MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a +

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a +"

Transcrição

1 ITA_Modulos 3a6 prof 03/03/0 4:9 Página I

2

3 Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 3 Fatoração. Prove que se a e b são dois números reais então a + b ab a, b (a b) (a b) 0 a ab + b 0 a + b ab 4. Um possível valor de a +, com a + *, é: a a) 0,5 b) 0,5 c),75 d) e) 4,5 a * + a a 0 a a + a, podendo ser 4,5 Obs.: a + ou a + a a, para qualquer a *.. Prove que se {a; b} * então a + b > ab º Caso: ab > 0 a + b ab a + b > ab > ab > ab º Caso: ab < 0 ab < 0 a + b > ab a + b > 0 5. Mostre que a 4 + 6a 3 + a + 6a, com a inteiro, é múltiplo de Se a, b, c e d são números reais, então a epressão a 4 + b 4 + c 4 + d 4 é sempre: a) equivalente a (a + b + c + d) 4 b) igual a 3abcd c) menor que 5abcd d) maior ou igual a 4 abcd e) um número primo a 4 + b 4 a b c 4 + d 4 c d a 4 + b 4 + c 4 + d 4 (a b + c d ) (ab. cd) = 4abcd Resposta: D a 4 + 6a 3 + a + 6a = a[a 3 + 6a + a + 6] = = a[a 3 + a + 5a + 5a + 6a + 6] = = a[a (a + ) + 5a(a + ) + 6(a + )] = a(a + )[a + 5a + 6] = = a(a + )[a + a + 3a + 6] = a(a + )[a(a + ) + 3(a + )] = = a(a + )(a + )(a + 3) Como a, a +, a + e a + 3 são números inteiros e consecutivos, um deles é múltiplo de, outro de 4 e um também é múltiplo de 3. Portanto, o produto é múltiplo de = 4.

4 MÓDULO 4 Fatoração. Os lados de um retângulo são números naturais tais que a soma do semiperímetro com a área é nume ricamente igual a 90. O perímetro desse retângulo é: a) b) 4 c) 36 d) 48 e) 60 semiperímetro = a + b Área = ab a + b + ab = 90 a + b + ab + = 9 (a + ). (b + ) = a = 0 e b = a = 6 e b = 3 7 a = e b = 6 9 a = 90 e b = 0 Como a 0 e b 0, tem-se a + b = 8 e o perímetro é 36. Resposta: C 3. Prove que se a + b + c = 0, então a 3 + b 3 + c 3 = 3abc. a + b + c = 0 a + b = c (a + b) 3 = c 3 a 3 + b 3 + 3ab(a + b) = c 3 a 3 + b 3 + 3ab ( c) = c 3 a 3 + b 3 + c 3 = 3abc 4. Resolver o sistema 3 y 3 = 98 { + y + y = 49 ( y)( + y + y ) = 98 ( y). 49 = 98 ( y) = y = + y + y = 49 + ( ) + ( ) = = 0 5 = 0 = 5 e y = 3 ou = 3 e y = 5 Resposta: V = {(5;3); ( 3; 5)}. Mostre que se a, b e c são três números inteiros ímpares, então o número N tal que N = a b a c + ac + b c ab bc é múltiplo de 8. N = a b a c + ac + b c ab bc = = a b a c + ac abc + abc + b c ab bc = = a (b c) ac(b c) ab(b c) + bc(b c) = = (b c)(a ac ab + bc) = (b c)(a c)(a b) Se a, b e c são ímpares, então (a b), (a c) e (b c) são pares e tais que a b = p, a c = q e b c = r, com p, q e r inteiros. Assim, N = p. q. r = 8pqr, com pqr, portanto, N é múltiplo de Resolva o sistema em 3. + y + z = y z = 4 ) + y + z = z = y Substituindo na seguinte equação, tem-se: y ( y) = 4 y 4 y y y = y 4y + 4 = 0 ( ) + (y ) = 0. ) Se e y são reais, então ( ) + (y ) = 0 = e y =. Substituindo na ª equação, resulta z =. Resposta: (; ; )

5 MÓDULO 5 Fatoração 3) a, (a + ) e (a + ) são três inteiros consecutivos e, por tan to, um deles é múltiplo de 3. 4) De () e (3) tem-se que a, (a + ). (a + ) é múltiplo de = 4. Fazendo a (a + ) (a + ) = 4p, p e, substituindo em (I), tem-se N = p.. (IME) Seja um número real ou compleo para o qual + =. O valor de 6 + é: 6 a) b) c) 3 d) 4 e) 5 + = + = = + = 3. Fatore as epressões: a) 4 y 4 4 y 4 = ( + y )( y ) = ( + y )( + y)( y) + 3 = ( ) 3 + ( ) 3 + 3( ) = ( ) = 6 + = 6 6 Resposta: B 3 = b) 5 y 5 Senhor professor, a intenção desse eercício é apresentar ao aluno esse tipo de fatoração. 5 y 5 = ( y)( y + y + y 3 + y 4 ) c) 5 + y 5 Resolução: Senhor professor, a intenção desse eercício é apresentar ao aluno esse tipo de fatoração. 5 + y 5 = ( + y)( 4 3 y + y y 3 + y 4 ). Mostre que, se a é um número inteiro par, então a a 3 a N = + + é um número inteiro. 8 4 a a a 3 a + 3a + a 3 ) N = + + = = a (a + 3a + ) a [a + a + a + ] = = = Fatore as epressões y y 5 = (3 y)( y + 36 y + 4y 3 + 6y 4 ) a [ a (a + ) + (a + )] a (a + ) (a + ) = = (I) 4 4 ) Se a é par, a + também é par e entre dois pares con se cutivos um deles é múltiplo de 4. 3

6 Fatoração. Se + = 3 qual o valor de = = 07 8 MÓDULO 6 = 3 + = 7 = = = (ITA) A epressão (3 + 5) 5 (3 5) 5 é igual a a) b) c) 75. d) e) ) = ) = ) = = = = Resposta: B. Desenvolva a epressão ( + y) 5. ( + y) = + y + y ( + y) 3 = y + 3y + y 3 ( + y) 5 = ( + y + y )( y + 3y + y 3 ) = = y y + 0 y 3 + 5y 4 + y 5 4. Resolva a equação ( ) 3 + ( 4) 3 + (6 ) 3 = 0 No eercício 3 da aula 4 demonstramos que Se a + b + c = 0, então a 3 + b 3 + c 3 = 3abc. Como ( ) + ( 4) + ( 6 ) = 0 temos que ( ) 3 + ( 4) 3 + (6 ) 3 = 3. ( ). ( 4). (6 ) = 0 ( ) = 0, ( 4) = 0 ou (6 ) = 0 =, = 4 ou = 3 4

7 eercícios-tarefa MÓDULO 3. Se a, b, c, d são números reais positivos tais que a.b.c.d = então, (ac bd) + (bc + ad) pode ser: a),7 b),3 c) 3,4 d) 3,8 e) 4,9. Prove que km(k + m) + mn(m + n) + kn(k + n) 6kmn. k, m, n *. 3. Se = a b , b a b c b c c a c a com a, b, c * + ; então: a) 0 < < b) = c) < < d) = 5 e) 6. Desenvolva: a) ( + y)(y + z)( + z) b) ( + y + z) 3 3. Resolver o sistema 3 + y 3 = 9 y + y = 3 4. Dados dois números naturais não-nulos, determiná-los, sabendo-se que a soma do produto de um pelo outro com a soma dos dois números é igual a 4. MÓDULO 5. (UCMG) Simplifique (a + b + c) 3 (a + b c) 3 (b + c a) 3 (c + a b) 3. Fatore a epressão 3 5 a Sendo um número inteiro, o valor numérico da epressão é sempre: a) ímpar b) um quadrado perfeito c) múltiplo de 5 d) múltiplo de 4 e) um número ímpar MÓDULO 4. Fatore (b c) 3 + (c a) 3 + (a b) 3 resolução dos eercícios-tarefa MÓDULO 3 ) (ac bd) + (bc + ad) = = a c + b d + b c + a d = = (a + b )(c + d ) (ab). (cd) = 4abcd = 4 Resposta: E Obs.: Veja um eemplo, a =, b = 5, c = d = = = 4,9 ) k + m km nk + m n kmn k + n kn mk + mn kmn m + n mn km + kn kmn e = MÓDULO 6 ) O valor da epressão ( ). ( é: a) b) 3 c) 4 d) 5 e) 6. Para que valor de k a soma das raízes da equação ( k) 3 + ( 3k) 3 + (4k ) 3 = 0 é igual a 30? nk + m n + mk + mn + km + kn 6kmn km (k + m) + mn(m + n) + kn(k + n) 6kmn 3) a b b + a b c c + b c a a + c Resposta: E a b b c c a b a c b a c 4) = ( ) = = ( ) = = [ ( ) 5( ) + 6( )] = =. ( )( 5 + 6) =. ( ). ( ). ( 3) que 5

8 é o produto de quatro números inteiros e consecutivos. Desses, quatro números, um e múliplo de, outro é múltiplo de quatro e pelo menos um deles é múltiplo de 3, portanto o produto é múltiplo de = 4 Resposta: D MÓDULO 4 ) Se = b c y = c a + y + z = 0 z = a b 3 + y 3 + z 3 = 3yz (b c) 3 + (c a) 3 + (a b) 3 = 3(b c). (c a). (a b) ) a) ( + y)(y + z)( + z) = (y + z + y + yz).( + z) = = y + z + y + yz + yz + z + y z + yz = = y + z + y + y z + z + yz + yz b) ( + y + z) 3 = [( + y) + z] 3 = = ( + y) 3 + 3( + y) z + 3( + y)z + z 3 = = y + 3y + y z + 6yz + 3y z + + 3z + 3yz + z 3 = = 3 + y 3 + z y + 3y + 3 z + 3z + + 3y z + 3yz + 6yz 3) ) 3 + y 3 = 9 ( + y)( y + y ) = 9 ( + y). 3 = 9 + y = 7 y = 7 ) y + y = 3 (7 ) + (7 ) = = 0 = 3 y = 4 = 4 y = 3 V = {(3;4), (4;3)} 4). y + + y = 4 (y + ) + y = 4 (y + ) + (y + ) = 4 + (y + ). ( + ) =. 3 3 = e y = 0 3 = 0 e y = (y + ). ( + ) = = 4 e y = 0 43 = 0 e y = 4 pois,,y * Respostas: 0 e impossível MÓDULO 5 ) (a + b + c) 3 (a + b c) 3 (b + c a) 3 (c + a b) 3 = = (a + b + c) 3 (a + b c) (a b c) 3 (a b + c) 3 = = [(a + b) + c] 3 [(a + b) c] [(a b) c] 3 [(a b) + c] 3 = = (a + b) 3 + 3(a + b) c + 3(a + b)c + c 3 (a + b) 3 + 3(a + b) c 3(a + b)c +c 3 + (a b) 3 3(a b) c + 3(a b)c c 3 (a b) 3 3(a b) c 3(a b)c c 3 = = 6(a + b) c 6(a b) c = 6c[(a + b) (a b) ] = = 6c[a + ab + b a + ab b ] = = 6c. 4ab = 4abc ) 3 5 a 0 = () 5 (a ) 5 = = ( a )[() 4 + () 3 (a ) + () (a ) + + () (a ) 3 + (a ) 4 ] = = ( a )( a + 4 a 4 + a 6 + a 8 ) MÓDULO 6 ) ( ). ( = = ( ). (( 5 7 ) 4 + ( 5 7 ) 3. ( 5 ) + +( 5 7 ). ( 5 ) + ( 5 7 ). ( 5 ) 3 + ( 5 ) 4 ) = =( 5 7 ) 5 ( 5 ) 5 = 7 = 5 pois 5 y 5 = ( y)( y + y + y 3 + y 4 ) Resposta: D ) No eercício 3 da aula 4 demonstramos que Se a + b + c = 0, então a 3 + b 3 + c 3 = 3abc. Como ( k) + ( 3k) + ( 4k ) = 0 temos que ( k) 3 + ( 3k) 3 + (4k ) 3 = = 3. ( k). ( 3k). (4k ) = 0 ( k) = 0, ( 3k) = 0 ou (4k ) = 0 = k, = 3k ou = k A soma das raízes é k + 3k + k = 6k = 30 k = 5. Resposta: 5 6

MONÔMIOS E POLINÔMIOS

MONÔMIOS E POLINÔMIOS MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma

Leia mais

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p = x - 1, pode-se afirmar: (01) m = n. p (02) m + n

Leia mais

Aula 05 - Erivaldo MATEMÁTICA BÁSICA

Aula 05 - Erivaldo MATEMÁTICA BÁSICA Aula 05 - Erivaldo MATEMÁTICA BÁSICA Principais produtos notáveis I- (a + b).(a b) = a 2 a.b + b.a b 2 I- (a + b).(a b) = a 2 b 2 O Produto de uma soma por uma diferença resulta no quadrado do primeiro

Leia mais

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino Atividade extra aula 26 e 29 (módulo 01) 8º ano Prof.ª Adriana/Madalena (matemática 02) Objetivo: promover uma maior compreensão de algumas propriedades de quadriláteros e interpretação de enunciados mais

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

CAPÍTULO I Matemática Básica Expressões Numéricas

CAPÍTULO I Matemática Básica Expressões Numéricas Prof. Cícero José Anhanguera Uniban 01 1 CAPÍTULO I Matemática Básica Epressões Numéricas 1) Calcule o valor das epressões abaio: a) 0 [(8 ) + 4] 1 b) 1 [90 (8 + 50) 1] c) 10 + [ 8 ( 1 + )] d) [8 + ( 6

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Prof. Ulisses Lima Parente Uma identidade algébrica é uma equação em que os dois membros

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Uma identidade algébrica

Leia mais

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4}

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4} AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Equações do º grau ) Verifique se o número 9 é raiz da equação - 8 0. Se 9 for raiz, terá de satisfazer a equação: 9 -.9 8 8-99 8 0 Então 9 é raiz da equação

Leia mais

Identidades algébricas

Identidades algébricas LIÇÃO 5 Identidades algébricas Dos três tipos básicos de transformações algébricas: decomposições, reduções e fatorações, os dois primeiros já foram estudados na lição anterior. Antes de passarmos ao terceiro

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis.

Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula Produtos Notáveis Vários problemas de Álgebra para alunos do Ensino Fundamental utilizam Produtos Notáveis, que são identidades

Leia mais

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS 2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas.

Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas. FRAÇÕES ALGÉBRICAS DEFINIÇÃO: Uma fração é algébrica se seu numerador e seu denominador forem epressões algébricas. a Como eemplos de tais frações podemos ter onde o numerador é a e o denominador é b 1

Leia mais

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis Á lgebra para intermedia rios Ma imos, mí nimos e outras ideias u teis 0) O que veremos na aula de hoje? Máimos e mínimos em funções do º grau Máimos e mínimos por trigonometria Máimos e mínimos por MA

Leia mais

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5 Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c

Leia mais

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS 1.2. ELEMENTOS DE ÁLGEBRA 1.2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Problemas e Soluções

Problemas e Soluções FAMAT em Revista Revista Científica Eletrônica da Faculdade de Matemática - FAMAT Universidade Federal de Uberlândia - UFU - MG Problemas e Soluções Número 0 - Abril de 008 www.famat.ufu.br Comitê Editorial

Leia mais

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2 Série Professor(a) Aluno(a) Rumo ao ITA Marcelo Mendes Sede Turma Turno Data N / / Ensino Pré-Universitário TC Matemática Revisão de Álgebra OSG.: 85/0 Exercícios de Fixação 0. Encontre os valores das

Leia mais

QUESTÃO 16 (SARESP-SP adaptado) Uma população de bactérias cresce com o decorrer do tempo, de acordo com a função:

QUESTÃO 16 (SARESP-SP adaptado) Uma população de bactérias cresce com o decorrer do tempo, de acordo com a função: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (SARESP-SP adaptado) Uma população de bactérias

Leia mais

2.2. Suponha que x=5. Determine: o perímetro do trapézio a medida da amplitude dos ângulos internos do trapézio.

2.2. Suponha que x=5. Determine: o perímetro do trapézio a medida da amplitude dos ângulos internos do trapézio. PAT MAT 007/008 MÓDULO - CÁLCULO ALGÉBRICO EXERCÍCIOS. Na figura está representada uma caia com a forma de um prisma recto e uma fita a envolvê-la. As dimensões da caia são: 5 5 4 (em decímetros). Calcule:..

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Etensivo V. 8 Eercícios ) 5 Sejam r, r e r 3 as raizes da equação 3 + 3 7 =. Logo r + r + r 3 = b a = ( ) = 5 ) Sejam r, r, r 3 e r as raizes da equação 3 5 3 + 8 = Logo r. r. r = c a = 3

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,

Leia mais

III-1 Comprimento de Arco

III-1 Comprimento de Arco Nesta aula vamos iniciar com o tratamento de integral que não calcula apenas área sob uma curva. Especificamente, o processo ainda é unidimensional, mas envolve conceitos de geometria (especificamente

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

Eles, possivelmente, servirão posteriormente de ideia para problemas mais difíceis.

Eles, possivelmente, servirão posteriormente de ideia para problemas mais difíceis. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof Marcelo Mendes Aula 2 Equações e Sistemas de Equações Neste2o textodeálgebra, veremosdiversosexemplosdeequaçõesesistemasdeequações em nível

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

b) ( ) () 0 3 6) Escreva na forma de radical: 8)Calcule o valor de: a) 64 d) 4 81 g) 8 b) 3 1 e) 5 32 h) c) 6 64 f) 3 64 i)( 32) 1 5

b) ( ) () 0 3 6) Escreva na forma de radical: 8)Calcule o valor de: a) 64 d) 4 81 g) 8 b) 3 1 e) 5 32 h) c) 6 64 f) 3 64 i)( 32) 1 5 Calcule o valor numérico das epressões: a 6 6 c 7 { ( } 8 6: : : : d e 8 Determine o valor da epressão: : ( 6 Ache o valor das epressões:,, a,,,9 :,8 :, Calcule o valor das epressões: ( ( ( ( ( ( a : 7

Leia mais

MATEMÁTICA II. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA II. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega 1º Bimestre PRODUTOS NOTÁVEIS 2 Do dicionário : Produto É o resultado de uma multiplicação; Notável Adjetivo digno de ser notado,

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo

Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo 1) Resolva as equações a seguir: a)18x - 43 = 65 b) 23x - 16 = 14-17x c) 10y - 5 (1 + y) = 3 (2y - 2) 20 d) x(x + 4) + x(x + 2)

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

Exercícios de Matemática Produtos Notáveis Fatoração

Exercícios de Matemática Produtos Notáveis Fatoração Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =

Leia mais

2. Sendo f(x) = x 4 e g(x) = 4 x calcule:

2. Sendo f(x) = x 4 e g(x) = 4 x calcule: Geometria linear Dados dois pontos distintos e, o primeiro postulado de Euclides nos permite construir, com a régua, o segmento. Notação: Depois de construído o segmento, tomamos o seu comprimento como

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

7. Calcule o valore de x + y z sabendo que as

7. Calcule o valore de x + y z sabendo que as . Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual

Leia mais

Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a

Determinantes. det A 6 ( 4) a a a. a a a. det A a a a. a a a Determinantes 1 Introdução Até agora nós estudamos vários tipos de matrizes e suas mais diversas ordens Em especial, vimos a matriz quadrada, que tinha o mesmo número de linhas e colunas Toda matriz quadrada

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) Quantos inteiros positivos menores que 1000 têm a soma de seus algarismos igual a 7? PROBLEMA : Considere as seqüências de inteiros positivos tais que cada termo

Leia mais

GABARITO IME 2013 DISCURSIVAS

GABARITO IME 2013 DISCURSIVAS GABARITO IME 01 DISCURSIVAS PROVA DE MATEMÁTICA MATEMÁTICA 1 a QUESTÃO O polinômio P() = 5 4 + 10 0 + 81 4 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E? Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da

Leia mais

DATA: / 12 / 2014 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO SÉRIE: 8 ANO TURMA: NOME COMPLETO:

DATA: / 12 / 2014 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO SÉRIE: 8 ANO TURMA: NOME COMPLETO: DISCIPLINA: MATEMÁTICA PROF: GRAYSON,MÁRIO E MAURO DATA: / 12 / 2014 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO SÉRIE: 8 ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi planejada

Leia mais

( )( ) = =

( )( ) = = GABARITO IME MATEMÁTICA Questão Assinale a alternativa verdadeira: (A) 06 0 < 07 06

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB

Leia mais

Cálculo Combinatório

Cálculo Combinatório Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo

Leia mais

84 x a + b = 26. x + 2 x

84 x a + b = 26. x + 2 x Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo

Leia mais

Trabalho 1º Bimestre - 9ºano

Trabalho 1º Bimestre - 9ºano Matéria: Matemática Data de entrega: 23/03/2017 Valor: 10 Trabalho 1º Bimestre - 9ºano TEMA: Problemas envolvendo números inteiros Desenvolvimento e Descrição: 1. Trabalho Individual manuscrito em folha

Leia mais

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação 0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

GABARITO ITA PROVA 2016/2017 MATEMÁTICA

GABARITO ITA PROVA 2016/2017 MATEMÁTICA GABARITO ITA PROVA 06/07 MATEMÁTICA GABARITO ITA MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números compleos i: unidade imaginária i = det M: determinante da matriz M M : inversa

Leia mais

Olimpíada Pernambucana de Matemática Nível 2 (8 o e 9 o anos)

Olimpíada Pernambucana de Matemática Nível 2 (8 o e 9 o anos) Olimpíada Pernambucana de Matemática - 205 Nível 2 (8 o e 9 o anos). Quantos números com dois algarismos distintos são compostos? Resolução. Para fazer essa contagem utilizaremos o príncipio da inclusão-exclusão.

Leia mais

RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE):

RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE): RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 006 (PROVA VERDE): 1) Observe o sistema de equações lineares abaixo. x y 3 1 S 1: x 7y Sendo (x 1,y 1 ) solução de S 1, o resultado de (6 )x1 (1 3)y1 é igual a a)

Leia mais

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota:

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota: SALVADOR-BA Formando pessoas para transformar o mundo Tarefa: ª AVALIAÇÃO DE MATEMÁTICA UNIDADE I ALUNO(A): a Série do Ensino Médio Turma: Nº: Professora: OCTAMAR Nº de questões: 0 Data: / / Nota: QUESTÃO

Leia mais

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS MATEMÁTICA Professor Haroldo Filho de maio, 016 EQUAÇÕES IRRACIONAIS Na resolução das equações irracionais, onde a incógnita se encontra sob um radical de índice dois, seremos obrigados a elevar ao quadrado

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores. COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema.

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema. EXERÍIO OMPLEMENTRES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉDIO - ª ETP ============================================================================================== 01- ssunto: Função Logarítmica Determine

Leia mais

da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10%

da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10% 0 Três pessoas resolveram percorrer um trajeto da seguinte maneira: a primeira andaria a metade do percurso mais km, a segunda a metade do que falta mais km e finalmente a terceira que andaria a metade

Leia mais

Números Complexos - Parte I. Interpretação Geométrica dos Números Complexos. z = a+bi

Números Complexos - Parte I. Interpretação Geométrica dos Números Complexos. z = a+bi Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 16 Números Complexos - Parte I Introdução e Forma Algébrica São as expressões da forma a + bi, em que a e b são números

Leia mais

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau. Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Aula prática Trigonometria (Resoluções)

Aula prática Trigonometria (Resoluções) Aula prática Trigonometria (Resoluções) ) Determine os valores das demais funções trigonométricas de um arco quando: Relações conhecidas: α α, tg α sec α, α tg α, α α cot gα, tgα α sec α, cot g α sec α

Leia mais

ax bx c 0, onde a, b e c são números reais quaisquer e a 0.

ax bx c 0, onde a, b e c são números reais quaisquer e a 0. Matemática Básica: Revisão 014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno 1 Aula 6 Equações do º grau com uma variável. Resolução de problemas. Objetivos: Conceituar e classificar equações do segundo

Leia mais

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Quadrado da soma de dois termos Duas vezes o produto do 1º pelo º Eemplo 1: a) ( + 3y) = +..(3y) + (3y) = + 6y + 9y. ) (7 + 1) = c) (a

Leia mais

Instruções para a realização da Prova Leia com muita atenção!

Instruções para a realização da Prova Leia com muita atenção! Nível 3 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) 9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Fatoração Algébrica. Casos Simples de Fatoração Algébrica

Fatoração Algébrica. Casos Simples de Fatoração Algébrica Fatoração Algébrica Casos Simples de Fatoração Algébrica Como já aprendemos na Aritmética, todo número, não primo, pode ser decomposto em um produto de fatores primos. Assim, tem-se: 30 = 2 X 3 X 5 ; 72

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre LINHAS PROPORCIONAIS Geometria Plana PROF. HERCULES SARTI Mestre Exemplo 4: apostila Determine o perímetro do quadrilátero ABCD, circunscritível, da figura. Resolução: Exemplo 4: apostila Determine o perímetro

Leia mais