Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas"

Transcrição

1 Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste ângulo. Bissetriz é uma semi-reta que divide o ângulo em partes iguais. 1. Ponta seca do compasso em V, traça-se um arco, definindo 1 e Ponta seca do compasso em 1, raio maior que a metade, traça-se um arco 3. Ponta seca do compasso em 2, raio maior que a metade, traça-se um arco e define o ponto Traça-se uma semi-reta V3 (bissetriz) 1

2 Construções geométricas com esquadro e compasso: Mediatriz é a reta que passa perpendicularmente a um segmento, dividindo-o em duas partes congruentes (Ponto Médio). Retas Perpendiculares Mediatriz é um reta que divide a distância entre dois pontos em partes iguais e está na perpendicular com a ela. 1. Ponta seca do compasso em A, raio maior que a metade de AB, traça-se um arco 2. Ponta seca em B, raio maior que a metade de AB, traça-se um arco 3. Nos pontos de encontro dos arcos (pontos C e D) traça-se a reta (mediatriz). Construções geométricas com esquadro e compasso: Reta Perpendicular ao extremo de um segmento. 2

3 Construções geométricas com esquadro e compasso: Reta Perpendicular por um ponto dado. Construções geométricas com esquadro e compasso: Reta Paralela por segmento dado. Ângulo Ângulo é a região interna ou externa a dois segmentos de retas consecutivos interseccionados em um ponto A chamado vértice. Exemplos: 3

4 Conceitos de Geometria Plana Classificação dos ângulos: Tipos de ângulos: Construção de ângulos o ponto de partida é o ângulo de 60º. 2 + C Para o ângulo de 30º, faça a bissetriz. Para o ângulo de 45º, faça a bissetriz do ângulo de 90º. + O 60 º 1 + A 1. Ponta seca do compasso em O, traça-se um arco, definindo 1 em OA. 2. Ponta seca do compasso em 1, mesmo raio anterior, traça-se um arco sobre o arco anterior, definindo Traça-se uma semi-reta O2 Exercícios Trace os ângulos abaixo: a) 75º b) 135º c) 150º d) 225º 4

5 Tângência: quando um reta toca em um ponto da circunferência e forma um ângulo de 90º com o raio da mesma. R 5. Concordância: quando há uma mudança suave no sentido e sem quinas. O ponto de Concordância é uma tangência Quando não há concordância, existe uma discrepância (forma quina). Concordância de arco com duas semi-retas Concordar duas semiretas formando um ângulo de 90º com um arco de circunferência de raio 50mm. A r C 1. Traça-se um ângulo de 90º (60º+30º) 2. Marca-se na reta vertical a partir do ponto O, o raio do exemplo 50mm. 3. Ponta seca do compasso em O, raio até A, traça-se um arco, definindo B na horizontal. 4. Ponta seca do compasso em B, mesmo raio anterior, traça-se um arco. 5. Ponta seca do compasso em A, mesmo raio anterior, traça-se um arco, encontrando o ponto C. 6. Ponta seca do compasso em C, raio do exemplo, traça-se o arco de circunferência passando pelos pontos A e B. O B Divisão de um segmento em partes iguais Com o esquadro. (coincidente) 5

6 - é uma figura plana limitada por uma linha poligonal fechada. Podem ser (em relação ao seu vértice): Podem ser (em relação a seus lados): Irregulares: são aqueles que não têm todos os lados iguais. Regulares: são aqueles que têm todos os lados iguais. Os Regulares podem ser: Inscritos: quando têm todos os seus vértices sobre uma circunferência. Circunscrito: quando seus lados tangenciam a circunferência. 6

7 Quanto ao número de lados: Quanto ao número de lados: Quanto ao número de diagonais: Diagonais são retas que ligam dois vértices não consecutivos de um polígono. O número é dado pela expressão: d = 6 (6-3) 2 d = d = 18 2 d = 9 7

8 Tipos de triângulos (quanto aos lados): Equilátero: quando todos os seus lados são iguais. Todo triângulo equilátero tem também os ângulos iguais. Isósceles: quando dois dos seus lados são iguais. Todo triângulo isósceles tem os ângulos da base iguais. Escaleno: quando nenhum dos seus lados é igual. Nos escalenos todos os ângulos são diferentes. Tipos de triângulos (quanto aos lados): Tipos de triângulos (quanto aos ângulos): Acutângulo: quando todos seus ângulos são agudos (menores que 90 ). Retângulo: tem um ângulo reto (90 ). Obtusângulo: tem um ângulo obtuso (maior que 90 ). Em qualquer triângulo a soma dos ângulos internos é igual a

9 Circunferência - é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo. Círculo - é a região plana interna à circunferência. Circunferência Elementos de uma circunferência: Circunferência Divisão de uma circunferência em três partes iguais: 9

10 Circunferência Divisão de uma circunferência em quatro partes iguais: Circunferência Divisão de uma circunferência em oito partes iguais: Utilização de Esquadros Para construções geométricas normalmente é utilizado um jogo de esquadros: esquadro de 45º. esquadro de 30º - 60º. São utilizados para: traçar linhas horizontais. traçar linhas verticais. traçar linhas inclinadas. traçar linhas paralelas. traçar linhas perpendiculares. 10

11 Traçado de linhas com esquadro: Linhas com ângulo de 45º. Traçado de linhas com esquadro: Linhas com ângulo de 30º. Traçado de linhas com esquadro: Linhas com ângulo de 60º. 11

12 Traçado de linhas com jogo de esquadro: Linhas com ângulo de 15º (45º - 30º). Traçado de linhas com jogo de esquadro: Linhas com ângulo de 75º (45º + 30º). Jogo de Esquadros (composição de ângulos): 12

13 Construções geométricas com esquadro e compasso: Retas Perpendiculares reta que se cruzam formando um ângulo de 90º (ângulo reto). Construções geométricas com esquadro e compasso: Retas Paralelas são aquelas que não tem nenhum ponto em comum e mantem sempre a mesma distância uma da outra. Lugar Geométrico - conjunto de pontos caracterizados por uma propriedade. Uma figura é um lugar geométrico se todos os seus pontos possuem a propriedade. Exemplo: O lugar geométrico dos pontos que distam 5 cm de um ponto A é a circunferência de centro A e raio 5 cm. 13

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º EDUCAÇÃO VISUAL ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / APONTAMENTOS DE GEOMETRIA Nome ; Ano/Turma ; N.º 1 - O PONTO - ao colocares o bico do teu lápis no papel obténs um ponto. O

Leia mais

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais. 125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO O traçado de linhas retas PERPENDICULARES, PARALELAS e OBLÍQUAS é feito com o auxílio de esquadros,

Leia mais

DESENHO TÉCNICO I. Prof. Peterson Jaeger. APOSTILA Versão 2013

DESENHO TÉCNICO I. Prof. Peterson Jaeger. APOSTILA Versão 2013 APOSTILA Versão 2013 Prof. Peterson Jaeger 1. Folhas 2. Régua paralela e esquadros 3. Distinção de traços 4. Uso do compasso 5. Construções geométricas básicas 6. Tangentes e concordantes 7. Caligrafia

Leia mais

Construções Geométricas Usuais

Construções Geométricas Usuais Construções Geométricas Usuais Rectas. Ângulos. Circunferência e círculo. Tangentes a circunferências. Polígonos. Rectas Duas rectas dizem-se perpendiculares quando dividem o espaço em quatro partes iguais,

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

Lista 3 Figuras planas

Lista 3 Figuras planas Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

10 FGV. Na figura, a medida x do ângulo associado é

10 FGV. Na figura, a medida x do ângulo associado é urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro

Leia mais

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero

Leia mais

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )²

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )² GEOMETRI O TXIST Geometria do Taxista é uma geometria não-euclidiana, no sentido em que a noção de distância não é a mesma e acordo com o desenho abaixo, suponhamos um motorista de táxi que apanha um cliente

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por

Leia mais

Cevianas: Baricentro, Circuncentro, Incentro e Mediana.

Cevianas: Baricentro, Circuncentro, Incentro e Mediana. Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência

Leia mais

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (

Leia mais

a) 8 b) 12 c) 16 d) 20 e) 24

a) 8 b) 12 c) 16 d) 20 e) 24 0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0

Leia mais

Da linha poligonal ao polígono

Da linha poligonal ao polígono Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos

Leia mais

2. DIVIDIR UM ÂNGULO RETO EM 3 PARTES IGUAIS

2. DIVIDIR UM ÂNGULO RETO EM 3 PARTES IGUAIS 1 DESENHO GEOMÉTRICO AULA 2T EXERCÍCIOS RESOLVIDOS 1. TRANSPORTAR UM ÂNGULO PARA SOBRE UMA SEMI-RETA: - Construa o ângulo BÔA qualquer e ao lado a semi-reta O'. - Abra no compasso a medida OA, coloque

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

Aula 6 Pontos Notáveis de um Triângulo

Aula 6 Pontos Notáveis de um Triângulo MODULO 1 - AULA 6 Aula 6 Pontos Notáveis de um Triângulo Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade. Uma linha ou figura é um lugar geométrico se: a) todos os

Leia mais

Terceira lista de exercícios.

Terceira lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras

Leia mais

DESENHO GEOMÉTRICO Professor: Felippe Sirtoli - 9 ANO

DESENHO GEOMÉTRICO Professor: Felippe Sirtoli - 9 ANO DESENHO GEOMÉTRICO Professor: Felippe Sirtoli - 9 ANO Materiais Necessários: 1. Caderno ou Pasta: Caderno de desenho com margem ou fazer margem de 1,5 cm ou Pasta com folhas brancas com margem de 1,5 cm

Leia mais

CIRCUNFERÊNCIA. Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência. O AB s CD t T s AB 2

CIRCUNFERÊNCIA. Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência. O AB s CD t T s AB 2 CIRCUNFERÊNCIA ELEMENTOS DA CIRCUNFERÊNCIA N t T C A B D X s p Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência O AB s CD t T s AB 2 PX / Algumas

Leia mais

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa Geometria plana Congruência de figuras

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida

Leia mais

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA 144 20 TNGÊNI E ONORDÂNI 20.1 PROPRIEDDES DE TNGÊNI Definições: 1) tangente a uma curva é uma reta que tem um só ponto em comum com esta curva. 2) Duas curvas são tangentes num ponto dado T, quando as

Leia mais

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes )

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes ) Primeira Fase Nível ( Série EM e Concluintes ). Quantas soluções do tipo (x,y), com x,y inteiros, existem para a equação xy=x+y? a) b) c) d) e)nenhuma. Na figura, o triângulo ABC é eqüilátero, o raio da

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em

Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em 6. Duas pessoas A e B decidem se encontrar em 1. Sendo (x + 2, 2y - 4) = (8x, 3y - 10), determine o valor de x e de y. um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³,

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r

Leia mais

Circunferência e círculo

Circunferência e círculo 54 Circunferência e círculo Ângulos na circunferência Ângulo central Ângulo central é o ângulo que tem o vértice no centro da circunferência. A medida de um ângulo central é igual à medida do arco correspondente

Leia mais

REVISITANDO A GEOMETRIA PLANA

REVISITANDO A GEOMETRIA PLANA REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME EXERÍIOS DE GEOMETRI PLN REVISÃO 1991 PROF PULO ROERTO 01 (IME-64) Uma corda corta o diâmetro de um círculo segundo um ângulo de 45º Demonstrar que a soma do quadrado dos segmentos aditivos m e n, com

Leia mais

Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices.

Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 1 Quadriláteros Inscritíveis Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos

Leia mais

Polígonos Regulares Inscritos e Circunscritos

Polígonos Regulares Inscritos e Circunscritos Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Descobrindo medidas desconhecidas (I)

Descobrindo medidas desconhecidas (I) Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO

Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência

Leia mais

Pontos notáveis de um triãngulo

Pontos notáveis de um triãngulo Pontos notáveis de um triãngulo Sadao Massago Maio de 2010 a evereiro de 2014 Sumário 1 Incentro 1 2 ircuncentro 2 3 aricentro 3 4 Hortocentro 4 5 xincentro 4 6 bservação adicional 5 Referências ibliográcas

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

II - Teorema da bissetriz

II - Teorema da bissetriz I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos

Leia mais

a) 30 b) 40 c) 50 d) 60 e) 70

a) 30 b) 40 c) 50 d) 60 e) 70 Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Geometria I Aula 3.3

Geometria I Aula 3.3 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Geometria I 90h Matemática Aula Período Data Planejamento 3.1 2. 0 28/11/2006 3ª. feira Andréa Tempo Estratégia Descrição (Produção) 18:10

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente

Leia mais

Módulo 2 Geometrias Plana e Espacial

Módulo 2 Geometrias Plana e Espacial 1. Geometria Plana Módulo 2 Geometrias Plana e Espacial Os conceitos da geometria são muito utilizados na área de logística, principalmente nas medidas das dimensões dos volumes; nos cálculos do espaço

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98 / 99 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98 / 99 MÚLTIPLA ESCOLHA 1 MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Sabendo que A = Conjunto dos números no triângulo equilátero B = Conjunto dos números no triângulo

Leia mais

Lista de GEOMETRIA 1 REVISÃO DE FÉRIAS

Lista de GEOMETRIA 1 REVISÃO DE FÉRIAS 1. (G1 - utfpr) O valor de x no pentágono abaixo é igual a: c) 111 d) 115 e) 117 5. (G1 - utfpr) Calcule o valor de x, em graus, na figura: a) 25. b) 40. c) 250. d) 540. e) 1.000. 2. (G1 - ifsul) As medidas

Leia mais

AULAS 4 a 6. Ângulos (em polígonos e na circunferência)

AULAS 4 a 6. Ângulos (em polígonos e na circunferência) www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática N Í V L 3 ULS 4 a 6 Ângulos (em polígonos e na circunferência) onceitos Relacionados Proposição 1 Se duas retas são paralelas, cada par de

Leia mais

Geometria Plana Triângulos Questões Resolvidas (nem todas)

Geometria Plana Triângulos Questões Resolvidas (nem todas) Questão 1 A bissetriz interna do ângulo  de um triângulo ABC divide o lado oposto em dois segmentos que medem 9 cm e 16 cm. Sabendo que medida de. 9 16 = AC = 3 18 AC Questão mede 18 cm, determine a O

Leia mais

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,

Leia mais

maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios

maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios Geometria Plana II Exercícios 1. A figura abaixo é plana e composta por dois trapézios isósceles e um losango. O comprimento da base maior do trapézio ABCD é igual ao da base menor do trapézio EFGH, que

Leia mais

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 11 Geometria Polígonos. Polígonos Regulares. Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) Polígono é uma figura plana limitada por segmentos

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO DE MATEMÁTICA 5.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números racionais

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel 18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz

Leia mais

1º BIMESTRE Encaminhamentos Metodológicos (como?)

1º BIMESTRE Encaminhamentos Metodológicos (como?) NRE - TOLEDO PLANO DE TRABALHO DOCENTE MATEMÁTICA COLÉGIO SENADOR ATILIO FONTANA Ensino Fundamental e Médio SÉRIE: 8º ano B ANO LETIVO: 2014 PROF: TEREZA HENRIQUETTA BENETTI Conjuntos numéricos Números

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado

Leia mais

Medida de ângulos. Há muitas situações em que uma pequena

Medida de ângulos. Há muitas situações em que uma pequena A UUL AL A Medida de ângulos Há muitas situações em que uma pequena mudança de ângulo causa grandes modificações no resultado final. Veja alguns casos nos quais a precisão dos ângulos é fundamental: Introdução

Leia mais

Faculdade Pitágoras Unidade Betim

Faculdade Pitágoras Unidade Betim Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da

Leia mais

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R.

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNMENTL - ª ETP 0- ssunto: Equação Nominal Resolva a equação literal a - a. 0- ssunto: Sistema de Equação Em um terreiro, há galinhas e carneiros, num total

Leia mais

www.rumoaoita.com 141

www.rumoaoita.com 141 0 Dado um trapézio qualquer, de bases e 8, traça-se paralelamente às bases um segmento de medida x que o divide em outros dois trapézios equivalentes. Podemos afirmar que: (A) x, 5 (B) x (C) x 7 x 5 (E)

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 11/fevereiro 17/fevereiro 18/fevereiro Conteúdos Apresentação da ementa da

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32

Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 2. (Uece 2015) Considere um segmento de reta XY cuja medida do comprimento é 10 cm e P um ponto móvel no interior

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.

Leia mais

PLANEJAMENTO ANUAL 2014

PLANEJAMENTO ANUAL 2014 PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Perímetros e áreas Perímetro de polígonos regulares e irregulares Perímetro do círculo Equivalência de figuras planas Unidades de área Área do triângulo Área do círculo Síntese Perímetro O perímetro

Leia mais

ESTUDO DOS TRIÂNGULOS Uma Breve Revisão

ESTUDO DOS TRIÂNGULOS Uma Breve Revisão ESTUDO DOS TRIÂNGULOS Uma Breve Revisão s Definição: São polígonos com três lados. Os triângulos podem ser classificados quanto aos seus lados ou quanto aos seus ângulos. Observe os quadros a seguir: Classificação

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. O polígono regular representado na figura tem lado de medida igual a 1cm e o ângulo mede 120. 4. Num círculo, inscreve-se um quadrado de lado 7 cm. Sobre cada lado do quadrado, considera-se a semi-circunferência

Leia mais

Duas retas paralelas são cortadas por uma transversal formando dois ângulos

Duas retas paralelas são cortadas por uma transversal formando dois ângulos EXERCÍCIO COMPLEMENTRES - MTEMÁTIC 8º NO - ENSINO FUNDMENTL - 1ª ETP 01- ssunto: Dízima Periódica Obtenha as geratrizes das seguintes dízimas periódicas: a) 8,715715715... b) 4,722... 02- ssunto: Conjunto

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Geometria do Cotidiano Ciências da Natureza I Matemática Ensino

Leia mais

Prova Final de Matemática

Prova Final de Matemática Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 19/2012, de 5 de julho Prova 62/1.ª Fase Critérios de Classificação 10 Páginas 2015 Prova 62/1.ª F. CC Página 1/ 10 CRITÉRIOS GERAIS

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago Polos límpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 7 Ângulos na circunferência efinição 1: ânguloinscrito relativo aumacircunferência éumânguloquetem ovértice na circunferência

Leia mais

Lista de Estudo P2 Matemática 2 ano

Lista de Estudo P2 Matemática 2 ano Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa

Leia mais

OFICINA DE PAVIMENTAÇÃO COM QUADRADOS E TRIÂNGULOS EQUILÁTEROS

OFICINA DE PAVIMENTAÇÃO COM QUADRADOS E TRIÂNGULOS EQUILÁTEROS ISSN 2316-7785 OFICINA DE PAVIMENTAÇÃO COM QUADRADOS E TRIÂNGULOS EQUILÁTEROS Thaiz Fernandes Alvarenga Universidade Federal do Espírito Santo thaizfa@msn.com Rayssa Rocha Silva Universidade Federal do

Leia mais

RACIOCÍNIO LÓGICO Simplif icado

RACIOCÍNIO LÓGICO Simplif icado Sérgio Carvalho Weber Campos RACIOCÍNIO LÓGICO Simplif icado Volume 21 2ª edição Revista, atualizada e ampliada Inclui Gráficos, tabelas e outros elementos visuais para melhor aprendizado Exercícios resolvidos

Leia mais

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84 COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:

Leia mais

1º Ano do Ensino Médio

1º Ano do Ensino Médio MINISTÉRIO DA DEFESA Manaus AM 18 de outubro de 009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 009/010 D E C E x - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 1º Ano do Ensino Médio INSTRUÇÕES (CANDIDATO

Leia mais

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. 2 Educação Artística 171 Unidade 1 l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. ll- O lápis é o responsável direto pela boa qualidade do desenho e é classificado,

Leia mais

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner. Seções Cônicas

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner. Seções Cônicas Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 1 - Elipses Seções Cônicas Definição 1.1: Dados os pontos no plano, F e F com FF =2c e um comprimento

Leia mais