Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices.

Tamanho: px
Começar a partir da página:

Download "Quadriláteros Inscritíveis. Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices."

Transcrição

1 Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 1 Quadriláteros Inscritíveis Um quadrilátero é dito inscritível se, e somente se, existe uma circunferência que passa pelos seus quatro vértices. Teorema 1. Um quadrilátero é inscritível se, e somente se, tiver a soma de dois ângulos opostos iguais a 180. emonstração. ( ) Seja um quadrilátero inscritível em uma circunferência de centro O. O omo Pela propriedade de ângulo central, temos que: = + = 360, temos então que: 2 e =. 2 + = 180 ( )Seja umquadriláteroonde + = 180. Esuponhaque não é inscritível. onstruímos a circunferência circunscrita ao triângulo, e definimos o ponto E a interseção da reta com a circunferência (ver figura). Observe que este ponto pode ser exterior ou interior (mostrado na figura) à circunferência. omo E é um quadrilátero inscritível, já demonstramos que + E = 180, concluímos que E =. Mas isso é um absurdo, pois em um triângulo o ângulo externo tem que ser sempre maior que os outros dois não adjacentes a ele, o que não acontece no E.

2 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo O E Problema 1. Seja um triângulo retângulo em e a bissetriz interna de. perpendicular a por encontra em E. Mostre que =E. Solução. No quadrilátero E, observe que E + E = 180. Logo, E é inscritível, de modo que E = E = 45. Então o triângulo E é isósceles e, portanto, = E. E O Teorema 2. Um quadrilátero é inscritível se, e somente se, o ângulo que uma diagonal forma com um lado for igual ao ângulo que a outra diagonal forma com o lado oposto. emonstração. igamos =. ssuma que a circunferência passa pelos pontos,, e não contém. Perceba que pode estar no interiro da circunferência ou no exterior, faremos a solução para o caso em que ele está na regiâo interna, o outro caso é análogo. Então, supondo que pertence à região interior da circunferência, tomamos E como sendo a interseção da reta com a circunferência. Pela propriedade de ângulo inscrito,temos E = E,maspelacondição =,temosque = E, então pertence à circunferência. 2

3 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo E Problema 2. (Extraído de [1]) s alturas e E do triângulo se encontram no ortocentro H. Os pontos médios de e H são X e Y, respectivamente. Prove que XY é perpendicular a E. Solução. E X Y H Observe que os quadriláteros HE e E são inscritíveis pois, H + HE = = 180 e = E. omo em um triângulo retângulo, o ponto médio da hipotenusa é seu circuncentro, então X e Y são os circuncentros das circunferências circunscritas aos quadriláteros E e HE, respectivamente. Portanto X = XE e Y = YE XY XEY (caso LLL), isto implica dizer que o triângulo EX é isósceles e XY é bissetriz em relação à base, então também é altura e portanto XY é perpendicular a E. Problema 3. (Extraído de [1])Seja um triângulo tal que = 60 o. ado um ponto sobre, sejam O 1 e O 2 os circuncentros dos triângulos e, respectivamente, M a interseção de O 1 e O 2 e N o circuncírculo de O 1 O 2. Mostre que, ao 3

4 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo variar, MN passa por um ponto fixo. Solução. Seja ω o circuncírculo do triângulo. firmamos que M ω. e fato, M = 180 M M = (90 O 1 )+(90 O 2 ) = + =. Isso garante também que os pontos M, O 1, N e O 2 são concíclicos, pois O 1 MO 2 +O 1 NO 2 = M +2 O 1 O 2 = M +2(180 O 1 O 2 ) = M +2(180 O 1 O 2 ) = M +2 M = 180. Mas então MN é a bissetriz do ângulo M, uma vez que MN = O 1 MN = O 1 O 2 N = 30 e MN = O 2 MN = O 2 O 1 N = 30. ssim, MN passa pelo ponto médio do arco da circunferência ω. M O 2 O 1 N Problema 4. (Extraído de[1]) Mostre que todo triângulo acutângulo possui um ponto P em seu interior tal que os pés das perpendiculares baixadas de P aos lados de são os vértices de um triângulo equilátero. Solução. 4

5 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo F P E Sejam, E, F os pés das perpendiculares baixadas de P aos lados,,, respectivamente. Vamos encontrar condições necessárias e suficientes para que o triângulo EF seja equilátero. Necessidade. Suponha EF equilátero. Temos P = + P+ P = + PF + PE = + PF + PE = +60, onde na penúltima passagem utilizamos que os quadriláteros P F e EP são cíclicos. e maneira análoga, temos P = +60 e P = +60 e portanto P é a interseção de três circunferências (especificamente, três arcos capazes), que se intersectam em um ponto, pois ( +60 )+( +60 )+( +60 ) = 360. Suficiência. Seja P a interseção dos três arcos capazes descritos acima. Pelas mesmas razões, temos Isso conclui a prova. FE = FP + EP = FP + EP = P = 60. 5

6 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo Problema 5. (Extraído de [1])Sejam um triângulo de circuncírculo ω e incentro I. Se M é o ponto médio do arco menor de ω, Prove que: Solução. M = MI = M. I Temos M MI = M + I = M + I e = + 2 MI = I + I = + 2 de modo que M = MI. nalogamente, M = MI. Problema 6. (Extraído de [1]) Seja um triângulo com todos os seus ângulos agudos, de alturas, E e F (com em, E em e F em ). Seja M o ponto médio do segmento. circunferência circunscrita ao triângulo EF corta a reta M em e X. reta M corta a reta F em Y. Seja Z o ponto de encontro entre as retas e X. emonstrar que as retas YZ e são paralelas. Solução. Note inicialmente que FHE é inscritível, pois EH = FH = 90 o. aí, XH = 90 o., 6

7 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo Seja o ponto sobre a semi-reta M tal que M = M. O quadrilátero é um paralelogramo, donde H = + H = +(90 ) = 90 = XH, ou seja, o quadrilátero HX é inscritível. Mas H também é inscritível, já que H + = (180 )+ = 180. essa forma, os pontos,h,x, são concíclicos, donde XM = X = X = M (1) Seja T a interseção entre as retas e XH. Note que H é também o ortocentro do triângulo TY, uma vez que TX Y e YF T. aí, H TY = TY. Se mostrarmos que Z TY, o problema estará terminado. Seja então Z interseção entre e TY. Vamos mostrar que Z = Z. Ora, como HZ Y = HXY = 90, o quadrilátero HXYZ é inscritível e portanto as relações (1) e (2), segue que XZ Y = XHY = FX = M. (2) XZ Y = XM, ou seja, que os pontos,z e X são colineares. Mas então como queríamos. Z X = Z = Z = Z, 7

8 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo E T F H Z Y X M 8

9 POT Geometria - Nível 2 - ula 1 - Prof. Onofre ampos/rodrigo Problemas Propostos Problema 7. Seja P o centro do quadrado construído externamente sobre a hipotenusa do triângulo retângulo. Prove que P bissecta o ângulo. Problema 8. (IME-97) Quatro retas se interceptam formando quatro triângulos conforme figura abaixo. Prove que os círculos circunscritos aos quatro triângulos possuem um ponto em comum. Problema 9. (IME-93) Seja um quadrilátero convexo inscrito num círculo e seja I o ponto de intersecção de suas diagonais. s projeções ortogonais de I sobre os lados,, e são, respectivamente, M, N, P e Q. Prove que o quadrilátero MNPQ é circuscritível a um círculo com centro em I. Problema 10. No triângulo, = 90. Seja O o seu circuncentro e H a altura relativa ao lado. Sabendo que H = 10, calcule OH. Problema 11. Num triângulo, = 100, =. Um ponto é escolhido sobre o lado de tal modo que =. Prove que + =. Problema 12. Sobre os lados, e do triângulo, respectivamente, escolhemos M, N e P quaisquer. Mostre que as circunferências circunscritas aos triângulos MP, NM e PN concorrem em um ponto O comum às três circunferências. Problema 13. Sejam E e F pontos sobre os lados e, respectivamente, do quadrado tais que E = F. Se EF = 27, determine a soma F + E. Problema 14. (Leningrado) No quadrilátero, =. Sejam M e N os pontos médios dos lados e, respectivamente e P o ponto de encontro das mediatrizes de e. Prove que P também está sobre a mediatriz de MN. Problema 15. Seja um triângulo tal que = 60. Mostre que o circuncentro, ortocentro, incentro de, ex-incentro de relativo ao lado e os pontos, são concíclicos. 9

10 Problema 16. (São Petersburgo 1996) Seja um triângulo tal que = 60. Seja também O um ponto no interior de para o qual O = O = 120. Se, E são os pontos médios dos lados,, prove que,, E, O são concíclicos. Problema 17. (Teste one Sul rasil 2005) Seja P um ponto do arco menor da circunferência circunscrita ao quadrado. Os segmentos e P se intersectam em Q e e P em R. Mostre que QR é a bissetriz do ângulo PQ. Problema 18. (IMO 2002) Sejam S uma circunferência de centro O, um diâmetro de S, um ponto sobre S tal que O < 120 e o ponto médio do arco que não contém. Se a reta paralela a passando por O intersecta em I e a mediatriz de O intersecta S em E e F, prove que I é o incentro do triângulo EF. Problema 19. (Irlanda 1997) ado um ponto M interior ao triângulo equilátero, sejam, E e F os pés das perpendiculares traçadas de M aos lados, e, respectivamente. Encontre o lugar geométrico dos pontos M para os quais FE = 90. Problema 20. (Rússia 1999) No triângulo de circuncírculo ω, pontos e E são escolhidos sobre o segmento de modo que = e E = E, com E entre e. Se F é o ponto médio do arco de ω, mostre que os pontos,, E, F são concíclicos. Problema 21. Seja um triângulo de circuncentro O e ortocentro H tal que = 60 e >. SejamtambémE, F asalturasrelativasaoslados,, respectivamente, e M, N pontos sobre os segmentos H, HF, respectivamente, tais que M = N. etermine o valor da expressão HM +HN HO Problema 22. Num triângulo, tomamos pontos X, Y sobre os lados,, respectivamente. Se Y e X se intersectam em Z e Y = Y e = Z, mostre que os pontos, X, Z, Y são concíclicos. Referências [1] S.. Feitosa,. Holanda, Y. Lima and. T. Magalhães, Treinamento one Sul Fortaleza, Ed. Realce, [2] fined, Geometría, Una visión de la planimetría. Lima, Ed. Lumbreras, 2005.

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago Polos límpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 7 Ângulos na circunferência efinição 1: ânguloinscrito relativo aumacircunferência éumânguloquetem ovértice na circunferência

Leia mais

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo

1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado

Leia mais

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

Aula 6 Pontos Notáveis de um Triângulo

Aula 6 Pontos Notáveis de um Triângulo MODULO 1 - AULA 6 Aula 6 Pontos Notáveis de um Triângulo Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade. Uma linha ou figura é um lugar geométrico se: a) todos os

Leia mais

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas

Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste

Leia mais

10 FGV. Na figura, a medida x do ângulo associado é

10 FGV. Na figura, a medida x do ângulo associado é urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas

Leia mais

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero

Leia mais

Quadriláteros Circunscritíveis

Quadriláteros Circunscritíveis Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 3 Quadriláteros ircunscritíveis Um quadrilátero é dito circunscritível se, e somente se, existe uma circunferência que tangencia

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos

ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos GABARITO MA13 - Avaliação 1 - o semestre - 013 Questão 1. (pontuação: ) ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos do triângulo AF C.

Leia mais

GEOMETRIA. 1 Definições. 2 Notações

GEOMETRIA. 1 Definições. 2 Notações GEOMETRIA 1 Definições Mediatriz (de um segmento): conjunto de pontos que estão à mesma distância de dois pontos unidos por um segmento de recta. É uma recta e é perpendicular a este segmento no seu ponto

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais. 125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)

Leia mais

Pontos notáveis de um triãngulo

Pontos notáveis de um triãngulo Pontos notáveis de um triãngulo Sadao Massago Maio de 2010 a evereiro de 2014 Sumário 1 Incentro 1 2 ircuncentro 2 3 aricentro 3 4 Hortocentro 4 5 xincentro 4 6 bservação adicional 5 Referências ibliográcas

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME EXERÍIOS DE GEOMETRI PLN REVISÃO 1991 PROF PULO ROERTO 01 (IME-64) Uma corda corta o diâmetro de um círculo segundo um ângulo de 45º Demonstrar que a soma do quadrado dos segmentos aditivos m e n, com

Leia mais

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

AULAS 4 a 6. Ângulos (em polígonos e na circunferência)

AULAS 4 a 6. Ângulos (em polígonos e na circunferência) www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática N Í V L 3 ULS 4 a 6 Ângulos (em polígonos e na circunferência) onceitos Relacionados Proposição 1 Se duas retas são paralelas, cada par de

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA

LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 8. Curso de Geometria - Nível 2. Quadriláteros inscritíveis. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 8 Quadriláteros inscritíveis Teorema 1. Um quadrilátero é inscritível se, e somente se, a soma dos ângulos opostos é 180.

Leia mais

Cevianas: Baricentro, Circuncentro, Incentro e Mediana.

Cevianas: Baricentro, Circuncentro, Incentro e Mediana. Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 2 Quadriláteros Inscritíveis II Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

Aula 8 Segmentos Proporcionais

Aula 8 Segmentos Proporcionais MODULO 1 - UL 8 ula 8 Segmentos Proporcionais Nas aulas anteriores, aprendemos uma formação geométrica básica, através da Geometria Plana de Posição. prendemos que: 1. soma das medidas dos ângulos internos

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

Algumas propriedades importantes de triângulos

Algumas propriedades importantes de triângulos Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 5 lgumas propriedades importantes de triângulos Propriedade 1. Num triângulo retângulo, a mediana M relativa à hipotenusa

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto 1 O Teorema

Leia mais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.

Leia mais

Congruência de triângulos. 1. Seus lados são ordenadamente congruentes aos lados do outro e

Congruência de triângulos. 1. Seus lados são ordenadamente congruentes aos lados do outro e Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 2 ongruência de triângulos efinição: Um triângulo é congruente a outro se, e somente se, é possível estabelecer uma

Leia mais

Circunferência e círculo

Circunferência e círculo 54 Circunferência e círculo Ângulos na circunferência Ângulo central Ângulo central é o ângulo que tem o vértice no centro da circunferência. A medida de um ângulo central é igual à medida do arco correspondente

Leia mais

Geometria Plana Triângulos Questões Resolvidas (nem todas)

Geometria Plana Triângulos Questões Resolvidas (nem todas) Questão 1 A bissetriz interna do ângulo  de um triângulo ABC divide o lado oposto em dois segmentos que medem 9 cm e 16 cm. Sabendo que medida de. 9 16 = AC = 3 18 AC Questão mede 18 cm, determine a O

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r

Leia mais

a) 30 b) 40 c) 50 d) 60 e) 70

a) 30 b) 40 c) 50 d) 60 e) 70 Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A

Teorema de Ceva e Teorema de Menelaus. [ ACD] [ CPD] = [ APB] . Assim, BD FB = K C K A Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 14 Teorema de eva e Teorema de Menelaus. Teorema 1. (eva) Sejam D, E e F pontos sobre os lados, e, respectivamente, do

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em

Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em 6. Duas pessoas A e B decidem se encontrar em 1. Sendo (x + 2, 2y - 4) = (8x, 3y - 10), determine o valor de x e de y. um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³,

Leia mais

Da linha poligonal ao polígono

Da linha poligonal ao polígono Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos

Leia mais

Polos Olímpicos de Treinamento. Aula 13. Curso de Geometria - Nível 3. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 13. Curso de Geometria - Nível 3. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 13 Revisão I Problema 1. Em um triângulo, = 100 e =. Seja D a bissetriz de, com D sobre o lado. Prove que D +D =. É fácil

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

II - Teorema da bissetriz

II - Teorema da bissetriz I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos

Leia mais

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal

Leia mais

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos Prof. ícero Thiago - cicerothmg@gmail.com rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

Módulo de Elementos básicos de geometria plana. Triângulos. Oitavo Ano

Módulo de Elementos básicos de geometria plana. Triângulos. Oitavo Ano Módulo de Elementos básicos de geometria plana Triângulos Oitavo Ano Triângulos 1 Exercícios Introdutórios Exercício 1. Classifique cada sentença como verdadeira (V) ou falsa (F): a) Todo triângulo retângulo

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Terceira lista de exercícios.

Terceira lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras

Leia mais

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof. olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas circunferências com centro no ponto, uma de raio e outra

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por

Leia mais

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )²

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )² GEOMETRI O TXIST Geometria do Taxista é uma geometria não-euclidiana, no sentido em que a noção de distância não é a mesma e acordo com o desenho abaixo, suponhamos um motorista de táxi que apanha um cliente

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner. Seções Cônicas

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner. Seções Cônicas Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 1 - Elipses Seções Cônicas Definição 1.1: Dados os pontos no plano, F e F com FF =2c e um comprimento

Leia mais

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes: AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,

Leia mais

Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? Base média!

Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? Base média! Ponto médio lembra? Outro ponto médio! Dois pontos médios lembram? ase média! ícero Thiago 8 de março de 011 Propriedade 1. Num triângulo retângulo, a mediana M relativa à hipotenusa mede metade da hipotenusa.

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

Por que as antenas são parabólicas?

Por que as antenas são parabólicas? Por que as antenas são parabólicas? Adaptado do artigo de Eduardo Wagner A palavra parábola está, para os estudantes do ensino médio, associada ao gráfico da função polinomial do segundo grau. Embora quase

Leia mais

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes )

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes ) Primeira Fase Nível ( Série EM e Concluintes ). Quantas soluções do tipo (x,y), com x,y inteiros, existem para a equação xy=x+y? a) b) c) d) e)nenhuma. Na figura, o triângulo ABC é eqüilátero, o raio da

Leia mais

REVISITANDO A GEOMETRIA PLANA

REVISITANDO A GEOMETRIA PLANA REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a

Leia mais

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE

POTÊNCIA DE PONTO, EIXO RADICAL, CENTRO RADICAL E APLICAÇÕES Yuri Gomes Lima, Fortaleza - CE PTÊNI PNT, IX RIL, NTR RIL PLIÇÕS Yuri Gomes Lima, Fortaleza - Nível INTRUÇÃ Muitas vezes na Geometria Plana nos deparamos com problemas em que não temos muitas informações a respeito de ângulos e comprimentos,

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

www.rumoaoita.com 141

www.rumoaoita.com 141 0 Dado um trapézio qualquer, de bases e 8, traça-se paralelamente às bases um segmento de medida x que o divide em outros dois trapézios equivalentes. Podemos afirmar que: (A) x, 5 (B) x (C) x 7 x 5 (E)

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Geometria - Nível 2. Potência de ponto. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 10. Curso de Geometria - Nível 2. Potência de ponto. Prof. Cícero Thiago olos límpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago ula 10 otência de ponto 1. Definição Seja Γ uma circunferência de centro e raio R. Seja um ponto que está a uma distância d

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51 1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine

Leia mais

ENCONTRO COM O MUNDO NÃO EUCLIDIANO

ENCONTRO COM O MUNDO NÃO EUCLIDIANO XXIX CNMAC Congresso Nacional de Matemática Aplicada e Computacional ENCONTRO COM O MUNDO NÃO EUCLIDIANO Sergio Alves IME USP Luiz Carlos dos Santos Filho Licenciado IME A quem se destina? Professores

Leia mais

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual

Leia mais

Conjugados isogonais e simedianas

Conjugados isogonais e simedianas Conjugados isogonais e simedianas 1. Conjugados isogonais A ideia de conjugado é fazer uma associação entre objetos. Objetos conjugados supostamente têm propriedades semelhantes. Isso é bastante comum

Leia mais

Módulo 2 Geometrias Plana e Espacial

Módulo 2 Geometrias Plana e Espacial 1. Geometria Plana Módulo 2 Geometrias Plana e Espacial Os conceitos da geometria são muito utilizados na área de logística, principalmente nas medidas das dimensões dos volumes; nos cálculos do espaço

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente

Leia mais

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas. Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:

Leia mais

PLANEJAMENTO ANUAL 2014

PLANEJAMENTO ANUAL 2014 PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. Geometria plana. Resumo teórico e eercícios. 3º olegial / urso tensivo. utor - Lucas ctavio de Souza (Jeca) Relação das aulas. Página ula 01 - onceitos iniciais... 0 ula 0 - Pontos notáveis de um triângulo...

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

Polos Olímpicos de Treinamento. Aula 12. Curso de Geometria - Nível 2. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD.

Polos Olímpicos de Treinamento. Aula 12. Curso de Geometria - Nível 2. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD. Polos Olímpicos de Treinamento urso de Geometria - Nível Prof ícero Thiago ula 1 Relações entre áreas I Teorema 1 (Fórmula tradicional) área do triângulo pode ser calculada por [ ] = Teorema (Área de um

Leia mais

Geometria I Aula 3.3

Geometria I Aula 3.3 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Geometria I 90h Matemática Aula Período Data Planejamento 3.1 2. 0 28/11/2006 3ª. feira Andréa Tempo Estratégia Descrição (Produção) 18:10

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência

Leia mais

Programa Olímpico de Treinamento. Aula 3. Curso de Geometria - Nível 2. Teorema de Tales e Aplicações. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 3. Curso de Geometria - Nível 2. Teorema de Tales e Aplicações. Prof. Rodrigo Pinheiro Programa Olímpio de Treinamento Curso de Geometria - ível 2 Prof. Rodrigo Pinheiro ula 3 Teorema de Tales e pliações. Divisão Harmônia Dizemos que os pontos e dividem harmoniamente o segmento quando =

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras

Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras Triângulo Retângulo Relações Métrica e Teorema de Pitágoras 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a

Leia mais

NOME: CURSO: MATEMÁTICA DATA: / /2013

NOME: CURSO: MATEMÁTICA DATA: / /2013 1. (Upe 013) Dois retângulos foram superpostos, e a intersecção formou um paralelogramo, como mostra a figura abaixo: Sabendo-se que um dos lados do paralelogramo mede,5 cm, quanto mede a área desse paralelogramo?

Leia mais

b) 1, 0. d) 2, 0. Página 1 de 10

b) 1, 0. d) 2, 0.  Página 1 de 10 Retas: Paralelas, Perpendiculares, Inequações de retas, Sistema de inequações de retas, Distância entre ponto e reta e Distância entre duas retas paralelas. 1. (Insper 014) No plano cartesiano da figura,

Leia mais

Lista 3 Figuras planas

Lista 3 Figuras planas Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

Circunferências ex - inscritas

Circunferências ex - inscritas Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 18 ircunferências ex - inscritas Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. ntão, adistância de P a XO é igual

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (

Leia mais