Matemática C Semiextensivo v. 4

Tamanho: px
Começar a partir da página:

Download "Matemática C Semiextensivo v. 4"

Transcrição

1 Semietensivo v Eercícios ), aplicando o teorema de Laplace na ª coluna, temos que: A + A + A + A + + ( ) + ( ) ( ) + ( ) + ) para qualquer valor de A + A + A + A + ( ) ( ) + ( ), ou seja, o valor de é qualquer ) A + A + A + A + A

2 A ( ), aplicando novamente o teorema de Laplace, temos: A + A + A + A ( ) + + ( ) + + ( ) + + ( ) + ( + + ) ( + + ) + ( + + ) ( ) + ( ) ( ) + Logo: ( ) ( ) ) + + det A ( ) + ( ) ( ) A det A A + A + A + ( ) A det A ( + + ) (9 + ) det A + ) B det B b B + b B + b B + b B det B B + ( ) B + B + B det B ( ) ( ) ( ) ( ) ( )

3 ) 9 B det B b B + b B + b B + b B det B B + B + B + B det B ( ) + ( ) + ( ) det B ( + + ) ( ) + ( ) det B () 9 + ( ) det B 9 ) π A π π 9/ π π det A a A + a A + a A + a A + a A det A A + A + ( ) A + A + A det A ( ) + π π 9/ π Aplicando novamente o teorema de Laplace, temos: π det A ( ) + π ( π ) π π det A π ) Aplicando a regra de Chió, temos: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) () ( ) () A' + ( ) +

4 9) ± ( ) + ( ) ( + ) + ( + ) + 9 ± ) 9/ 9 ( ) 9 ( + ) ) A z ( ) ( + + ) ( ) ) D Aplicando a regra de Chió, temos: A A' + ( ) + 9, ) E f() ( ) ( ) f() ( ) ( ) f() ( ) ( ) f() ( ) ( ) f() ( ) ( ) f() ( ) ( ) f() ( ) ( ) f() ( ) ( )

5 Logo: f( ) f() f( ) f( ) f() f( ) f( ) f( ) f( ) f( ) f( ) f( ) f( ) f( ) f( ) f( ) Aplicando o teorema de Laplace, temos: ( ) ( ) 9 ) C 9 ( ) 9 9 ( ) 9 ) C + Considerando A e aplicando a regra de Chió, temos: A X + X X X + X X X + X ( + ) + ( ) ( ) + ou X ou ou ou ) log ( ) ( ) ( ) ( ) ( ) ou ou ±

6 ) ) Falso Pois B A B, observe: B A Verdadeiro Pois: A + B + Verdadeiro Pois: A B Verdadeiro Pois: A det (A) 9 9 B det(b) 9 Verdadeiro Pois se A, temos: det A e A Considerando A +, temos que a será singular se det A, ou seja: ( ) ( ) ( + r) 9 + ( ), para que eista eatamente uma matriz singular o descriminamente (Δ) da equação do grau deve ser zero, assim: Δ ( 9) () ( r) + r 9) A det A A possui inversa Calculando os cofatores de A, temos: A ( ) ; A ( ) A ( ) ; A ( ) A ( ) ; A ( ) A ( ) ; A ( ) A ( ) Matriz cofatores: A' Matriz adjunta: A (A') t Logo, A A det A A ) A cos θ sen θ sen θ cos θ Considerando A cosθ senθ, temos: senθ cosθ det A cos θ + sen θ

7 Calculando os cofatores de A, temos: A ( ) cos θ sen θ sen θ cos θ ; A ( ) sen θ cos θ A ( ) cos θ sen θ ; A ( ) sen θ cos θ A ( ) cos θ cos θ ; A ( ) sen θ sen θ A ( ) cos θ sen θ ; A ( ) sen θ sen θ A ( ) cos θ cos θ Matriz cofatores: A' cos θ sen θ sen θ cos θ Matriz adjunta: A (A') t cos θ sen θ sen θ cos θ Logo, A det A A cos θ sen sen θ cos θ θ ) A A det A Matriz cofatora: A' Matriz adjunta: A Logo, A det A A A

8 ) A t B A det B det A? det B det ( A t ), como A é de ordem, temos que: det ( A t ) det A t det A t det A t Como det A t det A, temos que det A Logo, pelo teorema de Binet, det A det A ) E Pelo teorema de Binet, temos que det (A B) det A det B, logo: A det A ( ) B det B ( ) Assim, det (A B) det A det B ( ) ) a) A AB + BA B b) AB BA c) d) det B det A a) (A + B) (A B) A A A B + B A B B A A B + B A B, pois a multiplicação de matrizes não é comutativa, ou seja, A B B A b) A B B A det A c) det ( A) det A det A ( ) det A det A d) B A det (A B) det (A A ) det (A B) det (I) det (A B) det A de B det B det A ) A det ( A BA) det ( BA A ) det ( B I) det B det B det B det B det B ) A A n n e B n n ; det A a, det B b; a e b det (A B ) det (A) det B n det A n a det B b n a b ) ) E 9) B Falsa Do enunciado temos o sistema: + y+ z + y+ z + y+ z A solução (,, ) é uma das infinitas soluções do sistema (Δ ) Falsa Pois um sistema indeterminado possui infinitas soluções Verdadeira Pois: + + Verdadeira Como a ª linha é a "soma" das primeiras duas linhas, temos D e, portanto, a matriz dada não possui inversa M e det M det M + det(m) + det(m) + det M + det M a) Falsa Pois det A det A t b) Verdadeira Pois se det A, temos que: A det A (cof A)t, em que cof A é a matriz dos cofatores de A c) Falsa Pois A B, então A ou B Observe que se A e B, temos A B, embora A e B d) Falsa Pois (A B) A AB + B somente quando A B B A Em geral a multiplicação de matrizes não é comunicativa, isto é, AB BA e) Falsa Pois se R, então det ( A) n det A,

9 ) a) X A B b) X B (A C) c) X A B ) D ) C a) X B A X B B A B X A B I b) B X + C A B X + C C A C B X A C B B B (A C) X B (A C) c) A X B A A A B A B A A A I I I A sen log sen det A sen log O determinante da matriz A é epresso por sen log, que é diferente de zero, pois do contrário teríamos sen log >, o que é absurdo Assim sendo, a matriz A é inversível para qualquer ) São verdadeiras a e c a) Verdadeira A + B + b) Falsa C A B a b c d a b c d b ) a) c) Verdadeira A t det At d) Falsa C B a b c d a d ( ) e) Falsa A C B a b c d a+ c a c b b+ d a b c c d b d b) g de amendoim g de castanha-de-caju g de castanha-do-pará Sendo, y e z, respectivamente, as quantidades, em quilos, de amendoim, castanha de caju e castanha-do- -pará contidas em uma lata da mistura, tem-se: a) do enunciado: + y+ z, + y + z, y ( + z) b) do sistema anterior: + y+ z, + y+ z, + y+ z, + z y + z y y, + z,, g g + z, y, g y g y, z, g z g ) S ( z, z, z);, y z y+ z z y z y z y z y z z z y 9

10 ) V F F V Sejam: preço do refrigerante y preço do café z preço do salgado + y+ z 9 Temos que: + y+ z a) Verdadeira Pois multiplicando-se a ª equação por e somando-a com a primeira obtemos y, ou seja, o preço do café é R$, b) Falsa Pois substituindo y por no sistema acima obteremos + z, que admite infinitas soluções Note + z que a ª coluna é igual à ª coluna multiplicada por c) Falsa Do enunciado temos a epressão algébrica + y + z que representa a despesa da mesa Como y, temos que + y + z + () + z + + z Do fato que + z, (é só dividir a primeira equação do sistema b por ), vem que + + z, +, A despesa da mesa foi de R$, + z d) Verdadeira Pois o sistema admite infinitas soluções, que são do tipo + z, ou z, z, isto é, os preços estarão sempre em função um do outro ) Seja M c Verdadeiro Pois + + M ( M ) t Falso det M Fazendo + +, ± + ± A afirmação é falsa pois det M para + [, [ Falso det M Fazendo + ± R Verdadeiro Representando por A o preço do litro do álcool e por D o do diesel e considerando A > D e que A + D A + D, temos: A + D A + D (A D) A D A D A D >, pois A > D [, + [ Verdadeiro Posto Posto Posto Gasolina Álcool Diesel G+ A+ D G+ A+ D,, G A + + G+ A, D, + G+ D 9, G A, G+ A, A A A + G + D G, D, ) a) z e y + z b) X Y + y+ z y z a) + + y+ z + y z z y + z b) De acordo com (a) e levando em conta que, y, z e que todos são números inteiros, temos: z ou z z z ou + z z z Assim: z, y z, y z, y Z

11 9) a) (,, + ) b) (,, ) ou (, 9, ) Considerando o menor salário, temos: + y+ z y 9 + z z + y z + ) Sejam: número de caias de parafusos y total de parafusos embalados y Assim: y + ) a ; b ; c y (a b + c) + (b c) + (c ) a b+ c a b c b c c ) e Sejam a e b, com a > b, os dois números inteiros positivos, assim: a b a b a + a b b + b b 9 9 b ) S {(, )} y ( y) + ( + y) + + y ( y) + ( y ) + y y y y y ) a) Não, pois faltará farinha b), g do tipo A e g do tipo B a) Para produzir g de bolo do tipo A e g de bolo do tipo B, a quantidade de açúcar é (, +, ) g, g De modo análogo, a quantidade de farinha é: (, +, ) g, g Com g de açúcar e g de farinha, não é possível, portanto, produzir g de bolo do tipo A e g de bolo do tipo B, pois a farinha não é suficiente b) Se a for o número de quilogramas de bolo do tipo A e b o do tipo B, então:, a+, b a b +, a+, b a+ b + a b + a b a, a+ b b b ) Matilda gastou R$, no supermercado e R$, na farmácia Sejam: valor gasto por Matilda no supermercado y valor gasto por Matilda na farmácia + y Assim: y 9 ) S,, ) C y Fazendo a ; y e z b c, temos: + y+ z + y + z + y+ z y z + y+ z 9 y z + y+ z y z y z z a a a Logo: y b b b z c c c Sejam P a e P b as produções de barris de petróleo das poças A e B, respectivamente, assim: ( Pa + Pb) ( Pa + Pb) Pa + Pb Pa + Pb Pa Pb Pa Pb Pa, Pb Pa,% Pb

12 ) (,, ) y z 9 9 z z y + y+ z y+ z + z 9 + y+ z + y+ z y+ z 9 y y + z y+ z z 9) + y + z y z 9 + y+ z + y+ z 9 y z yz y z + + y z y z + y+ z ) a) e b) c) + y z + y z + y+ ( ) z (Dividindo-se os termos da ª equação por ) + y+ ( ) z + y+ z + y+ z Calculando o determinante da matriz principal: D + + ( ) 9 Δ + Fazendo D o sistema será possível e determinado + + ± e Substituindo por e escalonando a matriz completa, temos: L L L L L L Sendo nula a terceira linha isso indica que para, o sistema tem para solução: (z, z, z), ou seja, o sistema será possível e indeterminado Substituindo por e escalonando a matriz completa, temos: L L L L L L Analisando a terceira linha da matriz resultante percebe-se que a conclusão é uma proposição falsa Assim, para, o sistema é impossível ) e Para que o sistema + y admita solução única, devemos ter D, ou seja:

13 + ( + ) + + e ) Escalonado a matriz completa: L L L L L L + L L + Para que o sistema seja possível e indeterminado, devemos ter: ) p + y q + y q y y Falso Pois se p e q, temos: q + y q q q Falso Pois se p q, o sistema é impossível Verdadeiro Pois para que o sistema apresente solução única, devemos ter D, ou seja: D p p q p q p q q Verdadeiro Pois se p q temos: y, que é um sistema impossível y Falso Pois det p, o sistema possui solução única q ) a spd a e b spi a e b si Calculando o determinante da matriz principal, temos: D a a + + ( a + + ) a Fazendo D o sistema será possível e determinado: a a a Substituindo a por e escalonando a matriz completa, temos: 9 b L +L L L +b Analisando a ª linha da matriz resultante, temos: Se + b b, o sistema será possível e indeterminado, cujas soluções serão: (, +, ) Se + b b, o sistema será impossível, pois a ª linha da matriz resultante será uma proposição falsa

14 ) Escalonando a matriz completa, temos: α α+ L +L L L α + α+ L L α α Para que o sistema seja impossível, devemos ter α α ± e α α α ) m ± cos + m sen cos m sen Somando as equações, temos: cos cos π ou π Substituindo na ª equação: cos ( π ) + m sen ( π ) + m + m m cos ( π ) + m sen ( π ) + m ( ) m S {m R / m ou m } ) m ou m Para que o sistema admita soluções próprias além da trivial ( y z ), devemos ter: m m + + m + m m m + m + m ou m ) a ou a + y+ z + y+ z a y z a Cálculo de D: D + + 9) E Como D, para que o sistema admita solução devemos ter D Dy Dz (SPI) Calculando D Dy e Dz, obtemos a + a Fazendo a + a, temos que a ou a y y + y + y y + y y ( ) + + y y + ( ) y Para que o SLH admita solução além da trivial, devemos ter D, ou seja: ( ) ( ) ( ) 9 ) a) não; b) a y+ z y+ z + ay+ z Cálculo de D: D 9 a a ou Para que o sistema seja indeterminado devemos ter: 9 a a e D Dy Dz Calculando Dy, temos: D y Como D y e independe do valor de a, não eiste valor real de a que torne o sistema indeterminado Para que sistema seja impossível, devemos ter a

15 ) a) m b) S {z R / (z, z, z)} a) O sistema admite solução para todos os valores de m para os quais ele não é impossível Assim, vamos analisar para que valores de m ele é impossível e ecluí-las da solução Para que o sistema seja impossível devemos ter: D e D ou Dy ou Dz D m m ou m m Fazendo uma análise dos demais determinantes, vemos que quando m, além de D, também teremos D Dy Dz, o que caracteriza um sistema indeterminado Logo, o sistema admite solução para todo m + y z b) my z, fazendo m, temos: + y + mz m + y z z z yz + y Fazendo m temos um SPI cujas soluções em função de z são: S {z R / (z, z, z)} ) a) (,, ) b) m e m m m m ) m + m + m+ a) Se o sistema linear homogêneo admite apenas uma única solução, esta é a solução trivial, ou seja, (,, ) (,, ) b) Fazendo D, temos: m m m m m m e m Verdadeira A condição de eistência da multiplicação entre duas matrizes é que o número de colunas da primeira matriz seja igual ao número de linhas da segunda, ou seja: A m n B n p (AB) m p Verdadeira Substituindo o terno (,, ) no sistema, todas as equações são satisfeitas Falsa Um sistema com mais equações do que incógnitas pode ter uma, infinitas ou nenhuma solução Verdadeira Sendo G o preço do guaraná e P o preço do pastel, de acordo com o enunciado temos: G+ P G+ P G+ P Da primeira equação temos: P G Logo, substituindo na segunda: G + ( G) G ) E Calculando P: P G P Substituindo os valors de G e P na terceira equação: G + P () + () +, ou seja, pelo menos uma das pessoas não pagou o preço certo O determinante das incógnitas do sistema linear é nulo, veja que a primeira coluna mais a terceira é igual à segunda C + C C D Como D, o sistema é possível e indeteminado (SPI) ou impossível (SI) Calculando os determinantes das incógnitas, temos: D ; Dy e Dz Como D e D Dy Dz, temos um SPI com infinitas soluções Sabendo o valor da quantidade de um material, y ou z, podemos determinar as quantidades das outras duas ) Falsa D a a a ± D a a a a a e a ou

16 Dy a a a Se a D e D Dy SPI Verdadeira ( + ) n T n n ( + ) n T n n n n T + T + n T + T + T + + n + T + ( + ) n + n Falsa Observe o gráfico da função g(): y A função g() é sobrejetora, e não injetora Portanto, ela não é bijetora, logo não é inversível Verdadeira f() sen e g() + fog () f(g()) sen ( + ) fog ( ) f(g()) sen (( ) + ) sen ( + ) Logo, (fog)() (gof)( ) ) + y z Falsa y+ z y+ z Multiplicando a segunda equação por ( ) e somando com a terceira, temos: + y z + y + z y z y Substituindo y na primeira equação: + z z z z z z z Logo: S z R / + + z Soma: z z z + +z Verdadeira A a b det A ad bc c d a b B det B a(b + d) b(a + c) a+ c b+ d det B ad bc Falsa Falsa [(AB ) AC] B [(B ) A AC] B [(B ) I C] B (BC) B C B B C I C Verdadeira A A A t A + A A t + (A + A A t ) 9 ) Verdadeira Observe a tabela abaio: n n n Dessa maneira, o número ( ) também terá os dois algarismos finais (dezena e unidade) iguais a dois zeros Sendo assim, concluímos que ( ) é múltiplo de + y+ z Falsa + y+ z + y+ z O sistema é impossível com a ª e a ª equação Temos: + y + z ( ) + y+ z y z + + y + z

17 n Verdadeira O binômio é + A fórmula para o binômio ( + a) n T p + n p ap n p T p + n P p ( ) Para p, temos: T + n T n T n n p n n ( ) n Como o epoente de é inteiro, temos: n, z n n + n ( + ) Portanto, n é par Verdadeira Aplicando a lei dos senos, temos: a b sen A c senb sen C R Assim: a R sen A b R senb c R sen C ou seja, a segunda linha da matriz A é proporcional à terceira linha, logo det A ) a + y z y+ z y+ z a Cálculo D: D + + Para que o sistema admita infinitas soluções devemos ter: D Dy Dz Calculando D, Dy e Dz, temos: D Dy Dz a a a

Matemática C Intensivo V. 2

Matemática C Intensivo V. 2 Intensivo V. Eercícios ) A se i A A (a i ), a i i se i ) B a a a A a a a a i log( i+ ) se i i+ se i a a A a a log A t 8 8 A log A 8 8 + + + + ) 6 e y. A + y 6 ; B 6 6 Se A b, então: 6. + y y 6 y ) 86 A

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5 Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c

Leia mais

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1 setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES

Leia mais

A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema.

A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema. MATEMÁTICA MÓDULO 1 SISTEMA LINEAR Um sistema linear de m equações a n incógnitas é um conjunto de m (m 1) equações lineares a n incógnitas e pode ser escrito como segue: a a a b a a a b 11 1 1 1n n 1

Leia mais

GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.

GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z. GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES

MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a

Leia mais

Exercícios de Aprofundamento Mat Sistemas Lineares

Exercícios de Aprofundamento Mat Sistemas Lineares 1. (Unesp 013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares das classes às quais

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)

Leia mais

Álgebra Linear I - Lista 10. Transfromações inversas. Matriz inversa. Respostas. c d a c. c d A = g h. e C = a c

Álgebra Linear I - Lista 10. Transfromações inversas. Matriz inversa. Respostas. c d a c. c d A = g h. e C = a c Álgebra Linear I - Lista 0 Transfromações inversas. Matriz inversa Respostas Estude se existe uma matriz A tal que ( ( a b b d A = c d a c para todos os valores de a, b, c e d. Resposta: Seja e dadas B

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de

Leia mais

V MATRIZES E DETERMINANTES

V MATRIZES E DETERMINANTES V MATRIZES E DETERMINANTES Por que aprender Matrizes e Deter erminant minantes?... Algumas vezes, para indicar com clareza determinadas situações, é necessário formar um grupo ordenado de números dispostos

Leia mais

Determinante de uma matriz quadrada

Determinante de uma matriz quadrada Determinante de uma matriz quadrada A toda matriz quadrada A está associado um número real, chamado determinante de A. Ele é obtido por meio de certas operações com os elementos da matriz. O determinante

Leia mais

7. Calcule o valore de x + y z sabendo que as

7. Calcule o valore de x + y z sabendo que as . Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Para uma matriz de ordem 2 podemos usar o resultado obtido em um dos exercícios da aula 41.

Para uma matriz de ordem 2 podemos usar o resultado obtido em um dos exercícios da aula 41. Resoluções das atividades adicionais Capítulo Grupo A a) L L L L L L L Logo A Para uma matriz de ordem podemos usar o resultado obtido em um dos eercícios da aula 4 a b Se A c d, então A d b ad bc c a

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 206 Sumário DETERMINANTE... Exemplo... Exemplo 2... EXERCÍCIOS FUNDAMENTAIS... Exemplo 3... EXERCÍCIOS FUNDAMENTAIS...

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

UFSC Matrizes. Prof. BAIANO

UFSC Matrizes. Prof. BAIANO UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em

Leia mais

Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares

Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares Módulo de Matrizes e Sistemas Lineares Sistemas Lineares Matrizes e Sistemas Lineares Sistemas Lineares Eercícios Introdutórios 9 3 5 7 = 4 5 Eercício. Determine quais das equações abaio são lineares +

Leia mais

Matemática A Extensivo V. 1

Matemática A Extensivo V. 1 Etensivo V Eercícios 0) a) b) c) d) e) Indeterminação f) g) 6 h) 6 i) 6 a) b) c) () ( )( )( ) ( ) vezes d) (00) 0 e) 0 0 Indeterminação f) g) ² 6 h) ()² ()() 6 i) ² 6 0) a) Verdadeiro b) Falso c) Verdadeiro

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS MAT II SISTEMAS LINEARES

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS MAT II SISTEMAS LINEARES COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 3ª SÉRIE MATEMÁTICA II PROF. MARCOS Equação linear É Toda equação da forma: MAT II SISTEMAS LINEARES a a a números reais que recebem o nome de coeficientes das

Leia mais

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações

Leia mais

Matemática. Resolução das atividades complementares { } {( )} ( ) ( ). M4 Sistemas lineares

Matemática. Resolução das atividades complementares { } {( )} ( ) ( ). M4 Sistemas lineares Resolução das atividades complementares Matemática M4 Sistemas lineares p. 8 Verifique se (, 4, ) é solução da equação x y z 4. x y z 4 x ; y 4; z? (4) 6 0 Não é solução. Dê duas soluções da equação linear

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em

Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade de entrarmos em tantos detalhes para os concursos desejados. Assim,

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

Sinais e Sistemas Aula 1 - Revisão

Sinais e Sistemas Aula 1 - Revisão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Matrizes. Determinantes. Inversão de matrizes. Sistemas lineares C 6. E 2. C 6. B 2. B 1. D 7. D 3. A 7. C 8. C 4. C 8. B 4. B 9. A 5.

Matrizes. Determinantes. Inversão de matrizes. Sistemas lineares C 6. E 2. C 6. B 2. B 1. D 7. D 3. A 7. C 8. C 4. C 8. B 4. B 9. A 5. Matrizes EM8 MAT_A_. C 6. E 7. D. A 8. C 9. A. C. D 6. B 8. B 9. B. B. a) º dia e º instante b) 7, C Determinantes EM8 MAT_A_. A. E. B. A 6. B. A 7. A 8. E 9. C. E. f π f Inversão de matrizes EM8 MAT_A_.

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

Sistemas Lineares. Prof.ª: Susana P. da Cunha de Matos

Sistemas Lineares. Prof.ª: Susana P. da Cunha de Matos Prof.ª: Susana P. da Cunha de Matos Historicização Na matemática ocidental antiga são poucas as aparições de sistemas de equações lineares. No Oriente, contudo, o assunto mereceu atenção bem maior. Com

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Matemática C Superintensivo

Matemática C Superintensivo Matemática C Superintensivo Eercícios Matrizes ) a) 9 reais b) 6, reais a) Após o primeiro reajuste, o par de tênis passou a custar: +,. + 9 reais b) Na liquidação, o novo preço passou a ser: 9,. 9 9,

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pela Universidade Federal do Paraná (UFPR). Graduado em Matemática pela UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 1992.

Leia mais

Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio

Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1- IDENTIFICAÇÃO Instituto

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

KmaraDikas da P2. 1) Determine o domínio das funções abaixo:

KmaraDikas da P2. 1) Determine o domínio das funções abaixo: KmaraDikas da P. ) Determine o domínio das funções abaio: f ( ) A) B) f ( ) 4 + f ( ) C) ) Determine a soma da(s) proposição(ões) Verdadeira(s). 0 A, tal que a ij i jentão 3 ( A t ) t 0 Se ( a ij ) 0 -

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear 2016/I 1. Escreva os seguintes sistemas na forma matricial: 2x 1

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4.

2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4. Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear 2016/II 1 Considere as matrizes A, B, C, D e E com respectivas

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco

MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 11 DETERMINANTES INTRODUÇÃO Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

Matemática C Semiextensivo V. 3

Matemática C Semiextensivo V. 3 Semietensivo V Eercícios 0 0 0) 0) a) A 0 0 b) c) a 0 representa o número de derrotas do Botafogo no torneio d) a e) América 0 + ponto Botafogo + 7 pontos Nacional 0 + pontos Comercial + 5 pontos f) o

Leia mais

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante CURSO MENTOR Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante Versão.8 05/0/0 Este material contém soluções comentadas das questões de matemática do

Leia mais

Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares

Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares 1 Introdução Neste capitulo, estaremos interessados em estudar os sistemas de equações

Leia mais

Resolução do Simulado (08/Maio) Semi

Resolução do Simulado (08/Maio) Semi Resolução do Simulado (08/Maio) Semi Questão 1. Item 01. Verdadeiro. O número total de samambaias será dado pelo produto do número de quadrantes pela quantidade de samambaias em cada quadrante. A t.b representa

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo:

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo: Matrizes 9 Calcule: 5 7 9 6 5 8 5 7 5 6 6 8 7 5 7 Sejam A 9 5, B 8 6 e C 7 Determine as matrizes: A B C A B C A (B C) Sejam as matrizes A (a ij ), em que a ij i j, e B (b ij ), em que b ij i j Seja C A

Leia mais

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1

+ a 3. x 3. são números reais, que recebem o nome de coeficientes das incógnitas; x 1 3.2 SISTEMA LINEAR Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a 3,..., a n são números reais, que recebem o nome de coeficientes

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a

Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a Determinantes 1 Introdução Até agora nós estudamos vários tipos de matrizes e suas mais diversas ordens Em especial, vimos a matriz quadrada, que tinha o mesmo número de linhas e colunas Toda matriz quadrada

Leia mais

MATRIZES E DETERMINANTES. a, com índices duplos, onde

MATRIZES E DETERMINANTES. a, com índices duplos, onde MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes

Leia mais

2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h)

2. Calcule o determinante das seguintes matrizes usando o teorema de Laplace. ab (a) (b) (c) 2 5. (e) 0 a b a 0 c b c 0. (h) 3.. determinante de uma riz página /5 departamento de emática universidade de aveiro. Determine o número de inversões e classifica qnto à paridade as seguintes permutações de {,, 3, 4, 5}: (3, 4,, 5, )

Leia mais

Questão 01 EB EA = EC ED. 6 x = 3. x =

Questão 01 EB EA = EC ED. 6 x = 3. x = Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento

Leia mais

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras:

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: SPD Sistema possível determinado: existe apenas um conjunto solução; SPI Sistema possível indeterminado:

Leia mais

Álgebra Linear I - Aula 14. Roteiro

Álgebra Linear I - Aula 14. Roteiro Álgebra Linear I - Aula 14 1 Matrizes 2 Forma matricial de uma transformação linear 3 Composição de transformações lineares e produto de matrizes 4 Determinante do produto de matrizes Roteiro 1 Matrizes

Leia mais

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00 Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00 QUESTÃO 1 (1,2 pts) - Determine os valores de a R para os quais os vetores u = (1, 0, a), v = ( 2, 1, 0) e w = (a,

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

Matrizes. Curso de linguagem matemática Professor Renato Tião

Matrizes. Curso de linguagem matemática Professor Renato Tião Matrizes Curso de linguagem matemática Professor Renato Tião Uma matriz A m n é uma maneira de apresentar informações numéricas ou algébricas dispostas como numa tabela com m linhas e n colunas cercada

Leia mais

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz

Leia mais

Questão 1. alternativa A

Questão 1. alternativa A NOTAÇÕES C: conjunto dos números compleos R: conjunto dos números reais Z: conjunto dos números inteiros N {0,,,, } N {,,, } z: conjugado do número z C i: unidade imaginária; i arg z: um argumento de z

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM2 - Introdução à Álgebra Linear - Turmas 8, 82 e 84 Lista - Tiago de Oliveira Reveja a teoria e os exercícios feitos em sala. 2 3 2 0. Sejam

Leia mais

ÁLGEBRA LINEAR AULA 4

ÁLGEBRA LINEAR AULA 4 ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Álgebra Linear. Aula 02

Álgebra Linear. Aula 02 Álgebra Linear Aula Determinante Para aproveitar 1% dessa aula vocês precisam saber: ü Matrizes ü Equação do 1º grau ü Equação do º grau Como representamos o determinante de uma matriz? Colocando os elementos

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web Lista ita eponencial e modulo Carlos Peioto. (Ita 07) Esboce o gráfico da função f: dada por f().. (Ita 07) Sejam S {(, y) : y } e área da região S S é S {(, y) : (y ) 5}. A a) 5. 4 π b) 5. 4 π c) 5. 4

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.

é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna. Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2005 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 2º Ano 4º Bimestre/2012. Plano de Trabalho 1 SISTEMAS LINEARES

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 2º Ano 4º Bimestre/2012. Plano de Trabalho 1 SISTEMAS LINEARES FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 4º Bimestre/2012 Plano de Trabalho 1 SISTEMAS LINEARES Cursista: Izabel Leal Vieira Tutor: Paulo Alexandre Alves de Carvalho 1 SUMÁRIO INTRODUÇÃO........................................

Leia mais