10 FGV. Na figura, a medida x do ângulo associado é

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "10 FGV. Na figura, a medida x do ângulo associado é"

Transcrição

1 urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas igual à medida de um ângulo reto e que a bissetriz de um ângulo divide-o em dois ângulos congruentes. etermine a medida dos ângulos formados pelas bissetrizes de dois ângulos adjacentes de medidas complementares, efetuando os procedimentos indicados nos itens a seguir: a) Faça uma figura que represente corretamente esta situação. Eercícios de treinamento 8 Fuvest. s retas t e s são paralelas. O valor de é: ) 30º ) 40º ) 50º ) 60º E) 70º 9. Na figura, as retas r e s são paralelas e as retas s, t e u concorrem no mesmo ponto, o ângulo obtuso formado pelas retas r e u mede 142º e o ângulo agudo formado pelas retas t e r mede 73º. u r 140º t 120º s//r s b) Identifique quantos são ângulos geométricos apresentados pela figura desenhada. c) Indique as medidas de todos estes ângulos, mesmo que seja necessário o uso de termos algébricos. etermine as medidas em graus, e z, dos ângulos indicados na figura. z t 7 Fatec. Na figura, as retas r e s interceptam-se no ponto P, origem da semi-reta t. Sabendo que t é perpendicular à r, determine e. r t 10 FGV. Na figura, a medida do ângulo associado é 20º a 60º s 2 P +15º 80º b // a ) 60º ) 80º ) 100º ) 120º E) 140º 1

2 urso de linguagem matemática Professor Renato Tião 11 Fuvest. Fuvest. No retângulo a seguir, o valor, em graus, de α+β é: 40º β 12 Fuvest. No triângulo da figura, é um ponto do lado tal que ==. Sendo a medida do ângulo interno de vértice e a medida do ângulo eterno de vértice, podemos afirmar que: ) 50 ) 90 ) 120 ) 130 E) 220 Solução 1: α ) = ) = 2 ) = 3 ) = 2 E) = 3 13 Fuvest. Na figura a seguir Â=36º, = e =. Solução 2: a) alcule as medidas dos ângulos e. b) Prove que =. Solução 3: 2

3 urso de linguagem matemática Professor Renato Tião 14. Na figura a seguir os segmentos e interceptam-se no ponto E. lém disso, temos que ==, Â=20º e Â=50º. α a) Quantos são os triângulos apresentados por esta figura? b) Quais destes triângulos são isósceles, e quais são suas bases? c) alcule as medidas α e β. E 20º 50º β 17. Na figura a seguir, é um paralelogramo de ângulo agudo Â=20º em que M é o ponto médio do lado, P é um ponto do lado tal que P=M. Sendo Q perpendicular à reta PM podemos afirmar que a medida do ângulo MQ vale: ) 10º ) 12º ) 15º ) 18º E) 20º 20º 18. Seja a medida, em graus, do ângulo formado pelas semi-retas r e s de origem no vértice do triângulo retângulo como mostra a figura. P M Q r s 15. Num trapézio isósceles, a base menor tem a mesma medida que os lados não paralelos e ; e a base maior tem a mesma medida que as diagonais e. medida do maior ângulo interno deste trapézio é: ) 108 ) 120 ) 130 ) 135 E) Num trapézio isósceles, as bases medem 12 m e 8 m e as diagonais são bissetrizes dos ângulos da base maior. Então, o perímetro desse trapézio é de: ) 16 m ) 26 m ) 36 m ) 46 m E) 56 m Sendo R e S os pontos em que as semi-retas r e s interceptam a hipotenusa, e sabendo que o menor ângulo agudo do triângulo mede 20º calcule o valor de nos seguintes casos: a) R é altura e S é bissetriz interna do. b) R é altura e S é mediana do. c) R é mediana e S é bissetriz interna do. 3

4 urso de linguagem matemática Professor Renato Tião 19. O ângulo oposto à base do triângulo isósceles mede 80º. etermine as medidas dos ângulos formados nas intersecções da altura H deste triângulo com: a) a bissetriz interna do ângulo. 21. Sendo P um ponto do interior do triângulo tal que os ângulos P e P medem 30º e 50º respectivamente, determine a diferênça entre as medidas dos ângulos P e. b) a mediatriz do lado. 22. O ponto médio M da base do triângulo é vértice do quadrado MNPQ cujo perímetro é igual ao dobro da medida. Os vértices N e Q deste quadrado pertencem aos lados e do triângulo como mostra a figura. P N Q c) o segmento, sendo um ponto do lado tal que =. medida em graus do ângulo interno de vértice do triângulo é ) 15º ) 20º ) 30º ) 45º E) 60º M 23. onsidere um quadrado e dois triângulos equiláteros: P no interior do quadrado e Q eterior ao quadrado. Prove que o ponto P pertence ao segmento Q. 20 Unesp. onsidere o triângulo da figura: 50º Se a bissetriz interna do ângulo forma com a bissetriz eterna do ângulo um ângulo de 50º, determine a medida do ângulo interno. 4

5 urso de linguagem matemática Professor Renato Tião 24. Uma folha de um caderno retangular foi dobrada formando, em sua base, um ângulo de 30º conforme a figura. alcule as medidas dos ângulos internos do triângulo determinado pela dobra. 27. Na figura a seguir, os arcos QMP e MTQ medem, respectivamente, 170 e 130. Então, o arco MSN mede: 25. Um pedaço de cartolina, branco de um lado e cinza do outro, tem a forma de triângulo equilátero que foi dobrado de modo que um de seus vértices encontre o lado oposto como mostra a figura: α 30º β ) 60 ) 70 ) 80 ) 100 E) Sendo P o centro da circunferência que circunscreve o heágono regular EF, determine as medidas dos ângulos formados nos cruzamentos das seguintes retas: a) e F. b) e P. c) e EF. Sendo α e β as medidas em radianos dos ângulos indicados na figura, pode-se afirmar que: ) 3α + 3β = π ) 6α + 3β = π ) 3α + 6β = π ) 3α + 6β = π E) 6α 3β = π 26 Fuvest. Os pontos, P e pertencem À circunferência γ e é lado de um polígono regular inscrito em γ. 29. ados n pontos que dividem uma circunferência em partes iguais, podemos obter formas geométricas poligonais e regulares ligando estes pontos por meio de segmentos de diversas maneiras. ada uma dessas maneiras é designada por um número p que é chamado de passo de ligação. s figuras a seguir apresentam circunferências divididas em partes iguais por 9 pontos ligados com passos 1, 2, 3 e 4. Sabendo-se que o ângulo P mede 18º, podemos concluir que o número de lados do polígono é igual a ) 6 ) 7 ) 10 ) 12 E) 14 soma das medidas, em radianos, dos nove ângulos geométricos com vértices sobre a circunferência, em cada figura, pode obtida pela epressão: ) (8 p) π ) (6+ p) π ) (9 2p) π ) (4+ 3p) π E) (10 3p) π 5

6 urso de linguagem matemática Professor Renato Tião 30. Um pedaço de papel na forma de um paralelogramo é tal que pode ser dobrado formando um pentágono regular. Para isto, basta fazer coincidir as etremidades da sua diagonal maior como mostram as figuras a seguir. 32. onsidere um eneágono regular EFGHI inscrito numa circunferência de centro O e responda às seguintes perguntas: Vinco da dobradura V Sabendo que cada ângulo interno de um pentágono regular mede 108º e que o vinco da dobradura é perpendicular ao vetor V que, na figura 1, representa a maior diagonal do paralelogramo, pode-se concluir que a inclinação, em graus, deste vetor em relação ao lado menor do paralelogramo é igual a: ) 72 ) 63 ) 54 ) 45 E) 36 Figura 1 Figura hamamos de formas modulares às figuras geométricas planas ou espaciais capazes de preencher completamente o plano ou o espaço, quando uma infinidade delas é colocada lado a lado. ssim, o decágono irregular, composto por um octógono regular e um quadrado de mesmo lado como mostra a figura, é uma forma modular: a) Quanto vale a soma de seus ângulos internos? b) Quanto vale a soma de seus ângulos eternos? c) Quanto mede cada um de seus ângulos eternos? d) Quanto mede cada um de seus ângulos internos? e) Quanto mede o ângulo Ô? f) Quanto mede o ângulo Â? g) Qual é a medida do ângulo interno do vértice do polígono estrelado que se obtém prolongando-se os seus lados? esafio 33. figura apresenta um octógono regular e um pentágono regular com um lado em comum. etermine as medidas dos ângulos,, z e w indicados na figura. Há apenas onze maneiras de se preencher o plano usando apenas de polígonos regulares, e apenas três delas o fazem com um único tipo de polígono: w z a) Justifique matematicamente o fato de os triângulos equiláteros, os quadrados e os heágonos regulares serem formas modulares. b) Eplique por qual motivo o pentágono regular não é forma modular. c) presente uma forma modular composta por dois tipos de polígono regular que não seja a sugerida pelo enunciado. 6

Lista 3 Figuras planas

Lista 3 Figuras planas Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida

Leia mais

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero

Leia mais

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro

Leia mais

AULAS 4 a 6. Ângulos (em polígonos e na circunferência)

AULAS 4 a 6. Ângulos (em polígonos e na circunferência) www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática N Í V L 3 ULS 4 a 6 Ângulos (em polígonos e na circunferência) onceitos Relacionados Proposição 1 Se duas retas são paralelas, cada par de

Leia mais

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste

Leia mais

Terceira lista de exercícios.

Terceira lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras

Leia mais

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais. 125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)

Leia mais

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225. 1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:

Leia mais

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME EXERÍIOS DE GEOMETRI PLN REVISÃO 1991 PROF PULO ROERTO 01 (IME-64) Uma corda corta o diâmetro de um círculo segundo um ângulo de 45º Demonstrar que a soma do quadrado dos segmentos aditivos m e n, com

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

REVISITANDO A GEOMETRIA PLANA

REVISITANDO A GEOMETRIA PLANA REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a

Leia mais

Aula 8 Segmentos Proporcionais

Aula 8 Segmentos Proporcionais MODULO 1 - UL 8 ula 8 Segmentos Proporcionais Nas aulas anteriores, aprendemos uma formação geométrica básica, através da Geometria Plana de Posição. prendemos que: 1. soma das medidas dos ângulos internos

Leia mais

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R.

Em um terreiro, há galinhas e carneiros, num total de 21 animais e 50 pés. Quantos animais de cada espécie há nesse terreiro? 5, sendo U = R. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNMENTL - ª ETP 0- ssunto: Equação Nominal Resolva a equação literal a - a. 0- ssunto: Sistema de Equação Em um terreiro, há galinhas e carneiros, num total

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

Geometria Plana Triângulos Questões Resolvidas (nem todas)

Geometria Plana Triângulos Questões Resolvidas (nem todas) Questão 1 A bissetriz interna do ângulo  de um triângulo ABC divide o lado oposto em dois segmentos que medem 9 cm e 16 cm. Sabendo que medida de. 9 16 = AC = 3 18 AC Questão mede 18 cm, determine a O

Leia mais

Da linha poligonal ao polígono

Da linha poligonal ao polígono Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos

Leia mais

II - Teorema da bissetriz

II - Teorema da bissetriz I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. Geometria plana. Resumo teórico e eercícios. 3º olegial / urso tensivo. utor - Lucas ctavio de Souza (Jeca) Relação das aulas. Página ula 01 - onceitos iniciais... 0 ula 0 - Pontos notáveis de um triângulo...

Leia mais

Lista de Estudo P2 Matemática 2 ano

Lista de Estudo P2 Matemática 2 ano Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.

Leia mais

POLÍGONOS. Definição Polígonos Convexos e não-convexos. Professor: Jarbas

POLÍGONOS. Definição Polígonos Convexos e não-convexos. Professor: Jarbas POLÍGONOS Definição Polígonos Convexos e não-convexos Professor: Jarbas Existem dois tipos de linhas: As linhas formadas por CURVAS: As linhas formadas por segmentos de RETAS: Linha Poligonal Linhas Poligonais:

Leia mais

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

a) 8 b) 12 c) 16 d) 20 e) 24

a) 8 b) 12 c) 16 d) 20 e) 24 0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por

Leia mais

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes: AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0

Leia mais

Aula 6 Pontos Notáveis de um Triângulo

Aula 6 Pontos Notáveis de um Triângulo MODULO 1 - AULA 6 Aula 6 Pontos Notáveis de um Triângulo Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade. Uma linha ou figura é um lugar geométrico se: a) todos os

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência

Leia mais

Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices.

Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 1 Quadriláteros Inscritíveis Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos

Leia mais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.

Leia mais

Lista de Geometria 1 - Professor Habib

Lista de Geometria 1 - Professor Habib Lista de Geometria 1 - Professor Habib b) Para que valores de x e de y a área ocupada pela casa será máxima? 1. Na figura a seguir, as medidas são dadas em cm. Sabendo que m//n//t, determine o valor de

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência

Leia mais

Duas retas paralelas são cortadas por uma transversal formando dois ângulos

Duas retas paralelas são cortadas por uma transversal formando dois ângulos EXERCÍCIO COMPLEMENTRES - MTEMÁTIC 8º NO - ENSINO FUNDMENTL - 1ª ETP 01- ssunto: Dízima Periódica Obtenha as geratrizes das seguintes dízimas periódicas: a) 8,715715715... b) 4,722... 02- ssunto: Conjunto

Leia mais

Geometria I Aula 3.3

Geometria I Aula 3.3 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Geometria I 90h Matemática Aula Período Data Planejamento 3.1 2. 0 28/11/2006 3ª. feira Andréa Tempo Estratégia Descrição (Produção) 18:10

Leia mais

Caldeiraria Matemática Aplicada

Caldeiraria Matemática Aplicada _ PM - Programa de ertificação de Pessoal de aldeiraria aldeiraria Matemática plicada _ SENI Departamento Regional do Espírito Santo 3 _ Matemática plicada - aldeiraria SENI - ES, 1997 Trabalho realizado

Leia mais

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IV 1 CLASSIFICAÇÃO De acordo com o gênero (número de lados), os polígonos podem receber as seguintes denominações: Na figura 2, o quadrilátero foi dividido em triângulos.

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA 18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO

Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência

Leia mais

Questões Gerais de Geometria Plana

Questões Gerais de Geometria Plana Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: TRIÂNGULOS E POLÍGONOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: TRIÂNGULOS E POLÍGONOS 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: TRIÂNGULOS E POLÍGONOS 3 a SÉRIE ENSINO MÉDIO ======================================================================= SÉRIE A 1) (UFOP Ouro Preto/MG) - Os

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa

Leia mais

1.10 Sistemas de coordenadas cartesianas

1.10 Sistemas de coordenadas cartesianas 7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

a) 30 b) 40 c) 50 d) 60 e) 70

a) 30 b) 40 c) 50 d) 60 e) 70 Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto 1 O Teorema

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO

MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO r s A E B D C F α G H A B r r s r s α r P s s r α A α B C α P B r A α r α P α r P P α r A B r α A B r r r P α A B α A B F F α α=β α β = α = β α β α β

Leia mais

GEOMETRIA. Matemática. AB 2.2) Segmento de reta Observe a figura abaixo: Editora Exato 60

GEOMETRIA. Matemática. AB 2.2) Segmento de reta Observe a figura abaixo: Editora Exato 60 GEOMETRI s origens da Geometria (do grego "medir a terra") parecem coincidir com as necessidades do dia-a-dia. Partilhar terras férteis às margens dos rios, construir casas, observar e prever os movimentos

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas circunferências com centro no ponto, uma de raio e outra

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS / MATEMÁTICA GEOMETRIA PLANA

MATEMÁTICA E SUAS TECNOLOGIAS / MATEMÁTICA GEOMETRIA PLANA VILS MTEMÁTI E SUS TENOLOGIS / MTEMÁTI 1 GEOMETRI PLN 1.0 INTROUÇÃO Na geometria, os conceitos de ponto, reta e plano são denominados de primitivos e por isso são aceitos sem definição. O ponto é representado

Leia mais

Figuras geométricas planas. Joyce Danielle. e espaciais

Figuras geométricas planas. Joyce Danielle. e espaciais Figuras geométricas planas Joyce Danielle e espaciais Figuras geométricas planas Joyce Danielle UNIVERSIDADE FEDERAL DE ALAGOAS 2 Apresentação Na geometria plana vamos então nos atentar ao método de cálculo

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.

Leia mais

III. A área do triângulo ABC é igual a r. 2

III. A área do triângulo ABC é igual a r. 2 (Mackenzie SP/1998/Julho) área do triângulo da figura é 5 0 60 Então, supondo 1, 7, o perímetro do triângulo é: a) 7 b) 9 c) 41 d) 4 e) 45 Gab: (PU MG/001) Em certo município, para implantar uma avenida,

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

Módulo 2 Geometrias Plana e Espacial

Módulo 2 Geometrias Plana e Espacial 1. Geometria Plana Módulo 2 Geometrias Plana e Espacial Os conceitos da geometria são muito utilizados na área de logística, principalmente nas medidas das dimensões dos volumes; nos cálculos do espaço

Leia mais

Lista de GEOMETRIA 1 REVISÃO DE FÉRIAS

Lista de GEOMETRIA 1 REVISÃO DE FÉRIAS 1. (G1 - utfpr) O valor de x no pentágono abaixo é igual a: c) 111 d) 115 e) 117 5. (G1 - utfpr) Calcule o valor de x, em graus, na figura: a) 25. b) 40. c) 250. d) 540. e) 1.000. 2. (G1 - ifsul) As medidas

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE

Leia mais

, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares.

, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares. Teste de Avaliação Escrita Duração: 90 minutos 9 de maio de 0 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 0/0 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 9%) Insuficiente (0% 9%) Suficiente

Leia mais

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa Geometria plana Congruência de figuras

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo MÓDUL XVI 1. Definição de ângulo MEDIDS DE ÂNGULS Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. Ângulo é a união de duas semi-retas e de mesma origem e não colineares.

Leia mais

Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32

Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 2. (Uece 2015) Considere um segmento de reta XY cuja medida do comprimento é 10 cm e P um ponto móvel no interior

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º

ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / Nome ; Ano/Turma ; N.º EDUCAÇÃO VISUAL ESCOLA BÁSICA INTEGRADA DE MANIQUE DO INTENDENTE Ano Letivo / APONTAMENTOS DE GEOMETRIA Nome ; Ano/Turma ; N.º 1 - O PONTO - ao colocares o bico do teu lápis no papel obténs um ponto. O

Leia mais

5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede:

5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede: Relações Métricas nos Triângulos Retângulos Professor lístenes unha 1-(Mack SP-97) Num triângulo, retângulo, um cateto é o dobro do outro. Então a razão entre o maior e o menor dos segmentos determinados

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ângulo BDA é reto (porque está inscrito numa semicircunferência),

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

Cevianas: Baricentro, Circuncentro, Incentro e Mediana.

Cevianas: Baricentro, Circuncentro, Incentro e Mediana. Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:

Leia mais

Polígonos e mosaicos

Polígonos e mosaicos A UUL AL A Polígonos e mosaicos A regularidade de formas encontradas na natureza tem chamado a atenção do ser humano há muitos séculos. Ao observar e estudar essas formas, o homem tem aprendido muitas

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. O polígono regular representado na figura tem lado de medida igual a 1cm e o ângulo mede 120. 4. Num círculo, inscreve-se um quadrado de lado 7 cm. Sobre cada lado do quadrado, considera-se a semi-circunferência

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC

Leia mais

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos: EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2

Leia mais

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,

Leia mais

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios

maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios Geometria Plana II Exercícios 1. A figura abaixo é plana e composta por dois trapézios isósceles e um losango. O comprimento da base maior do trapézio ABCD é igual ao da base menor do trapézio EFGH, que

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

PROVA DE MATEMÁTICA _ VESTIBULAR DA FUVEST- 2005 _ FASE 1. a) 37 b) 36 c) 35 d) 34 e) 33

PROVA DE MATEMÁTICA _ VESTIBULAR DA FUVEST- 2005 _ FASE 1. a) 37 b) 36 c) 35 d) 34 e) 33 PROV MTMÁTI _ VSTIBULR FUVST- 005 _ FS Professora MRI NTONI ONIÇÃO GOUVI 0) Um supermercado adquiriu detergentes nos aromas limão e coco. compra foi entregue, embalada em 0 caias, com frascos em cada caia.

Leia mais

TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL

TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL Professores: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. A medida de um dos ângulos externos de um triângulo é 125º. Sabendo-se que os

Leia mais

Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.

Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 11/fevereiro 17/fevereiro 18/fevereiro Conteúdos Apresentação da ementa da

Leia mais

Geometria Espacial. Revisão geral

Geometria Espacial. Revisão geral Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

Pontos notáveis de um triãngulo

Pontos notáveis de um triãngulo Pontos notáveis de um triãngulo Sadao Massago Maio de 2010 a evereiro de 2014 Sumário 1 Incentro 1 2 ircuncentro 2 3 aricentro 3 4 Hortocentro 4 5 xincentro 4 6 bservação adicional 5 Referências ibliográcas

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago Polos límpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 7 Ângulos na circunferência efinição 1: ânguloinscrito relativo aumacircunferência éumânguloquetem ovértice na circunferência

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

Polígonos Regulares Inscritos e Circunscritos

Polígonos Regulares Inscritos e Circunscritos Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL (º ou 9º anos) GRITO GRITO NÍVEL ) 6) ) 6) ) E ) 7) ) 7) ) ) ) ) E ) ) 4) 9) 4) E 9) 4) ) 0) ) 0) ) ada questão da Primeira Fase vale ponto (Total de pontos

Leia mais