Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Tamanho: px
Começar a partir da página:

Download "Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html"

Transcrição

1 Problemas de O-mização Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

2 Roteiro para resolver problemas de o-mização 1. Compreenda o problema a) O que é desconhecido? b) Quais as quantidades dadas? c) Quais as condições dadas? 2. Faça um diagrama ou desenho ilustrativo 3. Introduza uma notação a) Atribua símbolos para a quantidade a ser otimizada (maimizada ou minimizada); b) Atribua símbolos para outras quantidades desconhecidas; c) Coloque os símbolos no diagrama. 4. Epresse a quantidade a ser otimizada (Q) em função dos outros símbolos. 5. Se Q estiver epresso em função de mais de uma variável, encontre no problema relações entre as variáveis e elimine todas menos uma da epressão de Q. 6. Encontre os valores máimo ou mínimo global (absoluto) da função.

3 Eemplo 1. Um fazendeiro tem m de cerca e quer cercar um campo retangular que está na margem de um rio reto. Ele não precisa de cerca ao longo do rio. Quais são as dimensões do campo que tem maior área? Compreendendo o problema: a) O que é desconhecido? dimensões do retângulo área b) Quais as quantidades dadas? cerca: m c) Quais as condições dadas? campo retangular sem cerca em um dos lados (rio reto) Diagrama:

4 Eemplo 1. Um fazendeiro tem m de cerca e quer cercar um campo retangular que está na margem de um rio reto. Ele não precisa de cerca ao longo do rio. Quais são as dimensões do campo que tem maior área? Notação: y altura do retângulo A y comprimento do retângulo A área do retângulo Epresse a quantidade a ser otimizada em função dos outros símbolos: A(,y) = y Encontre no problema relações entre as variáveis e elimine todas menos uma da epressão. + + y = 2 + y = 1200

5 Eemplo 1. Um fazendeiro tem m de cerca e quer cercar um campo retangular que está na margem de um rio reto. Ele não precisa de cerca ao longo do rio. Quais são as dimensões do campo que tem maior área? A(,y) = y 2 + y = 1200 y = y A A(,y) = (1200 2) A() = Domínio de A? A() ( ) 0 Como 0, Portanto, o domínio de A() é o intervalo fechado [0, 600]

6 Eemplo 1. Um fazendeiro tem m de cerca e quer cercar um campo retangular que está na margem de um rio reto. Ele não precisa de cerca ao longo do rio. Quais são as dimensões do campo que tem maior área? Encontre os valores máimo ou mínimo global (absoluto) da função. A() = , y A A () = Pontos críticos:, A () =0 = 300 A(300) = 2 (300) = Etremidades do intervalo: A(0) = 0 A(600) = 0 Logo, a área máima é A(300) = m 2.

7 Eemplo 2. Uma lata cilíndrica é feita para receber 1 litro de óleo. Encontre as dimensões que minimizarão o custo do metal para produzir a lata. Compreendendo o problema: Diagrama: a) O que é desconhecido? área da lata b) Quais as quantidades dadas? Volume: 1 litro c) Quais as condições dadas? Lata cilíndrica

8 Eemplo 2. Uma lata cilíndrica é feita para receber 1 litro de óleo. Encontre as dimensões que minimizarão o custo do metal para produzir a lata. Notação: r raio do cilindro h altura do cilindro A área do cilindro Epresse a quantidade a ser otimizada em função dos outros símbolos: A(r, h) = 2(πr 2 ) + (2πr)h Encontre no problema relações entre as variáveis e elimine todas menos uma da epressão. V = πr 2 h = 1000 ml

9 Eemplo 2. Uma lata cilíndrica é feita para receber 1 litro de óleo. Encontre as dimensões que minimizarão o custo do metal para produzir a lata. A(r, h) = 2(πr 2 ) + (2πr)h πr 2 h = 1000 ml h = 1000 πr A(r) =2πr 2 +2πr πr 2 Domínio de A? r > 0 =2πr r

10 Eemplo 2. Uma lata cilíndrica é feita para receber 1 litro de óleo. Encontre as dimensões que minimizarão o custo do metal para produzir a lata. Encontre os valores máimo ou mínimo global (absoluto) da função A(r) =2πr 2 + r Pontos críticos:, r > 0 A (r) =4πr 2000 = 4πr r 2 r 2 A (r) = 4πr r 2 =0 r = 3 500/π Quando r< 3 500/π, A (r) < 0 e quando r> 3 500/π, A (r) > 0 Pelo Teste da Primeira Derivada, r = 3 500/π é ponto de mínimo local. Além disso, como a função vinha sempre decrescendo a esquerda deste mínimo, e sempre crescendo à direita, este mínimo é global (absoluto).

11 Eemplo 2. Uma lata cilíndrica é feita para receber 1 litro de óleo. Encontre as dimensões que minimizarão o custo do metal para produzir a lata. Encontre os valores máimo ou mínimo global (absoluto) da função. Quando r = 3 500/π : h = 1000 πr 2 = 1000 π(500/π) 2 3

12 Teste da Primeira Derivada para Valores Etremos Absolutos: Suponha que c seja um número crítico de uma função contínua f definida em um certo intervalo. a) Se f () > 0 para todo < c e f () < 0 para todo > c, então f(c) é o valor máimo absoluto (global) de f. b) Se f () < 0 para todo < c e f () > 0 para todo > c, então f(c) é o valor mínimo absoluto (global) de f.

13 Eemplo 3. Encontre o ponto sobre a parábola y 2 =2 mais próimo de (1, 4). Epresse a quantidade a ser otimizada em função dos outros símbolos: Encontre no problema relações entre as variáveis e elimine todas menos uma da epressão. y 2 =2

14 Eemplo 3. Encontre o ponto sobre a parábola y 2 =2 mais próimo de (1, 4). Encontre os valores máimo ou mínimo global (absoluto) da função. y 3 8=0 y =2 Aplicando o Teste da Primeira Derivada para Valores Etremos Absolutos: f (y) < 0 para todo y < 2 e f (y) > 0 para todo y > 2, logo y = 2 é mínimo global (absoluto).

15 Eemplo 4. Um homem lança seu bote em um ponto A na margem de um rio reto, com largura de 3 km, e deseja atingir tão rápido quanto possível um ponto B na outra margem, 8 km rio abaio. Ele pode dirigir seu barco diretamente para o ponto C e então seguir andando para B, ou remar por algum ponto D entre C e B e então andar até B. Se ele pode remar a 6 km/h e andar a 8 km/h, onde ele deveria aportar para atingir B o mais rápido possível? (Estamos supondo que a velocidade da água é desprezível comparada com a velocidade na qual o homem rema.) Seja = CD Queremos descobrir quem é o que minimiza o tempo t para atingir B. Precisamos percorrer duas distâncias: AD e DB Lembrando que o tempo é dado por Δs/v, o tempo total é dado por: t = AD 6 + DB 8

16 Eemplo 4. Um homem lança seu bote em um ponto A na margem de um rio reto, com largura de 3 km, e deseja atingir tão rápido quanto possível um ponto B na outra margem, 8 km rio abaio. Ele pode dirigir seu barco diretamente para o ponto C e então seguir andando para B, ou remar por algum ponto D entre C e B e então andar até B. Se ele pode remar a 6 km/h e andar a 8 km/h, onde ele deveria aportar para atingir B o mais rápido possível? (Estamos supondo que a velocidade da água é desprezível comparada com a velocidade na qual o homem rema.) Se = CD : t = AD 6 + DB 8 AD = 2 +9 DB =8 logo, t() = Domínio? [0, 8]

17 Eemplo 4. Um homem lança seu bote em um ponto A na margem de um rio reto, com largura de 3 km, e deseja atingir tão rápido quanto possível um ponto B na outra margem, 8 km rio abaio. Ele pode dirigir seu barco diretamente para o ponto C e então seguir andando para B, ou remar por algum ponto D entre C e B e então andar até B. Se ele pode remar a 6 km/h e andar a 8 km/h, onde ele deveria aportar para atingir B o mais rápido possível? (Estamos supondo que a velocidade da água é desprezível comparada com a velocidade na qual o homem rema.) t() = Vamos encontrar o valor que minimiza o tempo, calculando pontos críticos e etremidades do intervalo., [0, 8] t () = = t () = = ( 2 + 9) = = 9( 2 + 9) 7 2 = 81 = 9 7

18 Eemplo 4. Um homem lança seu bote em um ponto A na margem de um rio reto, com largura de 3 km, e deseja atingir tão rápido quanto possível um ponto B na outra margem, 8 km rio abaio. Ele pode dirigir seu barco diretamente para o ponto C e então seguir andando para B, ou remar por algum ponto D entre C e B e então andar até B. Se ele pode remar a 6 km/h e andar a 8 km/h, onde ele deveria aportar para atingir B o mais rápido possível? (Estamos supondo que a velocidade da água é desprezível comparada com a velocidade na qual o homem rema.) t() = Etremidades: + 8 8, [0, 8] t(0) = 3 2 =1, 5 73 t(8) = 1, 42 6 t( 9 ) 1, Logo, o homem deve aportar no ponto ao sul de C. 7

19 Eemplo 5. Encontre a área do maior retângulo que pode ser inscrito em um semicírculo de raio r., y 0 Retângulo inscrito em um semicírculo: 2 vértices no semicírculo, 2 vértices no eio. Área do retângulo? A(,y) = 2y, y 0 Domínio? A() =2 r 2 2

20 Eemplo 5. Encontre a área do maior retângulo que pode ser inscrito em um semicírculo de raio r. Achando que maimiza A() =2 r 2 2, : Calculando pontos etremos: = 0 r =0 A( r )=2 r r 2 r =2 r 2 Etremidades do intervalo: r 2 Logo, a área máima é atingida quando e vale r 2.

21 Eemplo 5. Encontre a área do maior retângulo que pode ser inscrito em um semicírculo de raio r. Achando que maimiza A() =2 r 2 2, : Calculando pontos etremos: = 0 r =0 A( r )=2 r r 2 r =2 r 2 Etremidades do intervalo: r 2 Logo, a área máima é atingida quando e vale r 2.

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Problemas de Máximo e Mínimos em Intervalos quaisquer

Problemas de Máximo e Mínimos em Intervalos quaisquer Capítulo 18 Problemas de Máimo e Mínimos em Intervalos quaisquer 18.1 Introdução No Cap. 15 estudamos o problema de determinar máimos e mínimos globais para funções contínuas definidas em intervalos fechados.

Leia mais

Máximos e Mínimos em Intervalos Fechados

Máximos e Mínimos em Intervalos Fechados Capítulo 5 Máimos e Mínimos em Intervalos Fechados 5. Motivação Na Seção.., estudamos o problema da caia, onde queríamos montar uma caia recortando retângulos nos quatro cantos de uma lâmina de plástico

Leia mais

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula A UA UL LA Máimos e mínimos Introdução Problemas de máimos e mínimos estão presentes em quase todas as atividades do mundo moderno. Por eemplo, você pode imaginar como um carteiro distribui a correspondência?

Leia mais

11. Problemas de Otimização

11. Problemas de Otimização 11. Problemas de Otimização Nesta seção veremos vários eemplos de problemas cujas soluções eigem a determinação de valores máimos e/ou mínimos absolutos das funções que os representam. São chamados de

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente

Leia mais

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA Prof. Francisco Leal Moreira / SUMÁRIO. FUNÇÕES DE DUAS VARIÁVEIS.. FUNÇÕES HOMOGÊNEAS.. CURVAS

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina0.com.br Funções Reais CÁLCULO VOLUME ZERO - Neste capítulo, estudaremos as protagonistas do longa metragem

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013)

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) I N T E G R A L ac C Á L C U L O Prof. ADRIANO CATTAI 03 Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) NOME: DATA: / / Não há ciência que fale das harmonias da natureza

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM

Leia mais

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1 APOSTILA 015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 015 1 Sumário 1.Conjuntos...5 1.1 Representação de conjuntos...5 1. Operações com conjuntos...6 1. Propriedades

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

RESISTÊNCIA DOS MATERIAIS APOSTILA 01

RESISTÊNCIA DOS MATERIAIS APOSTILA 01 Engenaria da Computação º / 5 Semestre RESSTÊNC DOS TERS POSTL 0 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CPOS, SP 5 CRCTERÍSTCS GEOÉTRCS DE FGURS PLNS O dimensionamento

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

UM ESTUDO DAS FUNÇÕES DE 1º E 2º GRAUS APLICADAS À ECONOMIA

UM ESTUDO DAS FUNÇÕES DE 1º E 2º GRAUS APLICADAS À ECONOMIA ISSN 794 UM ESTUDO DAS FUNÇÕES DE º E º GRAUS APLICADAS À ECONOMIA Valeria Ap. Martins Ferreira, Viviane Carla Fortulan Mestre em Ciências pela Universidade de São Paulo- USP. Professora da Faculdade de

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então

Leia mais

LISTÃO UNIDADE IV. Mensagem:

LISTÃO UNIDADE IV. Mensagem: LISTÃO UNIDADE IV Mensagem: A Matemática é uma ciência poderosa e bela; problemiza ao mesmo tempo a harmonia divina do universo e a grandeza do espírito humano. (F. Gomes Teieira) 01. Efetue as operações:

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

Capítulo 4. 4.1.1 O problema da caixa

Capítulo 4. 4.1.1 O problema da caixa Capítulo Funções e Gráficos. Motivação Vimos no capítulo anterior que problemas onde é necessário a determinação dos valores máimos e/ou mínimos de uma função aparecem comumente no nosso dia a dia e que,

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

Experimento. Guia do professor. Caixa de papel. Ministério da Educação. Ministério da Ciência e Tecnologia. Secretaria de Educação a Distância

Experimento. Guia do professor. Caixa de papel. Ministério da Educação. Ministério da Ciência e Tecnologia. Secretaria de Educação a Distância números e funções geometria e medidas Guia do professor Eperimento Caia de papel Objetivo da unidade Discutir com o aluno o conceito de volume aliado ao comportamento de funções. licença Esta obrá está

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais PARTE 3 FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS 3. Funções Reais de Várias Variáveis Reais Vamos agora tratar do segundo caso particular de funções vetoriais de várias variáveis reais, F : Dom(F) R n R

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 1) Seja f = 36 9x 2 4y 2. Então : (a) Calcule f, f(2, 0) e

Leia mais

Guião Revisões: Funções ESA-IPVC. Funções

Guião Revisões: Funções ESA-IPVC. Funções GUIÃO REVISÕES Funções Conceito de função Quatro amigos decidiram apostar no totoloto, tendo cada um deles preenchido o seu boletim da seguinte forma: Boletim do Hugo Boletim do João Jogos Apostas Jogos

Leia mais

MATERIAL DIDÁTICO DE CÁLCULO I

MATERIAL DIDÁTICO DE CÁLCULO I MATERIAL DIDÁTICO DE CÁLCULO I Acadêmico(a): Turma: 9/ Capítulo : Funções Cálculo I. ANÁLISE GRÁFICA DAS FUNÇÕES.. EXERCÍCIOS Abaio estão representadas graficamente algumas funções. Analise cada uma dessas

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA FUNÇÕES DE VÁRIAS VARIÁVEIS - DIFERENCIAÇÃO Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Funções de Várias Variáveis - Diferenciabilidade 2 1.1 Noções Topológicas no R n.............................

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

Capítulo V: Derivação 137

Capítulo V: Derivação 137 Capítulo V: Derivação 37 Esboço de gráicos: Para esboçar o gráico de uma unção deve-se sempre que possível seguir as seguintes etapas: Indicar o domínio; Determinar os zeros (caso eistam); Estudar a paridade;

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Funções Problemas Gerais Prof ºFernandinho Questões: 01.(Unesp) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fia de 0 C. Baseado nos

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

(Exames Nacionais 2000)

(Exames Nacionais 2000) (Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

A Ciência da Mecânica. Olá, estamos de volta com mais uma coluna sobre Ciência. Mês passado fiz a seguinte pergunta: Como um avião se sustenta no ar?

A Ciência da Mecânica. Olá, estamos de volta com mais uma coluna sobre Ciência. Mês passado fiz a seguinte pergunta: Como um avião se sustenta no ar? A Ciência da Mecânica Washington Braga, Professor Associado 13/ Ano II Departamento de Engenharia Mecânica - PUC - Rio Título: Avião Voa? Olá, estamos de volta com mais uma coluna sobre Ciência. Mês passado

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL FERREIRA, Eliézer Pires Universidade Estadual de Goiás - UnU Iporá eliezer_3d@hotmail.com SOUZA, Uender Barbosa de Universidade Estadual

Leia mais

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Eemplos de Itens TEMA III NÚMEROS E OPERAÇÕES/ÁLGEBRA E FUNÇÕES Nesse tema abordam-se essencialmente

Leia mais

Quinta lista de exercícios.

Quinta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quinta lista de exercícios. Triângulos retângulos. Polígonos regulares. Áreas de superfícies planas. 1. Qual deve ser o comprimento de uma escada

Leia mais

D2 Reconhecer aplicações das relações métricas do triângulo retângulo em um problema que envolva figuras planas ou espaciais.

D2 Reconhecer aplicações das relações métricas do triângulo retângulo em um problema que envolva figuras planas ou espaciais. Duas pessoas, partindo de um mesmo local, caminham em direções ortogonais. Uma pessoa caminhou 12 metros para o sul, a outra, 5 metros para o leste. Qual a distância que separa essas duas pessoas? (A)

Leia mais

Pré-Seleção OBM Nível 3

Pré-Seleção OBM Nível 3 Aluno (a) Pré-Seleção OBM Nível 3 Questão 1. Hoje é sábado. Que dia da semana será daqui a 99 dias? a) segunda-feira b) sábado c) domingo d) sexta-feira e) quinta feira Uma semana tem 7 dias. Assim, se

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : 1 ESFERAS Consideramos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r o conjunto

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO Os livros de cálculo costumam conter um capítulo ou um apêndice dedicado a eplicações de fatos básicos da matemática e que, em geral, são abordados

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

1.5 O oscilador harmónico unidimensional

1.5 O oscilador harmónico unidimensional 1.5 O oscilador harmónico unidimensional A energia potencial do oscilador harmónico é da forma U = 2 2, (1.29) onde é a constante de elasticidade e a deformação da mola. Substituindo (1.29) em (1.24) obtemos

Leia mais

SuperPro copyright 1994-2011 Colibri Informática Ltda.

SuperPro copyright 1994-2011 Colibri Informática Ltda. mesmo percurso. 1. (Ufpe 2005) Um submarino em combate lança um torpedo na direção de um navio ancorado. No instante do lançamento o submarino se movia com velocidade v = 14 m/s. O torpedo é lançado com

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDAMENTAL 6- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 6 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais