- Nominal: não há aspecto quantitativo. - Classificar espécies biológicas por nomes.

Tamanho: px
Começar a partir da página:

Download "- Nominal: não há aspecto quantitativo. - Classificar espécies biológicas por nomes."

Transcrição

1 Uiversidade Federal de Alagoas Istituto de Ciêcias e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Viícius Careiro Vital 1. Escalas. - Nomial: ão há asecto quatitativo. - Classificar esécies biológicas or omes. - Ordial: há difereça quatitativa etre os objetos classificados, mas o itervalo ão ossui sigificado. - Classificar um ambiete em regeeração em estágios que idiquem uma ordem: iicial, itermediário, avaçado. - Escala graduada (ou itervalar): a escala é quatitativa, mas o oto zero é arbitrário, etão as ercetages ão têm sigificado. - Temeratura, quado medida em graus Celsius, rereseta uma escala graduada ºC ão é duas vezes mais quete do que 10 ºC! - A temeratura 0 ºC é arbitrariamete defiida como a temeratura a qual a água se cogela. - Escala de roorcioalidade: o oto zero é atural, e as ercetages odem ser alicadas. - O eso é uma escala de roorcioalidade. Existe um oto zero atural (mesmo que um ouco abstrato), e odemos dizer com seguraça que 2 Kg esam o dobro do que 1 Kg. 2. Percetages. - A lógica de uma orcetagem é ormalmete bastate ituitiva. Por exemlo, imagie uma situação a qual estamos acomahado o crescimeto de uma lata. Na

2 ossa rimeira medida, ela areseta 10 cm de altura. Uma semaa deois, somos iformados de que ela cresceu 20%. Qual seria seu ovo tamaho? - 20% rereseta um aumeto de roorção 20 baseado o tamaho origial. Ou seja, o ovo tamaho é 10 cm mais a quatidade aumetada, que é = 2 cm. Etão a ova altura é de 12 cm. - Aida seguido o mesmo exemlo, odemos os fazer duas ergutas: se a lata crescer mais 20% a róxima semaa, etão qual teria sido sua orcetagem total de aumeto a artir de ossa medida iicial? E qual seria seu ovo tamaho? Tetar resoder esta erguta raidamete ode os levar à resostas erradas... cm! - Primeiro, ão odemos dizer que ela cresceu 40%! - E segudo, também ão odemos dizer que sua ova altura é de 14 - A razão disto é simles. - Se ao assar mais uma semaa ela cresceu mais 20%, este ovo aumeto já ão será baseado a altura iicial, e sim os 12 cm que ela tem ao fial da rimeira semaa. aumeto é: 20 que ossos 10 cm iiciais? - Ou seja, ela cresceu mais 20% a artir de 12 cm, etão o ovo 12 = 2,4 cm; etão a ova altura é de 14,4 cm. - E qual a orcetagem de aumeto os daria 4,4 cm a mais do 10 = 4,4, etão = 44%. - Vamos chamar a medida iicial de w, e a orcetagem de aumeto de. - E vamos tetar criar uma regra geral sobre como lidar com orcetages, que ossa ser alicada a qualquer situação! - Pelo osso exemlo, vimos que odemos saber a quatidade de aumeto dividido or cem e multilicado or w. Ou seja, a quatidade aumetada é: w. escrever como: w (1 + - E o valor fial, aós o aumeto, seria: w + w, que odemos

3 - E como lidar com aumetos cosecutivos? No osso exemlo, a lata cresceu 20% or semaa, ido de 10 ara 12 cm aós a rimeira e de 12 ara 14,4 aós a seguda semaa. Bom, ós sabemos calcular qual o ovo tamaho aós a rimeira semaa: w (1 + ); se este é o ovo tamaho, etão a artir dele odemos calcular o aumeto aós a seguda semaa: (w (1 + acima: w (1 + )) (1 + ). - Mas existe uma maeira bem mais simles de reresetar a fórmula 2. - Geeralizado aida mais, se esarmos em aumetos cosecutivos a mesma orcetagem, odemos reescrever ossa fórmula assim: w (1 + - Esta fórmula rereseta qual deveria ser a medida fial de um valor iicial w que aumetou uma orcetagem em vezes cosecutivas. - Caso esteja calculado uma redução, e ão um aumeto, lembrese de que o valor de deverá ser egativo. 3. Valores médios. - Quado lidamos com várias medidas (or exemlo, tamaho cororal de vários eixes), ode ser iteressate codesar os dados em um úico valor. Uma das maeiras mais comus de se fazer isso é calcular a média Média aritmética. - A média aritmética é aquela que usamos usualmete, e é calculada somado todos os valores medidos e dividido elo úmero de medias. Por exemlo, se tivermos três medidas (x1, x2 e x3), etão a ossa média aritmética seria: x = x 1+ x 2 + x Geeralizado, odemos escrever uma fórmula da média aritmética: x = x 1 + x x - Mais adiate vamos reescrevê-la de uma maeira mais comacta.

4 3.2 Média geométrica. - Existem situações as quais a média aritmética ão rereseta bem o que queremos demostrar. Se tomarmos ovamete o osso exemlo da lata crescedo, e calcularmos a média aritmética das alturas medidas, teríamos x = ,4 = 12,133 - Neste caso, ode os iteressar mais uma medida que, geometricamete, seja cetral. Etão alicamos a média geométrica, a qual multilicamos os valores e extraímos a raiz eésima do roduto (ode é o úmero de 3 medidas). Neste caso: ,4 4. Somatório e rodutório. - Geeralizado: = 12 x g = x 1 x 2 x - E também veremos uma maeira mais simles de reresetá-la. - Quado escrevemos as fórmulas gerais das médias, logo acima, tivemos que usar as reticêcias ara reresetar a reetição de uma mesma oeração. Existe uma maeira muito mais comacta de fazer isso: o uso do somatório (o caso das somas) e do rodutório (o caso das multilicações, ou rodutos). 4.1 Somatório. - Um somatório é reresetado ela letra grega maiúscula Sigma: Σ. - Vamos chamar de i o ídice que aarece embaixo do x. Ou seja, vamos falar de xi, sedo que x1 é o valor de x quado i = 1. - E vamos cotiuar chamado de o úmero de valores. - Etão, odemos escrever, or exemlo: x i = x 1 + x x i=1 - Que, em ortuguês, é o mesmo que dizer: a soma dos valores de x, ido do valor x1 até o valor x, ode é o úmero de valores de x que queremos somar. 3

5 - Etão vamos voltar à fórmula da média, e dizer que: x = ( x i ) / i=1 - Comare com a maeira com a qual escrevemos a fórmula geral da média ateriormete, e veja que o sigificado é o mesmo. 4.2 Produtório. - A mesma lógica ode ser usada com uma seqüêcia de multilicações, mas trocamos o Sigma ela letra maiúscula Pi: Π. - Usado a mesma otação do somatório, odemos escrever que: x i = x 1 x 2 x i=1 - Que é o mesmo que dizer: a multilicação dos valores de x, ido do valor x1 até o valor x, ode é o úmero de valores de x que queremos multilicar. - Ates de reescrevermos a média geométrica usado o rodutório, vamos seguir adiate com algumas iformações sobre otêcias. 5. Potêcias e otêcias fracioárias. - Uma otêcia ode ser reresetada ela forma geral a, ode a é chamado de base e é chamado de exoete. - O sigificado é simles: multilicar a or ele mesmo vezes. - As otêcias odem ser bem úteis ara reresetarmos de maeira comacta úmeros que são muito grades ou equeos. Normalmete fazemos isso usado a otêcia de dez. - = 10 2, 0 = 10 3, 00 = 10 4, etc. - Também odemos esar em otêcias egativas, e é fácil comreedê-las se esarmos a direção oosta. - = 10 2, 10 = 10 1, 1 = 10 0, 1/10 = 0,1 = 10-1, 1/ = 0,01 = 10-2, etc.

6 5.1 Oerações com otêcias. - Existem algumas regras básicas que os ajudam a lidar com oerações matemáticas que evolvem otêcias: - a a m = a +m - a / a m = a m - (a ) m = a m - a b = (a b) - a = 1 a 5.2 Potêcias fracioárias. - Lidar com uma otêcia fracioária é mais simles do que arece. Vamos tetar deduzir uma fórmula geral ara trabalhar com isso. - Sabemos que 2 3 = 8; odemos multilicar o exoete or os dois lados da equação, e teremos 2 3 = 8 (lembrado que 8 = 8 1 ). - Agora vamos fazer o oosto: dividir os exoetes or. O osso resultado seria que 2 3/ = 8 1/, e temos aí ossa otêcia feacioária. Para etedê-la, vamos ver o que acotece quado = 3: 2 3/3 = 8 1/3, etão 8 1/3 = O que seria o mesmo que dizer que 8 = 2. - Em outras alavras, uma otêcia fracioária é o que os cohecemos como raiz. E uma fórmula geral seria: a 1/ = a - Vamos semre dar referêcia ela otação em otêcia fracioária do que ela otação em raiz. - Primeiro, or ser mais fácil de digitar em um comutador. - Segudo, orque é mais fácil de resolvemos oerações, uma vez que odemos alicar aquelas regras de otêcias que vimos logo acima! 5.3 Voltado ao rodutório e à média geométrica. Agora odemos dizer que: x g = ( x i ) i=1 1/

7 Exercício 1 Um esquisador criou um equeo rojeto ara estudar o crescimeto de uma árvore ameaçada de extição, visado obter iformações ara laejar sua coservação. Na rimeira etaa do trabalho, ele mediu 10 mudas de um mês de idade, e ecotrou os seguites valores (medidos em cetímetros): 15; 18; 22; 23; 20; 17; 21; 25; 19; Calcule a altura média das mudas medidas, usado a equação: x = x i / i=1 Exresse, a resosta, a etaa a qual a equação acima é desdobrada. Aqui basta calcular a média. O detalhe de desdobrameto da fórmula está resete aeas ara exercitarmos a lógica de um somatório, e a resosta deveria estar mais ou meos assim: x = = Dado cotiuidade ao exerimeto, o esquisador realizou uma ova medida de altura das mudas aós mais um mês (isto é, quado as mudas tiham dois meses de idade). Como resultado, ele descobriu que a altura média aumetou em 20% Qual seria a altura média das mudas de dois meses? Assumido que a cada mês a altura média aumeta outros 20%, qual seria a altura média das mudas de três meses? A maeira mais simles é alicar a fórmula de uso de orcetages vista esta aula. Para o rimeiro aumeto, ossa cota seria: 20 ( = 24 E, ara o segudo aumeto: 20 ( = 28, Qual é a orcetagem total de aumeto das mudas desde o rimeiro mês de idade até o terceiro? A maeira mais simles de chegarmos ao resultado é ovamete alicar a fórmula, o que os levaria a: 28,8 = 20 (1 + E ecotrar o valor de, o que faremos asso a asso a seguir. Perceba que desta vez ão elevamos a fórmula ao quadrado, ois estamos tetado descobrir qual o aumeto total desde o tamaho iicial até o tamaho fial, etão ão recisamos cobrir todas as etaas de aumeto o osso cálculo. Resolvedo as cotas:

8 Ou seja, o aumeto total foi de 44%. Exercício 2 28,8 = 20 (1 + 28,8 20 = (1 + 1,44 = (1 + 1,44 1 = 0,44 = = 44 Um etomólogo estava realizado um trabalho de descrição de uma ova esécie de iseto. Em uma das etaas do seu rojeto, ele mediu o comrimeto de dez idivíduos em estágio larval, recém eclodidos dos ovos. As medidas que ele ecotrou foram (em milímetros): 35; 26; 27; 33; 29; 31; 33; 27; 28; Calcule o comrimeto médio dos isetos medidos, usado a equação: x = x i / i=1 Exresse, a resosta, a etaa a qual a equação acima é desdobrada. x = = 30 Dado cotiuidade ao seu trabalho, o esquisador assou a ivestigar o desevolvimeto das larvas. Ele costatou que a cada semaa o tamaho dos idivíduos aumetava em 15%, até eles comletarem o desevolvimeto algumas semaas deois Qual seria o tamaho de uma larva deste iseto que eclodiu com o tamaho médio (ou seja, 30 mm) aós uma semaa de desevolvimeto? E qual seria o seu tamaho aós duas semaas? Para uma semaa: E ara duas semaas: 30 ( = 34,5

9 Ou, como alterativa ara as duas semaas: 34,5 ( = 39, ( = 39, Qual a orcetagem total de aumeto de uma larva de 30 mm que cresceu or duas semaas seguidas? Exercício 3 39,675 = 30 (1 + 1,3225 = (1 + = 32,25 % Um cietista costatou que, ao serem alimetadas com um tio de ração, as cobaias criadas em seu laboratório tiham um gaho de eso de 7% or semaa. Cosiderado uma cobaia com o eso iicial de 350 gramas, resoda: 3.1. Quais seriam os seus esos aós uma, duas, e três semaas? Uma Duas Três 350 ( ( (1 + 7 = = = Lembrado que ara duas e três semaas odemos usar o cálculo a artir do valor iicial (350) e elevar à otêcia corresodete aos aumetos cosecutivos Qual a orcetagem total de aumeto da cobaia aós as três semaas? = 350 (1 + 1,225 = (1 + = 22,5 %

10 Exercício 4 Um mofo a arede da sala de um rofessor de matemática teve a sua área medida em 127 cm 2. Se a macha crescer 1,5% ao dia: A resolução é a mesma, etão serei mais direto com as resostas. Fiquem aeas atetos ao valor da orcetagem, que é equeo este exemlo Qual será o tamaho da macha a cada dia ao logo de uma semaa (7 dias)? Dia Mofo 0 (iicial) Qual a orcetagem total de aumeto do mofo aós a semaa? = 10,98 % 4.3. Se mais uma semaa se assar, qual será o tamaho do mofo? Ou (1 + 1,5 7 = 156, (1 + 1,5 14 = 156,46 Exercício 5 O rótulo de um roduto de limeza iformava que o seu uso reduziria o úmero de bactérias de uma suerfície qualquer em 99%. Cosidere uma suerfície com 10 bilhões de bactérias, e resoda: A difereça crucial este exemlo é que estamos falado de uma redução, etão osso valor de deve ser egativo a fórmula. Fora isso, ada muda Quatas bactérias devem ser ecotradas a suerfície aós o roduto ser usado uma vez? E se o roduto for usado ovamete uma seguda vez sobre a mesma suerfície, quatas bactérias devem sobrar? E se for usado ovamete, uma terceira vez?

11 Primeira Seguda Terceira (1 99 = (1 99 = 0 0 (1 99 = Qual a redução total do úmero de bactérias aós os três usos cosecutivos? 10 = (1 + 0, = (1 + = 99,99990 % Exercício 6 Um fragmeto de Mata Atlâtica com uma área de 250 km 2 assa or um rocesso cotíuo de desmatameto, que remove 10% de sua área ao ao. Novamete, temos uma redução, etão ateção ara o egativo Qual será o tamaho deste fragmeto daqui a 10 aos? Aqui a solução mais rática é calcular de uma úica vez: 250 ( = 87, Qual a orcetagem total de redução da área ocorreu este eríodo? Exercício 7. 87,17 = 250 (1 + = 65,13 % Um esquisador relatou a existêcia de uma área desertificada em exasão detro de uma Uidade de Coservação de Mata Atlâtica. A área desertificada foi medida em 200 km 2, e foi costatado que ela estava em crescimeto em uma taxa de 15% ao ao.

12 7.1. Qual será o tamaho da área desertificada daqui a três aos? E daqui a cico aos? w = 200 ( = = w = 200 ( = = Qual o ercetual total de aumeto da área desertificada aós cico aos? = 200 ( = ( = = 101.1%

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES BINÔMIO DE NEWTON

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES BINÔMIO DE NEWTON Uiversidade Federal do Rio Grade FURG Istituto de Matemática, Estatística e Física IMEF Edital CAPES BINÔMIO DE NEWTON Prof. Atôio Maurício Medeiros Alves Profª Deise Maria Varella Martiez Matemática Básica

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

CUFSA - FAFIL. Análise Combinatória (Resumo Teórico)

CUFSA - FAFIL. Análise Combinatória (Resumo Teórico) A) CONCEITOS: CUFSA - FAFIL Aálise Combiatória (Resumo Teórico) Regras Simles de Cotagem: é a maeira de determiar o úmero de elemetos de um cojuto. Na maioria das vezes é mais imortate cohecer a quatidade

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Camus de Lhaguee, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Mauto Cursos de Liceciatura em Esio de Matemática

Leia mais

Problemas de Contagem

Problemas de Contagem Problemas de Cotagem Cotar em semre é fácil Pricíio Fudametal de Cotagem Se um certo acotecimeto ode ocorrer de 1 maeiras diferetes e se, aós este acotecimeto, um segudo ode ocorrer de 2 maeiras diferetes

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proosta de teste de avaliação Matemática A. O ANO DE ESOLARIDADE Duração: 9 miutos Data: adero (é ermitido o uso de calculadora) Na resosta aos ites de escolha múltila, selecioe a oção correta. Escreva,

Leia mais

CURSO DE MATEMÁTICA ANÁLISE COMBINATÓRIA & BINÔMIO DE NEWTON. a quantidade que atende ao enunciado:

CURSO DE MATEMÁTICA ANÁLISE COMBINATÓRIA & BINÔMIO DE NEWTON. a quantidade que atende ao enunciado: DISCIPLIN: SSUNO: SÉRIE UL CURSO DE MEMÁIC ÁLGEBR NÁLISE COMBINÓRI & BINÔMIO DE NEWON. (UERJ UENF ) Para motar um saduíche, os clietes de uma lachoete odem escolher: - um detre os tios de ão: calabresa,

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

REVISÃO DE MATEMÁTICA BÁSICA

REVISÃO DE MATEMÁTICA BÁSICA REVISÃO DE MATEMÁTICA BÁSICA AULA 6 Radiciação Profe. Kátia RADICIAÇÃO Radiciação é a operação iversa da poteciação. Realizamos quado queremos descobrir qual o úmero que multiplicado por ele mesmo uma

Leia mais

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n:

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n: . SEQUÊNCIAS NUMÉRICAS SÉRIES & EDO - 207.2.. :::: ::::::::::::::::::::::::::::::::::::::: TERMO GERAL & CLASSIFICAÇÃO. Em cada caso abaixo, ecotre os quatro rimeiros termos da sequêcia: (a) a = 2 (b)

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

1 a Lista de PE Solução

1 a Lista de PE Solução Uiversidade de Brasília Departameto de Estatística 1 a Lista de PE Solução 1. a) Qualitativa omial. b) Quatitativa discreta. c) Quatitativa discreta. d) Quatitativa cotíua. e) Quatitativa cotíua. f) Qualitativa

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 09 Estimação de arâmetros oulacioais 9.. Itrodução Aqui estudaremos o roblema de avaliar certas características dos elemetos da oulação (arâmetros) com base em oerações com os dados de uma amostra

Leia mais

Preferência Revelada

Preferência Revelada Preferêcia Revelada A teoria da escolha a artir das referêcias do cosumidor tem uma característica iteressate que é sua subjetividade. Dessa maeira, ão é algo observável. No etato, a escolha, em si, é

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER-PRO 277/97 Procedimento Página 1 de 8

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER-PRO 277/97 Procedimento Página 1 de 8 Norma Rodoviária DNER-PRO 77/97 Procedimeto Págia de 8 RESUMO Este documeto estabelece o úmero de amostras a serem utilizadas o cotrole estatístico, com base em riscos refixados, em obras e serviços rodoviários.

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

Matemática. Binômio de Newton. Professor Dudan.

Matemática. Binômio de Newton. Professor Dudan. Matemática Biômio de Newto Professor Duda www.acasadococurseiro.com.br Matemática BINÔMIO DE NEWTON Defiição O biômio de Newto é uma expressão que permite calcular o desevolvimeto de (a + b), sedo a +

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

Universidade Nova de Lisboa Faculdade de Economia. Somatórios. Análise de Dados e Probabilidade

Universidade Nova de Lisboa Faculdade de Economia. Somatórios. Análise de Dados e Probabilidade Uiversidade Nova de Lisboa Faculdade de Ecoomia Aálise de Dados e Probabilidade Aálise de Dados e Probabilidade 1. Os somatórios são uma forma de represetar qualquer soma, quer o úmero de parcelas seja

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Teoria Microeconômica Avançada

Teoria Microeconômica Avançada Teoria Microecoômica Avaçada Prof. Maurício Bugari Eco/UB 05-II Sialização: Akerlof Baseado em: Akerlof, G. (970). The market for "lemos": Quality ucertaity ad the market mechaism, Quarterly Joural of

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

Taxas e Índices. Ana Maria Lima de Farias Dirce Uesu Pesco

Taxas e Índices. Ana Maria Lima de Farias Dirce Uesu Pesco Taxas e Ídices Aa Maria Lima de Farias Dirce Uesu esco Itrodução Nesse texto apresetaremos coceitos básicos sobre ídices e taxas. Embora existam aplicações em diversos cotextos, essas otas utilizaremos

Leia mais

Economia da Informação e dos Incentivos Aplicada à Economia do Setor Público Aula 7 7. Sinalização: Akerlof

Economia da Informação e dos Incentivos Aplicada à Economia do Setor Público Aula 7 7. Sinalização: Akerlof Baseado em: Ecoomia da Iformação e dos Icetivos Alicada à Ecoomia do Setor Público 7. Sialização: Akerlof Akerlof, G. (970). The market for "lemos": Quality ucertaity ad the market mechaism, Quarterly

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

ESTATÍSTICA DESCRITIVA

ESTATÍSTICA DESCRITIVA Coceitos Básicos Poulação ou Uiverso Estatístico: coj. de elemetos sobre o qual icide o estudo estatístico; Característica Estatística ou Atributo: a característica que se observa os elemetos da oulação;

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferetes Para Números Complexos Capítulo I Cometário Iicial O artigo que aqui apresetamos ão tem como objetivo itroduzir ao leitor o assuto

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

(aulas de 14/11/2014 e 18/11/2014) (Observação: esta aula será complementada e ilustrada no quadro de aula)

(aulas de 14/11/2014 e 18/11/2014) (Observação: esta aula será complementada e ilustrada no quadro de aula) Uiversidade do Estado do Rio de Jaeiro UERJ Istituto de atemática e Estatística Deartameto de Estatística Discilia: Processos Estocásticos I Professor: arcelo Rubes (aulas de 4//24 e 8//24) (Observação:

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

Técnicas de contagem 1 Introdução. 2 Sequências

Técnicas de contagem 1 Introdução. 2 Sequências Istituto Suerior de Egeharia de Lisboa 1 Itrodução Muitos roblemas em Probabilidades e Estatística cosistem em estimar a icerteza associada a um eveto ou acotecimeto, o que imlica frequetemete determiar

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x Matemática aula COMENTÁRIOS ATIVIDADES PARA SALA. Pelo algoritmo da divisão, temos: I. q + r II. + ( + 3) q + r + q+ r+ 3q + + 3q q 7 5. N 5. 8 x N 5. 3x Número de divisores ( + )(3x + ) 3x + 7 x um úmero

Leia mais

LENTES. Refração em uma superfície esférica

LENTES. Refração em uma superfície esférica LENTES efração em uma suerfície esférica coveção de siais aroximação araxial equação do diotro simles Letes tios de letes, roriedades, coveção de siais, aroximação das letes fias costrução da imagem or

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

Sistemas de Filas Simples

Sistemas de Filas Simples Sistemas de Filas Simles Teoria de Filas Processo de chegada: se os usuários de uma fila chegam os istates t, t, t 3,..., t, as variáveis aleatórias τ t - t - são chamadas de itervalos etre chegadas. As

Leia mais

Segunda aula de fenômenos de transporte para engenharia civil. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti

Segunda aula de fenômenos de transporte para engenharia civil. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti Segunda aula de fenômenos de transorte ara engenharia civil Estática dos Fluidos caítulo 2 do livro do rofessor Franco Brunetti NESTA BIBLIOGRAFIA ESTUDAMOS FLUIDO ESTÁTICO E EM MOVIMENTO. BIBLIOGRAFIA

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares..A Dê exemlo de uma sequêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada e decrescete

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS Rafael Afoso Barbosa Bolsista do programa PETMAT - Faculdade de Matemática - Uiversidade Federal de Uberlâdia Atoio Carlos Nogueira Professor Doutor da Faculdade

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico dessa

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

pertencente a um plano e um vetor n ( a, do plano [obviamente que P é ortogonal [normal] a qualquer vetor pertencente ao plano.

pertencente a um plano e um vetor n ( a, do plano [obviamente que P é ortogonal [normal] a qualquer vetor pertencente ao plano. ESTUDO DO PLNO NO ESPÇO R 3 euação de um lao [o R 3 ] ode ser escrita de várias formas, sedo ue cada uma delas tem suas vatages uato à sua escolha e alicação. São elas: Euação Geral do Plao Euação Segmetária

Leia mais

ANÁLISE MULTIVARIADA DE DADOS: ESTUDOS PRELIMINARES À ANÁLISE FATORIAL CONFIRMATÓRIA (AFC)

ANÁLISE MULTIVARIADA DE DADOS: ESTUDOS PRELIMINARES À ANÁLISE FATORIAL CONFIRMATÓRIA (AFC) ANÁLISE MULTIVARIADA DE DADOS: ESTUDOS PRELIMINARES À ANÁLISE FATORIAL CONFIRMATÓRIA (AFC Débora Ferada Satos Datas (; Mylea Baia de Sousa (; Gilberto da Silva Matos (3 ( / ( Uiversidade Federal de Camia

Leia mais

Apresentação do Cálculo. Apresentação do Cálculo

Apresentação do Cálculo. Apresentação do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Apresetação do Cálculo

Leia mais

FILAS PARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING PROBABILÍSTICO

FILAS PARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING PROBABILÍSTICO CAÍTULO FILAS ARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING ROBABILÍSTICO Nesse capítulo mostraremos a ovidade desse trabalho que é a obteção das equações de balaço de um sistema de filas paralelas

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos.

Leia mais

Quantificando os Fenômenos Biológicos

Quantificando os Fenômenos Biológicos 1 ECOSSISTEMA Os ecossistemas estão costituídos por comuidades. A comuidade é uma uidade ecológica de visualização meos clara a atureza que outros coceitos como o de idivíduo ou mesmo o de população, que

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte II). Atividades V Profa. Dra. Letícia Maria Bolzai Poehls 8// Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação em

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados Escola SESI de Aápolis - Judiaí Aluo (a): Disciplia: MATEMÁTICA Turma: 3º Ao Professor (a) : CÉSAR LOPES DE ASSIS Data: INTRODUÇÃO A ESTATÍSTICA A Estatística é o ramo da Matemática que coleta, descreve,

Leia mais

Como se decidir entre modelos

Como se decidir entre modelos Como se decidir etre modelos Juliaa M. Berbert Quado uma curva é lei de potecia? O procedimeto amplamete usado para testar movimetação biológica a fim de ecotrar padrões de busca como Voos de Levy tem

Leia mais

Atividades Série Ouro 08) CORRETO. S c. Assim: 07. c Sejam x r, x e x + r os três números em progressão aritmética.

Atividades Série Ouro 08) CORRETO. S c. Assim: 07. c Sejam x r, x e x + r os três números em progressão aritmética. Atividades Série Ouro Resoluções Matemática 8A. + 7 + + 7 ( + 7) ( + ) + + 9 + 9 omo a igualdade obtida é falsa, os úmeros, + 7 e + ão odem estar, essa ordem, em rogressão geométrica.. d Os deósitos mesais

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Desenvolvimento Multinomial. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Desenvolvimento Multinomial. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Desevolvimeto Multiomial Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto 1 Desevolvimeto

Leia mais

MATEMÁTICA MÓDULO 4 PROGRESSÕES 1. SEQUÊNCIAS 2. PROGRESSÃO ARITMÉTICA (PA) 2.1. DEFINIÇÃO

MATEMÁTICA MÓDULO 4 PROGRESSÕES 1. SEQUÊNCIAS 2. PROGRESSÃO ARITMÉTICA (PA) 2.1. DEFINIÇÃO PROGRESSÕES. SEQUÊNCIAS Ates de começarmos o estudo das progressões, veremos uma defiição um pouco mais geral: estudaremos o que é uma sequêcia. Ituitivamete, uma sequêcia é uma lista de elemetos que estão

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA Hewlett-Packard INTRODUÇÃO À MATEMÁTICA FINANCEIRA Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 206 Sumário Matemática Financeira... REFLITA... Porcentagem... Cálculos com orcentagem...

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Binômio de Newton e Triangulo de Pascal. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Binômio de Newton e Triangulo de Pascal. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Biômio de Newto e Triagulo de Pascal Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto Itrodução

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20 Ídice Sucessão de úmeros reais. Represetação gráfica. Sucessões defiidas por recorrêcia Itrodução 8 Teoria. Itrodução ao estudo das sucessões 0 Teoria. Defiição de sucessão de úmeros reais Teoria 3. Defiição

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Grupo I. Qual é a probabilidade de o João acertar sempre no alvo, nas quatro vezes em que tem de atirar?

Grupo I. Qual é a probabilidade de o João acertar sempre no alvo, nas quatro vezes em que tem de atirar? Exames Nacioais EXME NCIONL DO ENSINO SECUNDÁRIO Decreto-Lei. /00, de 6 de Março Prova Escrita de Matemática. ao de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 miutos. Tolerâcia: 0 miutos 008 VERSÃO

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ao Turma B - C.C.H. de Ciêcias e Tecologias - Teste de Avaliação de Matemática A V1 Duração: 90 mi 09 Março 2010 Prof.: GRUPO I Os cico ites deste grupo são de escolha

Leia mais