

1 Matmática Aplicada Goprocssamnto/Profssor: Lournço Gonçalvs LISTA-1 (3/4/29) Exrcício-1 Considr as figuras abaixo rsponda o qu s pd. a) Qual a razão ntr as dimnsõs dos sus comprimntos? b) S o carro grand tivr altura a = 1,4 m qual a altura a do carro pquno? c) S a distância ntr os ixos do carro pquno é d =,8 m qual srá ssa distância d no carro grand? Exrcício-2 Os prços d quatro garrafas d volums A, B, C D d dtrmindada marca d azit stão aprsntadas na tabla. Us a tabla para rspondr qual é a scolha conomicamnt viávl na compra d uma garrafa dss azit. Justifiqu sua scolha. A B C D Volum 25 ml 5 ml 75 ml 1 litro Prço (R$) 7,5 13,5 21,25 26, Exrcício-3 Num mapa fito na scala d 1 : 5 a distância d 6 km com qu grandza srá rprsntada? Exrcício-4 Num mapa cuja scala é d 1: 5, duas ilhas stão rprsntadas à distância d 3 cm. Qual é a distância ral ntr ssas duas ilhas?

2 Exrcício-5 Um litiro comprou 32 kg d alfafa para alimntar 25 vacas durant 16 dias. Passado 45 dias dcidiu comprar mais 4 vacas. Considrando qu cada uma das 4 vacas com diariamnt o msma qu as rstants 25, quantos quilos d alfafa dv o litiro comprar até ao fim dos 16 dias? Exrcício-6 Um dtrminado ltrodoméstico custa 65 uros. O dono da loja pagou ao vnddor uma comissão d 1% sobr o prço d vnda ainda ganhou 3% sobr o prço d custo. O prço d custo do ltrodoméstico é a) 3 uros. b) 35 uros. c) 4 uros. d) 45 uros. ) 5 uros. Indica, justificando, qual é a apção corrcta. Exrcício-7 Dtrmin o valor d x no losango: Exrcício-8 Na figura abaixo, ED é parallo a BC. Sndo BAE igual a 8 o ABC igual a 35 o, calcul a mdida do ângulo AED. Exrcício-9 Um fazndiro possui ração suficint para alimntar suas 16 vacas durant 62 dias. Após 14 dias, l vnd 4 vacas. Passados mais 15 dias, l compra 9 vacas. Quantos dias, no total, durou sua rsrva d ração? Exrcício-1 Uma caravana com 7 pssoas dv atravssar o Sahara m 42 dias. Su suprimnto d água prmit qu cada pssoa disponha d 3,5 litros por dia. Após 12 dias, a caravana ncontra 3 bduínos sdntos, vítimas d uma tmpstad d aria, os acolh. Prgunta-s: a) Quantos litros d água por dia cabrão para cada pssoa s a caravana prossguir sua rota como planjado? b) S os mmbros da caravana (bduínos inclusiv) continuarm consumindo água como ants, m quantos dias, no máximo, srá ncssário ncontrar um oásis? Exrcício-11 Calcul a ára d um losango d prímtro 4 cm sabndo qu uma disgonal o dobro da outra. Exrcício-12 Calcul a altura a ára d um triângulo quilátro d lado a.

3 Exrcício-13 Calcul a ára do quadrado inscrito m um triângulo d bas 12 altura 6. Exrcício-14 Calcul a ára do trapézio d bass 25 4 lados não parallos d 17 1 Exrcício-15 Calcul o trciro lado d um triângulo, sabndo qu os dois outros mdm 5 8 qu formam um ângulo d 6º. Exrcício-16 Classifiqu quanto aos ângulos um triângulo cujos laos são 12, Exrcício-17 Em um triângulo ABC, AB=1, AC=14 BC=16. a) Calcul cosb b) B é agudo ou obtuso? Exrcício-18 Calcul o valor d x no triângulo da figura: x+2 x 12º Exrcício-19 Qual é o gênro (númro d lados) d um polígono qu possui 14 diagonais? Exrcício-2 Qualé a soma dos ângulos intrnos d um hxágono convxo? Exrcício-21 Qual é o númro d disgonais d um polígono convxo cujo soma dos ângulos intrnos 144º? Exrcício-22 Encontr o numro d diagonais d um polígono rgular, sabndo qu sus ângulos xtrnos mdm 4º x+1

4 Exrcício-23 Calcul a soma (a + b + c), na figura c b 4º a Exrcício-24 Numa via plana inclinada d 2º m rlação à horizontal, quantos mtros sob vrticalmnt um carro após prcorrr 1 km? Dados: sn2º =,34 cos2º =,94 tg2º =,36 Exrcício-25 Um avião lvant voo sob um ângulo constant d 18º. Quantos mtros trá prcorrido quando atingir a altura d 2m? Dados: sn18º =,31 cos18º =,95 tg18º =,32 Exrcício-26 Calcul x indicado na figura: Dados ACD=3º BAC = 3º CD = 8 m AB = X D C A X B Exrcício-27 Uma rampa plana, d 36 mtros d comprimnto, faz ângulo d 3º com o plano horizontal. Quantos mtros uma pssoa qu sob a rampa intira lva-s vrticalmnt? Exrcício-28 Um móvl part d A sgu numa dirção qu forma om a rta AC um ângulo d 3º. Sab-s qu o móvl caminha uma vlocidad constant d 5 km/h. Após três horas d prcurso, qual é a distância qu ss móvl s ncontra d rta AC? Exrcício-29 O trapézio rtângulo PQRS tm as mdidas indicadas na figura. Calcul o cos(psr). S 5 R 5 P 8 Q

5 Exrcício-3 Um dos ângulos d um parallogramo d lsdos 3 4 md 12º. Calcul a maior diagonal dss parallogramo. Exrcício-31 Calcul a ára do triângulo ABC d lados AB=c, AC=b BC=a: a) b) c) d) A = 45, a = 1cm, a = 8cm, a = 1cm, b = 4cm b = 12cm B = 9 B = 15 c = 2 C = 3 c = 15cm c = 1cm 2cm, Exrcício-32 Calcul a ára d um losango d lado igual a 1 cm, sabndo qu um ângulo intrno é 15º. Exrcício-33 Num triângulo isóscls, cujo prímtro é 32cm, um dos ângulos congrunts tm cossno igual a,6. Calcul a ára dss triângulo. Exrcício-34 Calcul os raios das circunfrências inscrita circunscrita num quadrado d lado a=4. Exrcício-35 Os cattos d um triângulo mdm Calcul: a) A hipotnusa; b) As projçõs dos cattos sobr a hipotnusa; c) A altura rlativa à hipotnusa. Exrcício-36 Num triângulo rtângulo, as projçõs sobr a hipotnusa mdm 2 3. Calcul: a) A hipotnusa; b) Os cattos; c) A altura rlativa à hipotnusa.

Arcos e ângulos Adote π=3,14 quando necessário.

Arcos e ângulos Adote π=3,14 quando necessário. Prof. Liana Turmas: 1C17/27/37 Sgundo trimstr Ângulos Complmntars Suplmntars 1. Qual é o ângulo qu xcd o su suplmnto m 66? 2. Dtrmin um ângulo sabndo qu o su suplmnto xcd o próprio ângulo m 70. 3. Qual

Leia mais

ˆ y. Calcule x e y. B P C 14. Na figura, o quadrilátero ABCD está circunscrito na circunferência de centro O. Sendo

ˆ y. Calcule x e y. B P C 14. Na figura, o quadrilátero ABCD está circunscrito na circunferência de centro O. Sendo LIST 02 XRÍIOS GOTRI PLN PROF. ROGRINHO 1º nsino édio (Tangência ângulos na circunf. quadrilátros pontos notávis do torma d Tals smlhança d a) Nom: n turma 08. No rtângulo da figura ao lado tm-s qu: ˆ

Leia mais

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013 ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr

Leia mais

Prismas VOLUME DE SÓLIDOS GEOMETRICOS: CONTEÚDOS E EXERCÍCIOS

Prismas VOLUME DE SÓLIDOS GEOMETRICOS: CONTEÚDOS E EXERCÍCIOS SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE SARGENTO NADER ALVES DOS SANTOS SÉRIE: º

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

Terceira lista de exercícios.

Terceira lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras

Leia mais

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

II - Teorema da bissetriz

II - Teorema da bissetriz I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais. 125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)

Leia mais

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste

Leia mais

a) 30 b) 40 c) 50 d) 60 e) 70

a) 30 b) 40 c) 50 d) 60 e) 70 Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

Lista de Geometria 1 - Professor Habib

Lista de Geometria 1 - Professor Habib Lista de Geometria 1 - Professor Habib b) Para que valores de x e de y a área ocupada pela casa será máxima? 1. Na figura a seguir, as medidas são dadas em cm. Sabendo que m//n//t, determine o valor de

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,

Leia mais

Fisica 2. k = 1/4πε 0 = 9,0 10 9 N.m 2 /C 2. 01. Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Fisica 2. k = 1/4πε 0 = 9,0 10 9 N.m 2 /C 2. 01. Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Fisica 2 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

Lista de exercícios do teorema de Tales

Lista de exercícios do teorema de Tales Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Lista 3 Figuras planas

Lista 3 Figuras planas Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

ATIVIDADES RECUPERAÇÃO PARALELA

ATIVIDADES RECUPERAÇÃO PARALELA ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno

Leia mais

REVISITANDO A GEOMETRIA PLANA

REVISITANDO A GEOMETRIA PLANA REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a

Leia mais

, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares.

, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares. Teste de Avaliação Escrita Duração: 90 minutos 9 de maio de 0 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 0/0 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 9%) Insuficiente (0% 9%) Suficiente

Leia mais

Faculdade Pitágoras Unidade Betim

Faculdade Pitágoras Unidade Betim Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO

Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32

Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 2. (Uece 2015) Considere um segmento de reta XY cuja medida do comprimento é 10 cm e P um ponto móvel no interior

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

Exercícios complementares para estudo 3º Bimestre 7º ano Prof.ª Roseli Lista 1

Exercícios complementares para estudo 3º Bimestre 7º ano Prof.ª Roseli Lista 1 Exercícios complementares para estudo 3º Bimestre 7º ano Prof.ª Roseli Lista 1 1) Mônica pretendia comprar um televisor que estava em promoção em uma loja, mas acabou desistindo por ter algumas despesas

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

a) 8 b) 12 c) 16 d) 20 e) 24

a) 8 b) 12 c) 16 d) 20 e) 24 0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0

Leia mais

Polígonos Regulares Inscritos e Circunscritos

Polígonos Regulares Inscritos e Circunscritos Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é

Leia mais

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA)

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) 1) Na Figura 1, uma esfera lisa pode ser lançada por três escorregadores polidos. Ordene os escorregadores de acordo com o trabalho que a força gravitacional

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA 18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC

Leia mais

é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a

é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a Escola Secundária com º CEB de Lousada PM Assunto: Soluções da Mega-ficha de Preparação para o Eame Nacional I _ No cálculo de AV B é necessário percorrer pelas seguintes etapas: AB A- Determinar A C B

Leia mais

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R.

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNMENTL - ª ETP 0- ssunto: Equação Nominal Resolva a equação literal a - a. 0- ssunto: Sistema de Equação Em um terreiro, há galinhas e carneiros, num total

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 11/fevereiro 17/fevereiro 18/fevereiro Conteúdos Apresentação da ementa da

Leia mais

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes: AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO MINISTÉIO DA DEFESA EXÉCITO BASIEIO DEP DEPA COÉGIO MIITA DO ECIFE 3 DE OUTUBO DE 004 Página / 8 CONCUSO DE ADMISSÃO AO ITEM 0 Um pai tem hoje 54 anos e seus 4 filhos têm juntos, 39 anos A idade do pai

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 9º ANO. Aluno: Turma: Data:

ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 9º ANO. Aluno: Turma: Data: ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 9º ANO Aluno: Turma: Data: 1) No mapa abaixo, encontram-se representadas as ruas do bairro onde mora Mariana. Mariana informou que mora numa rua entre

Leia mais

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225. 1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

Polígonos semelhantes

Polígonos semelhantes Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / / 011 Assunto: Semelhança de figuras Lição nº e Figuras semelhantes têm a mesma forma. Duas figuras são semelhantes se são geometricamente

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura.

QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Dois garotos, tentando pular um muro, encostaram um banco de 50

Leia mais

Cevianas: Baricentro, Circuncentro, Incentro e Mediana.

Cevianas: Baricentro, Circuncentro, Incentro e Mediana. Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:

Leia mais

TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL

TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL Professores: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. A medida de um dos ângulos externos de um triângulo é 125º. Sabendo-se que os

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 11 Geometria Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) Polígono é uma figura plana limitada por segmentos

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 7 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 7 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Udesc 96) DETERMINE as áreas dos triângulos ABM e BCM. COMENTE estes resultados comparados com a área total. 2. (Fuvest 93) a) Calcule a área do quadrilátero inscrito numa circunferência

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Geometria Plana Triângulos Questões Resolvidas (nem todas)

Geometria Plana Triângulos Questões Resolvidas (nem todas) Questão 1 A bissetriz interna do ângulo  de um triângulo ABC divide o lado oposto em dois segmentos que medem 9 cm e 16 cm. Sabendo que medida de. 9 16 = AC = 3 18 AC Questão mede 18 cm, determine a O

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se

Leia mais

01) 45 02) 46 03) 48 04) 49,5 05) 66

01) 45 02) 46 03) 48 04) 49,5 05) 66 PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função

Leia mais

Geometria I Aula 3.3

Geometria I Aula 3.3 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Geometria I 90h Matemática Aula Período Data Planejamento 3.1 2. 0 28/11/2006 3ª. feira Andréa Tempo Estratégia Descrição (Produção) 18:10

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.

Leia mais

PROFESSOR: EQUIPE DE MATEMÁTICA

PROFESSOR: EQUIPE DE MATEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================================= 01- Um reservatório

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funçõs Trigonométricas META: Introduzir as principais funçõs trigonométricas: sno, cossno tangnt. AULA 7 OBJETIVOS: Dfinir as funçõs sno, cossno tangnt. Mostrar algumas idntidads trigonométricas. Calcular

Leia mais

Uma visita aos programas de Matemática dos 2.º e 3.º Ciclos

Uma visita aos programas de Matemática dos 2.º e 3.º Ciclos Uma visita aos programas de Matemática dos 2.º e 3.º Ciclos Formando: Benilde Matos Actividade: Do Espaço ao Plano Introdução Esta actividade insere-se no capítulo Do Espaço ao Plano que faz parte do programa

Leia mais

Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida

Leia mais