Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis."

Transcrição

1 Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula Produtos Notáveis Vários problemas de Álgebra para alunos do Ensino Fundamental utilizam Produtos Notáveis, que são identidades clássicas envolvendo multiplicação de expressões. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis. Quadrado da soma ou da diferença de dois números (a+b) = a +ab+b (a b) = a ab+b Problema. (OCM) Prove que não existem inteiros positivos a e b tais que b +b a +a = 4. Solução. Suponha que existam tais inteiros positivos a e b. A equação dada é equivalente a b + b = 4 ( a +a ) = 4a +4a. Isso lembra o quadrado de a +, que é 4a +4a +. Assim, seria bom somarmos a cada lado, para obtermos Por outro lado, b +b+ = 4a +4a+. b < b +b+ < b +b+ = (b+) pois b é um inteiro positivo. Como b e (b +) são quadrados consecutivos, isso mostra que não seria possível b +b+ ser o quadrado de um inteiro. No próximo exemplo, vamos utilizar um fato útil de pensar que um número com todos os dígitos s, como..., pode ser escrito na forma.... Se o número possuir apenas o dígito 4, por exemplo, como , então o escrevemos na forma A vantagem dessas alterações é saber que... }{{} = 0 n (verifique esse fato para quantidades pequenas de s). n

2 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Problema. Seja n > um número inteiro. Prove que o número... }{{} }{{} n n racional. não é Solução. Mostrar que não é racional é equivalente a provar que não é um quadrado perfeito. Ou seja, este problema tenta mostrar que não há outros quadrados perfeitos com o formato do número 44. Podemos escrever =... 0 n = 0n 0 n +4 0n = 0n ( 0 n +4(0 n +) ) = 0n (0 n +). Agora, é suficiente mostrarmos que 0 n nunca pode ser quadrado perfeito se n >. Isso é verdade pelo fato de 0 n deixar resto 3 na divisão por 4 e não existir quadrado perfeito nessa situação. Problema 3. (i) Se n é um inteiro positivo tal que n+ é um quadrado perfeito, mostre que n+ é a soma de dois quadrados perfeitos sucessivos. (ii) Se 3n+ é um quadrado perfeito, mostre que n+ é a soma de três quadrados. Problema 4. Suponha que um número inteiro n seja a soma de dois números triangulares, ou seja, n = a +a + b +b. Mostre que 4n+ podeser escrito como a soma de dois quadrados em termos de a e b. Problema 5. Seja x R tal que x+ x = 5. Calcule x + x. Problema 6. (EUA) O número b, escrito na base inteira b, é o quadrado de um inteiro para quais valores de b? Problema 7. Seja D = a +b +c, sendo a e b inteiros consecutivos e c = ab. Mostre que D é sempre um inteiro ímpar. Problema 8. (EUA) Determine a soma dos dígitos na base 0 de um inteiro positivo. ( 0 4n +8 +), sendo n Problema. Mostre que a soma dos quadrados de dois números ímpares consecutivos é um número par não múltiplo de 4.

3 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Problema 0. (IME) Mostre que os números 4, 448, 44488, ,..., obtidos colocandose 48 no meio do número anterior, são quadrados de números inteiros. Problema. Se x +x 6 ( y )+ = 0 e x R, então mostre que y <. Problema. Ache todos os inteiros positivos x,y tais que y x(x+)(x+)(x+3) =. Problema 3. Determine todas as triplas de números reais (x, y, z) que são solução da equação 4x 4 x ( 4y 4 +4z 4 ) xyz +y 8 +y 4 z 4 +y z +z 8 = 0. Problema 4. (OCM) Determine todos os valores reais de x,y e z satisfazendo a igualdade 3x +y +z = xy +xz. Problema 5. (OCM) Determine todos os pares de inteiros (x, y) que satisfazem a equação x +x+5 = y +y. Problema 6. (EUA) Encontre x +y se x,y Z e xy +x+y = 7, x y +xy = 880. Diferença de quadrados a b = (a+b)(a b) Problema 7. Quantos pares de números inteiros positivos m e n satisfazem a equação m n = 0? Solução. Suponha que existam inteiros positivos m e n tais que m n = 0. Daí, (m + n)(m n) = 0. Como 0 é primo e m + n > m n, pois n > 0, segue que m+n = 0 e m n = e, portanto, m = 006 e n = 005. Problema 8. Prove que existe exatamente um número natural n tal que n é um quadrado perfeito. Solução. Vamos buscar soluções para a equação n = k, k Z. Ela é equivalente a 8( + 3) + n = k ou n = k 48 = (k+48)(k 48). Assim, k+48 = a e k 48 = b, sendo n = a + b. Subtraindo essas equações, obtemos 6 = a b e, portanto, 5 3 = b( a b ). Em cada membro dessa igualdade, temos a fatoração em parte par e parte ímpar. Igualando, obtemos b = 5 e a = 7. Portanto, a única solução é n = a+b = 7+5 =. Problema. Determine o valor do produto ( )( 3 )... ( )( 0 ). 3

4 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Problema 0. (EUA) Simplifique a expressão ( )( )( )( ). Problema. (OCM/ITA) Qual é o menor inteior positivo n tal que n n < 0,0. Problema. Quantos pares de números inteiros m e n satisfazem a equação m n = 04? Problema 3. Seja a um número real. Simplifique a expressão ( + )(+ a )(+ a ) ( a ). a 00 Problema 4. Racionalize a expressão (+ 64 )(+ 3 )(+ 6 )(+ 8 )(+ 4 )(+ ). Problema 5. (OCM) Encontre o quociente da divisão de a 8 b 8 por (a 64 +b 64 )(a 3 +b 3 )(a 6 +b 6 )(a 8 +b 8 )(a 4 +b 4 )(a +b )(a+b). Problema 6. A expressão n + é o quadrado de um inteiro para exatamente quantos números naturais n? Problema 7. Determine todas as soluções inteiras da equação 3 x 5 y = 04. Problema 8. (EUA) Se x+ x + x = 0, então determine o valor de x x + x 4 + x + x 4. Problema. Um quadrado é cortado em 4 quadrados menores. Todos esses quadrados têm as medidas de seus lados, em centímetros, expressas por números inteiros positivos. Há exatamente 48 quadrados com área igual a cm. Determine o número de resultados possíveis para expressar, em cm, a medida da área do quadrado original. Problema 30. Seja p um número primo ímpar dado. Quantos valores de k inteiro positivo existem tais que k pk é também um inteiro positivo? Problema 3. (EUA) Existe umúnicopar deinteiros positivos x ey satisfazendo a equação x +84x+008 = y. Determine o valor de x+y. Problema 3. (EUA) Calcule (04 +34)( 4 +34)( )( )( ) ( )( )( )( )( ). 4

5 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes 3 Produtos notáveis envolvendo cubos Soma de dois cubos: a 3 +b 3 = (a+b)(a ab+b ) Diferença de dois cubos: a 3 b 3 = (a b)(a +ab+b ) Cubo da soma de dois números: (a+b) 3 = a 3 +3a b+3ab +b 3 = a 3 +b 3 +3ab(a+b) Cubo da diferença de dois números: (a b) 3 = a 3 3a b+3ab b 3 = a 3 b 3 3ab(a b) Problema 33. (Eslovênia) Sejam a,b R tais que a 3 3a +5a = e b 3 3b +5b = 5. Calcule o valor de a+b. Solução. As expressões nessas equações lembram os cubos das diferenças de a e e b e, respectivamente. Assim, podemos reescrevê-las como (a ) 3 +(a ) =, Somando-as, obtemos (b ) 3 +(b ) =. (a+b ) [ (a ) (a )(b )+(b ) + ] = 0. Agora, observe que (a ) (a )(b )+(b ) + Assim, a+b =. = (a ) (a )(b )+ (b ) + 3(b ) 4 4 [ = a b ] + 3(b ) + > Problema 34. Prove que se a+b+c = 0, então a 3 +b 3 +c 3 = 3abc. Solução. Se a+b = c, então (a+b) 3 = ( c) 3, ou seja, Logo, a 3 +b 3 +c 3 = 3abc. a 3 +b 3 +3ab(a+b) = c 3 a 3 +b 3 +3ab( c) = c 3. Problema 35. (Putnam) Sejam x,y,z números reais distintos dois a dois. Prove que 3 x y + 3 y z + 3 z x 0. Problema 36. Determineonúmerodesoluções reais distintas daequação 3 x+ 3 7 x = 3. 5

6 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Problema 37. (EUA/OCM) Mostre quese x é um númerosatisfazendo 3 x+ 3 x = 3, então 75 < x < 85. Problema 38. (IME ) Mostre que é um número 7 racional. Problema 3. (EUA) Sexey são númerosinteiros tais quex 3 +y 3 +(x+y) 3 +30xy = 000, determine o valor de x+y. Problema 40. (Leningrado) Prove que (3 )(3 3 )...(00 3 ) ( 3 +)(3 3 +)...(00 3 +) = Outros produtos notáveis ab a b+ = (a )(b ) ab+a+b+ = (a+)(b+) Problema 4. Determine o número de pares ordenados (m, n) de números inteiros positivos que são soluções da equação 4 m + n =. Solução. A equação 4 m + n = é equivalente a mn m 4n+8= 8 (m 4)(n ) = 8, seguindo os modelos propostos nesta seção. As possibilidades são m 4 =,n = 8;m 4 =,n = 4;m 4 = 4,n = ;m 4 = 8,n =, ou seja, os pares ordenados (m,n) são (5,0);(6,6);(8,4);(,3). Problema 4. Determine todos os números inteiros tais que a soma e o produto são iguais. Problema 43. (IME) Sejam x e x as raízes da equação x +(m 5)x+m = 0. Sabendo que x e x são números inteiros, determine o conjunto dos possíveis valores de m. 6

7 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Problemas da OBM Problema 44. (OBM a fase/00) Se xy = e x +y = 5, então x y + y x + vale: a) 5 b) 5 4 c) 5 4 d) e) Problema 45. (OBM 3 a fase/003) Mostre que x +4y 4xy+x 4y+ > 0 quaisquer que sejam os reais x e y. Problema 46. (OBM a fase/005) a) Fatore a expressão x xy +8y. b) Determine todos os pares de inteiros (x;y) tais que xy x 8y = 005. Problema 47. (OBM a fase/005) Os inteiros positivos x e y satisfazem a equação x+ y x y =. Qual das alternativas apresenta um possível valor de y? a) 5 b) 6 c) 7 d) 8 e) Problema 48. (OBM 3 a fase/006) Encontre todos os pares ordenados (x;y) de inteiros tais que x 3 y 3 = 3(x y ). Problema 4. (OBM a fase/006) Sejamaebnúmerosreaisdistintostaisquea = 6b+5ab e b = 6a+5ab. a) Determine o valor de a+b. b) Determine o valor de ab. Problema 50. (OBM a fase/008) Sejam x e y números reais positivos satisfazendo as equações x +y = e x 4 +y 4 = 7 8. Calcule o valor de xy. Problema 5. (OBM a fase/00) Quantos são os pares (x,y) de inteiros positivos tais que x y = 00? a) 000 b) 00 c) 00 d) 003 e) 004 Problema 5. (OBM 3 a fase/00) Sejam a,b e c reais tais que a b e a (b + c) = b (c+a) = 00. Calcule c (a+b). Problema 53. (OBM a fase/0) Qual é o valor da expressão ? a) 0007 b) 0003 c) 0007 d) 0003 e) 00 7

8 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Dicas 3. Observe que n+ é o quadrado de um inteiro ímpar e que 3n+ é o quadrado de um número não múltiplo de Números na base b só utilizam dígitos 0,,...,b. 0. Escreva }{{} }{{} = 4 0n+ +8 0n +. n+ n. Agrupe x com x+3 e x+ com x+. 3. Comeceseparandoo dedentrodosparênteses (escrevendox 4 depois). Emseguida, agrupe y 8,z 8 e y 4 z Se uma soma de quadrados de números reais é 0, então todos os números são iguais a Veja a resolução do problema. 6. Fatore e faça substituições de variáveis x+y = s e xy = p.. Multiplique a inequação membro a membro por n + n. Você obterá n + n > 00, cuja menor solução é Multiplique e divida tudo por a. 7. Primeiramente, descarte os casos em que os números são negativos. Depois, use que soma e diferença de dois números inteiros têm a mesma paridade. Por fim, lembre-se que o produto de dois números negativos é positivo. 30. Escrevak pk = n ecomplete otrinômioquadradoperfeitoquecomeça com k pk, somando e subtraindo p Complete o trinômio quadrado perfeito que começa com x +84x. 3. Fatore a expressão x = x A dica é somar e subtrair x Passe 000 para o lado esquerdo da equação e fatore fazendo aparecer o fator x+y. 8

9 POT 0 - Álgebra - Nível - Aula - Prof. Marcelo Mendes Respostas b > y = x +3x+ 3. (t,t,t) ou ( t,t, t),t R 4. x = y = z = 0 5. Não existe par (x,y) a 0 a a 64 b x = 3,y = 8. 5, (para cada primo ímpar p) (0,0), (,) 43. 0,7,,5,7,34

10 Algebra 0 - Produtos Notáveis Problema. Encontre as soluções inteiras positivas (a, b, c) da equação Solução. Fatorando obtemos: a bc ab c abc + b 3 c + bc 3 + b c =. a bc ab c abc + b 3 c + bc 3 + b c = bc(a ab ac + b + c + bc) = bc[a a(b + c) + (b + c) ] = bc[a (b + c)] =. Como é livre de quadrados, devemos ter [a (b + c)] = e bc =. De forma que as soluções são (a; b; c) = (; ; ), (3; ; ), (; ; ), (3; ; ). Problema. Se x + x = 3, encontre x5 + x 5. Solução. Sabemos que x + x = (x+ x ) x x = 7. Analogamente, x4 + x 4 = 7 = 47. Além disso, fazendo (x + x )(x + x ) = x3 + x 3 + x + x encontramos x 3 + x 3 = 8. Agora, usando que (x 4 + x 4 )(x + x ) = x5 + x 5 + x3 + x 3 finalmente encontramos x 5 + x 5 = 3. Problema 3. Encontre todos os reais x, y e z que satisfazem x + y + z xz + y x + = 0 Solução. Note que x + y + z xz + y x + = (x xz + z ) + (x x + ) + (y + y + ) = (x z) + (x ) + (y + ) = 0. Dessa forma, devemos ter y + = x = x z = 0. Ou seja, (x, y, z) = (,, ). Problema 4. Sabendo que x + y + z = 6 e que x + y + z = 4, x, y e z reais. Encontre xy + xz + yz.

11 Solução. Façamos a seguinte expansão. Então, encontramos que (x + y + x) = [x + (y + z)] = x + x(y + z) + (y + z) = x + y + z + xy + xz + yz. xy + xz + yz = (x + y + x) (x + y + z ). Substituindo os valores, chegamos na resposta, 4 6 = 5. Problema 5. Mostre que = + 3. Solução. Note que = ( ) + ( 3) + 3 = ( + 3). Portanto, = ( + 3) = + 3. Problema 6. Simplifique Solução. Perceba que Sendo assim, = + ( 3) + 3 = ( + 3) = + 3. Todavia, também temos que + 3 = Finalmente, chegamos em = ( = + ) 3. Problema 7. Encontre todos os inteiros n para os quais 4n 4 + é primo. Solução. 4n 4 + = 4n 4 + 4n + 4n = (n + ) (n) = (n n + )(n + n + )

12 Para n =, 4n 4 + = 5 é primo. Para n >, ambos os fatores n n + e n + n + são maiores que, de forma que 4n 4 + não pode ser primo. Sendo assim, 4n 4 + é primo somente para n =. Problema 8. Determine o número de pares de inteiros a e b que satisfazem a + b = 0. Solução. A equação a + b = é equivalente a 0a + 0b = ab, com a, b 0. Temos 0 ab 0a 0b+00 = 00 (a 0)(b 0) = 00. a 0 pode ser qualquer divisor de 00 com exceção de 0. Logo, pode assumir os valores ±00, ±50, ±5, ±0, 0, ±5, ±4, ±, ±. Então, o número de soluções é 8 + = 7. 3 Problema. Expresse F = com um denominador racional. 4 Solução. Seja a = 3 a, então F = + a + a. Sabemos que a3 = (a )(a + a + ). a a(a ) Dessa forma, F = a 3 = a 3. Substituindo os valores obtemos a F = 3 ( 3 ) ( 3 ) 3 = Problema 0. Prove que se (a+b) +(b+c) +(c+d) = 4(ab+bc+cd), então a = b = c = b. Solução. Desenvolvendo, obtemos (a + b) + (b + c) + (c + d) = 4(ab + bc + cd) a + b + c + d = ab + bc + cd (a ab + b ) + (b bc + c ) + (c cd + d ) = 0 (a b) + (b c) + (c d) = 0. A única maneira dessa soma ser 0 é com (a b) = (b c) = (c d) = 0. Isto é, a = b = c = d.

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira e Samuel Barbosa Aula 1 Divisibilidade 1 Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =

Leia mais

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula Divisibilidade II Definição 1. Dados dois inteiros a e b, com a 0, dizemos que a divide b ou que a é um divisor

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1) Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos. Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Divisibilidade Básica

Divisibilidade Básica Divisibilidade Básica BRUNO HOLANDA Nesta aula vamos ter nosso primeiro contato com uma das mais importantes áreas da Matemática: A Teoria dos Números. Esta se concentra em estudar os número inteiros e

Leia mais

Expressões de sequencias

Expressões de sequencias Expressões de sequencias Semana Olímpica/01 Prof. Armando 01 de fevereiro de 01 1 Introdução Um assunto que cai com frequência em olimpíada são as sequências. Sequências são listas ordenadas de números

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 1. Escreva os elementos de S 4 nas duas notações. Observe que S 4 = 4! = 24. Os elementos de S 4 tem a forma 1 a, 2 b, 3 c, 4 d onde a sequência abcd é uma das seguintes: 1234, 1243, 1324, 1342, 1423,

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Matemática I PROFESSOR(A) Steve ANO SEMESTRE DATA 8º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Considere que x é a fração geratriz da

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL (º ou 9º anos) GRITO GRITO NÍVEL ) 6) ) 6) ) E ) 7) ) 7) ) ) ) ) E ) ) 4) 9) 4) E 9) 4) ) 0) ) 0) ) ada questão da Primeira Fase vale ponto (Total de pontos

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

www.rumoaoita.com 141

www.rumoaoita.com 141 0 Dado um trapézio qualquer, de bases e 8, traça-se paralelamente às bases um segmento de medida x que o divide em outros dois trapézios equivalentes. Podemos afirmar que: (A) x, 5 (B) x (C) x 7 x 5 (E)

Leia mais

LISTA DE EXERCÍCIOS MATEMÁTICA

LISTA DE EXERCÍCIOS MATEMÁTICA LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: ELIZABETH E JOSIMAR Ano: 8º Data: / 07 / 01 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA ÁLGEBRA 1) Classifique em verdadeiro (V)

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática Financeira da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS Projecto Delfos: Escola de Matemática Para Jovens 1 A Teoria dos Números tem como objecto de estudo o conjunto Z dos números inteiros (a letra Z vem da palavra alemã Zahl que significa número). 1. DIVISIBILIDADE

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 10: Exercícios Cap 01 www.laercio.com.br APOSTILA 10 Exercícios cap 01 MATÉRIA FÁCIL, QUESTÕES DIFÍCEIS HORA DE ESTUDAR (cap 01) Apostila de complemento

Leia mais

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016 Roteiro da aula MA09 Matemática básica Aula 8 Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 22 Francisco A. M. Gomes

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação: 16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1.

(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1. Questão 1. (1,5) Sejam a e b dois números naturais tais que (a, b) = pq, em que p e q são dois números primos distintos. Quais são os possíveis valores de (a) (a 2, b)? (b) (a 3, b)? (c) (a 2, b 3 )? Suponhamos

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Somando os termos de uma progressão aritmética

Somando os termos de uma progressão aritmética A UA UL LA Somando os termos de uma progressão aritmética Introdução Um pouco de História Na aula passada, mostramos como calcular qualquer termo de uma progressão aritmética se conhecemos um de seus termos

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

2º Lista de Exercícios Mat.Básica. Equação do 1 grau

2º Lista de Exercícios Mat.Básica. Equação do 1 grau 2º Lista de Exercícios Mat.Básica Equação do 1 grau 7) Um indivíduo fez uma viagem de 630 km. Teria gasto menos quatro dias se tivesse caminhado mais 10 km por dia. Quantos dias gastou na viagem e quantos

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

Atividades para classe

Atividades para classe Módulo 1: Expressões algébricas Página 78 Atividades para classe 1 Sérgio escreveu três expressões algébricas no caderno dele: uma racional inteira, uma racional fracionária e outra irracional. Identifique

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática INDUÇÃO MATEMÁTICA Indução Matemática é um método de prova matemática tipicamente usado para estabelecer que um dado enunciado é verdadeiro para todos os números naturais, ou então que é verdadeiro para

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IV 1 CLASSIFICAÇÃO De acordo com o gênero (número de lados), os polígonos podem receber as seguintes denominações: Na figura 2, o quadrilátero foi dividido em triângulos.

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC)

SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC) (UFCG-PB) (IBMEC) Um jornalista anuncia que, em determinado momento, o público presente em um comício realizado numa praça com formato do trapézio isósceles ABCD, com bases medindo 00 m e 40 m (vide figura

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223. MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes )

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes ) Primeira Fase Nível ( Série EM e Concluintes ). Quantas soluções do tipo (x,y), com x,y inteiros, existem para a equação xy=x+y? a) b) c) d) e)nenhuma. Na figura, o triângulo ABC é eqüilátero, o raio da

Leia mais

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 = 1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)

Leia mais

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Raiz Quadrada e Raiz Cúbica de um Número Racional

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Raiz Quadrada e Raiz Cúbica de um Número Racional Agrupamento de Escolas de Almeirim Matemática 7.º Ano Raiz Quadrada e Raiz Cúbica de um Número Racional Raiz Quadrada Existem números naturais que se podem dispor em quadrados. 1 2 =1 2 2 =4 3 2 =9 4 2

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

PUC-Rio Desafio em Matemática 23 de outubro de 2010

PUC-Rio Desafio em Matemática 23 de outubro de 2010 PUC-Rio Desafio em Matemática 3 de outubro de 010 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 1,0 3 1,0 4 1,5 5 1,5 6,0 7,0 Nota final 10,0 Instruções Mantenha seu

Leia mais

ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos

ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos GABARITO MA13 - Avaliação 1 - o semestre - 013 Questão 1. (pontuação: ) ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos do triângulo AF C.

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Sistemas Numéricos. Tiago Alves de Oliveira

Sistemas Numéricos. Tiago Alves de Oliveira Sistemas Numéricos Tiago Alves de Oliveira Sumário Sistemas Numéricos Binário Octal Hexadecimal Operações aritméticas binária e hexadecimal Operações lógicas binárias e decimais Representação Interna de

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais