Os números reais. Capítulo O conjunto I

Tamanho: px
Começar a partir da página:

Download "Os números reais. Capítulo O conjunto I"

Transcrição

1 Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais não é tão simples e, por isso, faremos uma etapa intermediária sobre o conjunto dos números irracionais 4 O conjunto I A definição mais simples para os números irracionais é a que os considera como as expansões decimais que não são finitas nem periódicas Um dos principais problemas enfrentados ao demonstrar que um número é de fato irracional é que não há um único método Em alguns casos nenhuma ferramenta simples resolve isto Por exemplo, para números irracionais que não advém de polinômios, como é o caso das raízes (quadradas, cúbicas,) Mostrar que os números π e e (número de Euler) são irracionais necessita o uso do Cálculo Um fato curioso que os livros do Ensino Básico costumam exibir é o diagrama abaixo e à esquerda, mostrando o comportamento dos conjuntos numéricos clássicos dentro dos números reais Este diagrama dá uma boa ideia dessa organização, embora não seja realista Na prática, o conjunto dos números reais é basicamente composto de irracionais, enquanto os naturais, inteiros e racionais são uma pequeniníssima fração destes Em breve, ao lidarmos com o tema de enumerabilidade, poderemos demonstrar este fato O nosso foco para as etapas a seguir é nos números irracionais chamados algébricos, os construídos através de polinômios 9

2 Um irracional bastante conhecido (e simples) é o número 2, a medida do comprimento da diagonal de um quadrado cujo lado mede Exemplo 2 não é um número racional Prova: Primeiramente, verificamos que o número admite expansão decimal Como tem-se < 2 < 4, e a função "raiz quadrada" é crescente, então < 2 < 2 Com isso, usamos que, 4 2 =, 96 e, 5 2 = 2, 25 para escrever, 4 < 2 <, 5 Podemos continuar com este procedimento e mostrar que uma expansão decimal pode ser encontrada para este número Mas como faremos para mostrar que, de fato, tal expansão não pode ser nem finita nem enumerável? A princípio, seria necessário conhecer todas as casas da expansão e verificar se ela acaba ou se começa a se repetir a partir de algum momento Isto é impossível de ser feito! Suponha, por contradição, que 2 é um número racional, ou seja, que pode ser escrito como a/b, sendo a e b coprimos para que a fração seja irredutível 2 = a b = 2 = a2 b 2 = a 2 = 2b 2 Assim, obtemos que a 2 é par Então temos que a é par Logo, podemos escrever a = 2a e substituir na linha acima (2a ) 2 = 2b 2 = 4a 2 = 2b 2 = b 2 = 2a 2 Observe que, com a mesma justificativa, b é par Mas supomos inicialmente que a e b não eram simultaneamente pares, o que é uma contradição Tal contradição nasceu porque supomos que era possível escrever uma fração irredutível correspondente a 2 Assim, este número não é racional Como admite uma expansão decimal (, ), é um número irracional Exercício 4 Verifique que a é par a 2 é par, sendo a Z O procedimento acima pode ser repetido, mudando apenas alguns detalhes, para mostrar que outros números semelhantes são irracionais Exemplo 2 2 não é um número racional Prova: Suponha, por contradição, que 2 é um número racional da forma a/b, com sendo a e b coprimos para que a fração seja irredutível Em particular, a e b não podem ser simultaneamente pares 2 = a b = 2 = a b = a = 2b Assim, a é par e, consequentemente, a é par Escrevemos a = 2a e substituímos na linha acima Ou primos entre si 20

3 (2a ) = 2b = 8a = 2b = b = 4a Com a mesma justificativa, b é par Já que supomos que a e b não eram simultaneamente pares, não há como escrever 2 como fração irredutível e, com isso, este número não é racional Por outro lado, como 2, (ou seja, o número admite expansão decimal), ele é um número irracional Exercício 42 é racional? Justifique sua resposta Exercício 4 6 é racional? Justifique sua resposta Exercício 44 é racional? Justifique sua resposta Exercício 45 Mostre que é um número natural 4 Racionalização de expressões numéricas envolvendo irracionais Na Escola Básica, é comum dizer que sempre é necessário eliminar os números irracionais do denominador de uma fração mas oculta-se o motivo: é difícil conseguir mensurar, por exemplo, quanto é,7? Esta divisão é difícil de ser feita, comparada com,7 Dividir um decimal por um número inteiro é muito mais simples que o contrário Esta é a principal motivação para racionalizar, isto é, eliminar números irracionais do denominador de uma fração O método depende apenas do uso de produtos notáveis (nos casos mais simples) Em geral, usaremos que Exemplo Racionalize 5 x 2 y 2 = (x y)(x + y) x y = (x y)(x 2 + xy + y 2 ) x + y = (x + y)(x 2 xy + y 2 ) Multiplicamos e dividimos a expressão por 5 e obtemos o resultado desejado = 5 5 = Exemplo 4 Racionalize 5 7 Multiplicamos e dividimos por ( 5 7) 4 Exemplo 5 Racionalize 5 5 = ( 5 7) 4 ( 5 7) = Usamos o produto notável 5 = ( 5 )( 5+ ) e, por isso, multiplicamos e dividimos por ( 5 + ): 5 = 5 + = ( 5 )( 5 + ) = 2

4 Exemplo 6 Racionalize 2 Usamos o produto notável 2 = ( 2)( ) 2 = 2 Exercício 46 Racionalize = = O conjunto R Finalmente chegamos ao conjunto dos números reais Na nossa definição (que não é a usual), R é o conjunto de todas as expansões decimais, sejam elas finitas ou infinitas, periódicas ou não R = Q I Para formalizar melhor, deveríamos construir o conjunto dos reais utilizando algum método clássico, como Sequências de Cauchy ou Cortes de Dedekind Por se distanciar do objetivo deste curso, utilizamos a definição mais simples e intuitiva Por exemplo, o número 0, é um real pois é uma expansão decimal (infinita e não periódica, ou seja, é um número irracional) Números reais podem ser adicionados e multiplicados e tem as mesmas propriedades associativa, comutativa, existência do elemento neutro, existência de simétrico, existência de inverso, distributividade da multiplicação em relação à adição e não possui divisores de zero Assim, R é um corpo Faremos a ordem segundo duas versões: a primeira delas é a clássica para esta disciplina, usando a ideia de complemento natural, na qual dados dois números reais x e y, dizemos que x y se existe um número real positivo p tal que x + p = y ou se x = y A segunda versão, compatível com esta, é uma semelhante à ordem utilizada para organizar as palavras em um dicionário Considere a expansão decimal de x e y Teremos uma das três possibilidades: Se um dos números é positivo e o outro é negativo, então o positivo é sempre maior que o negativo Se m e n são negativos, então consideramos seus simétricos x e y Com isso, teremos que x y = y x 2 Se m e n são positivos, então comparamos inicialmente as partes inteiras Caso estas partes sejam iguais, comparamos a primeira casa decimal desses dois números Persistindo o empate, comparamos a segunda casa decimal e assim sucessivamente Se as partes inteiras e todas casas decimais são iguais, os números são iguais Exemplo 7, 478 <, 487 pois o desempate ocorre na terceira casa decimal (7 < 8) A ordem nos reais possui as mesmas propriedades que vimos anteriormente: reflexividade, antissimetria, transitividade, tricotomia e compatibilidade com a adição e a multiplicação Vale ressaltar mais uma vez que, dados reais x, y e z, então x y = xz yz apenas se z 0 Exercício 47 Mostre que, dados a, b, c, d R tais que a b e c d, então a + c b + d 2 Note que é necessário comparar os termos positivos x e y, ou seja, sempre este caso recai no terceiro 22

5 Exercício 48 Mostre que, se 0 < a < b e 0 < c < d, sendo a, b, c, d R, então 0 < ac < bd Exercício 49 Dado x R, x 0, considere seu inverso x Mostre que: a) x > 0 = x > 0 b) x < 0 = x < 0 c) x > 0 e y > 0 = x/y > 0 [Sugestão para a: Usando a tricotomia, mostre que não pode ocorrer x < 0 ou x = 0] Exemplo 8 Prove que 0 < x < y = 0 < y < x Prova: Do exercício anterior, temos que x > 0 e y > 0 Portanto, multiplicamos ambos lados de x < y por x y : y = (x x )y < (y y )x = x Exercício 40 No exemplo anterior, o que aconteceria se x < y < 0 ou x < 0 < y? Exercício 4 Prove que, para todos x, y R, tem-se: a) xy > 0 x > 0 e y > 0 ou x < 0 e y < 0 b) x 2 + y 2 = 0 = x = y = 0 c) x, y > 0 e x 2 < y 2 = x < y Exercício 42 Apresente números reais a, b, c, d tais que Exemplo 9 Resolva a equação x + 2 x < a < 0 < b c < 0 < d a 2 > b 2 c 2 < d 2 Solução : Transformar numa desigualdade que possua um dos membros sendo zero x + 2 x < = x + 2 x x x < 0 = x < 0 O numerador é sempre positivo Para que o quociente seja negativo, é necessário que o denominador seja também negativo Logo, o conjunto solução é S = x R x < } Solução 2: Transformar numa desigualdade sem frações Neste caso, multiplicamos ambos lados por x ATENÇÃO! Quando multiplicamos por x, não sabemos se esse número é positivo ou negativo Por isso, é necessário pensarmos em todos os casos! Se x > 0, a desigualdade não se altera Assim, temos que x + 2 < x, ou seja, 2 < Isto quer dizer que nenhum número real que satisfaz x > 0 satisfaz também a outra condição Não há solução neste primeiro caso Se x < 0, então a desigualdade deve ser invertida Obtemos x + 2 > x e, por fim, 2 >, o que é uma verdade satisfeita por todos números tais que x < 0 Logo, a solução para este caso é x < (o cruzamento da solução da desigualdade e da condição de existência da desigualdade) Juntando as duas possibilidades, encontramos o mesmo que antes: S = x R x < } 2

6 O exemplo anterior busca evidenciar que existe mais de uma forma de resolver desigualdades envolvendo os elementos dos conjuntos numéricos estudados até aqui Entretanto, devemos tomar bastante cuidado ao multiplicar ou dividir Lembre-se de que toda vez que isso for feito, é necessário considerar quando este termo escolhido é positivo ou negativo Exemplo 0 Resolva a inequação x2 4x + 4 x 2 4 < x2 x + x + 2 Primeiramente, notamos que a primeira fração pode ser simplificada, já que x 2 4x + 4 = (x 2) 2 e x 2 4 = (x 2)(x + 2) Isto pode ser feito pois o termo a ser descartado não pode ser zero Assim, obtemos x 2 x + 2 < x2 x + x + 2 x2 4x + x + 2 > 0 Analisamos agora quando o numerador e o denominador são positivos ou negativos: Com isso, concluímos que o conjunto solução é S = x R 2 < x < ou x > } Exercício 4 Resolva as inequações a seguir: a) 2x + x + x + x 2 > b) c) x + (2x + 5)(5x + ) < 0 x < 2 x 2 d) x + x + 2 x + x + 4 e) 2 x x x + 4 Módulo de um número real O valor absoluto (ou módulo) de x R é definido como x, se x 0 x = x, se x < 0 Uma outra definição é que o valor absoluto de x é a distância entre x e 0 na reta real 24

7 4 Propriedades do valor absoluto i) x 0 x R e x = 0 x = 0 Se x é positivo, então seu módulo é ele mesmo (positivo) Se x é negativo, então seu valor absoluto é seu simétrico, um número positivo Da definição, segue que 0 = 0 ii) x = max x, x} De fato, não importa se x é negativo ou positivo: o valor absoluto é positivo Por outro lado, vimos que todo número positivo é sempre maior que qualquer número negativo Como exemplo, podemos tomar 5 = max 5, 5} Como consequência desta propriedade, temos que x x e x x iii) x 2 = x O caso x = 0 é trivial Se x é negativo, x 2 é positivo e a raiz quadrada deste número é positiva Se x é positivo, o resultado segue de forma fácil e direta também ATENÇÃO: É importante neste momento lembrar que não é verdade que, por exemplo, 4 = ±2 O Teorema Fundamental da Álgebra nos garante que uma equação polinomial p(x) = 0 possui n raízes complexas se p(x) é um polinômio de grau n Então, no nosso exemplo, partimos da equação x = 2 Elevando ambos lados ao quadrado, temos x 2 = 4, uma equação quadrática com duas raízes; é aqui que nasce a "outra" raiz 2 Mas de onde vem o "±"? A solução é simples! Ao invés de x 2 = 4 = = ±2, deveríamos fazer x 2 = 4 = x 2 = 4 = x = 2 = x = ±2 iv) Se r > 0, então x r para r x r e x > r para x > r ou x < r Para conseguir entender a veracidade disto, recorremos à interpretação geométrica O valor absoluto de x é a distância entre x e o 0 Na primeira parte, queremos que a distância seja menor que ou igual a r Os pontos que satisfazem essa condição são os tais que r x r Por outro lado, no segundo caso, queremos que a distância seja maior que r Analisando o eixo ordenado, x > r ou x < r v) (Desigualdade triangular) x + y x + y Da propriedade ii), temos que x x e y y Do exercício 47, concluímos que x + y x + y Também da terceira propriedade temos que x x e y y Pelo mesmo motivo, ( x + y ) x + y Agora resta observar a propriedade iv), fazendo r = x + y e substituindo x por x + y Obtemos, assim, que x + y x + y vi) xy = x y Utilizamos iii) e escrevemos xy = (xy) 2 = x 2 y 2 = x y 25

8 vii) x a é, graficamente, a distância entre x e a x a, se x a 0 x a = = (x a), se x < 0 x a, se x a a x, se x < a A parte em linha pontilhada é a medida da diferença entre a e x (na primeira figura) ou a diferença entre x e a Exercício 44 Verifique que a posição do zero não interfere o resultado desta propriedade, ou seja, analise os casos em que o zero está entre os dois números e os casos em que zero é o maior dos três números Exercício 45 Utilizando a noção geométrica do valor absoluto de um número real para a) mostrar que x + x + para todo x real b) verificar que não existem números reais x tais que x + + x < 4 c) determinar quais reais que satisfazem x + x + = 2 Exemplo Resolva a equação x + x 2 = x, se x x 2, se x 2 Da propriedade vii), temos que x = e x 2 = x, se x < 2 x, se x < 2 Organizando cada trecho nos intervalos em que eles ocorrem, temos a seguinte tabela: Para o primeiro trecho, a solução é x = 0; como o número encontrado é menor que, então é solução válida No segundo trecho, temos uma afirmação falsa sempre, ou seja, nenhum número entre e 2 é solução desta equação A solução para o último trecho é x = ; por ser um número maior que 2, é uma solução válida Assim, os números que resolvem esta equação são 0 e Exercício 46 Para quais valores reais de r a equação x + x 2 = r tem solução? Exercício 47 Resolva a inequação x + x 2 < Exercício 48 Resolva a inequação x 4 4x 26

9 Exemplo 2 Resolva a inequação + x < x Começamos investigando o que acontece com o módulo do lado direito da desigualdade: x, se x 0 x, se x x = x = x, se x < 0 x, se x < ou x > Por outro lado, analisamos o comportamento de x, que só depende de ser um número positivo ou negativo Assim obtemos: x, se x e x 0 x, se 0 x ( x), se x e x < 0 + x, se x < 0 x = x = x, se (x < ou x > ) e x 0 x, se x > ( x), se (x < ou x > ) e x < 0 x, se x < Com isso, obtemos quatro inequações para serem resolvidas: + x < x, se 0 x x < + x, se x < 0 + x < x, se x > x < x, se x < Resolvendo cada uma das inequações e observando os intervalos nos quais elas ocorrem, encontra-se a solução S = x R x < } Exercício 49 Resolva as equações a seguir: a) x 2 = x 2 b) 2x 2 + 5x = x 2 + 2x c) x 2 + 2x = x 2 + 2x + d) x 2 4x x + 6 = 0 Exercício 420 Resolva as inequações a seguir: a) x 2 6x + 5 < x b) 2x 6 x 4 x c) 2x + 2 d) x 2 x + > x 2 4x + 27

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais. REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

1. CONJUNTOS NUMÉRICOS

1. CONJUNTOS NUMÉRICOS . CONJUNTOS NUMÉRICOS.. INTRODUÇÃO Uma exposição sistemática dos conjuntos numéricos, utilizados na Matemática, pode ser feita a partir dos números usados para contar, chamados de números naturais. Estes

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

Rascunho. De N a R. Capítulo O conjunto N Operações em N

Rascunho. De N a R. Capítulo O conjunto N Operações em N Capítulo 1 De N a R Para entender melhor o conjunto dos números reais, iremos passar por todos conjuntos numéricos relevantes. Nestes momentos iniciais deste curso, consideramos que todos alunos tem alguma

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

Enumerabilidade. Capítulo 6

Enumerabilidade. Capítulo 6 Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS

Leia mais

A reta numérica. Praciano-Pereira, T

A reta numérica. Praciano-Pereira, T A reta numérica Praciano-Pereira, T Sobral Matemática 3 de fevereiro de 205 Textos da Sobral Matemática Editor Tarcisio Praciano-Pereira, tarcisio@member.ams.org - reta numérica Se diz duma reta na qual

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS 1 UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS Para esta primeira unidade de nosso curso, que adaptamos a partir de material utilizado em curso de

Leia mais

Aula Inaugural Curso Alcance 2017

Aula Inaugural Curso Alcance 2017 Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul cegalvao@ufpr.br 06 de

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Monster. Concursos. Matemática 1 ENCONTRO

Monster. Concursos. Matemática 1 ENCONTRO Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Cálculo com expressões que envolvem radicais

Cálculo com expressões que envolvem radicais Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.

Leia mais

Slides de apoio: Fundamentos

Slides de apoio: Fundamentos Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Números Reais - Dízimas Propostas de resolução. Como o ponto O é a origem da reta e a abcissa do ponto A é 5, então OA = 5, e o diâmetro da circunferência é: d = 2 OA = 2 5 2. Recorrendo

Leia mais

AGRUPAMENTO DE ESCOLAS DE MIRA Escola Sec/3 Drª. Maria Cândida. PLANIFICAÇÃO ANUAL MATEMÁTICA 8º Ano Ano Letivo 2016/2017. Objetivos específicos

AGRUPAMENTO DE ESCOLAS DE MIRA Escola Sec/3 Drª. Maria Cândida. PLANIFICAÇÃO ANUAL MATEMÁTICA 8º Ano Ano Letivo 2016/2017. Objetivos específicos 1º Período TEMA 1: NÚMEROS RACIONAIS. NÚMEROS REAIS N. de blocos previstos: 15 1.1. Representação de números reais através de dízimas 1.2. Conversão em fração de uma dízima infinita periódica 1.3. Potências

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

3. Números Racionais

3. Números Racionais . Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

2. Expressões Algébricas, Equações e Inequações

2. Expressões Algébricas, Equações e Inequações Capítulo 2 2. Expressões Algébricas, Equações e Inequações Como exposto no tópico 1.3, uma expressão algébrica é uma a expressão matemática na qual se faz uso de letras, números e operações aritméticas.

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

Os números naturais. Capítulo Operações em N

Os números naturais. Capítulo Operações em N Capítulo 1 Os números naturais O conjunto dos números naturais, denotado por N, é aquele composto pelos números usados para contar. Na verdade, o mais correto seria dizer que é o conjunto dos números usados

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

LAÉRCIO VASCONCELOS O ALGEBRISTA. Volume 1. Rio de Janeiro

LAÉRCIO VASCONCELOS O ALGEBRISTA. Volume 1. Rio de Janeiro LAÉRCIO VASCONCELOS O ALGEBRISTA Volume 1 Rio de Janeiro 2016 O ALGEBRISTA VOLUME 1 Copyright 2016, Laércio Vasconcelos Computação LTDA DIREITOS AUTORAIS Este livro possui registro na Biblioteca Nacional

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis.

Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis. Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula Produtos Notáveis Vários problemas de Álgebra para alunos do Ensino Fundamental utilizam Produtos Notáveis, que são identidades

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios. Como o ponto O é a origem da reta e a abcissa do ponto A é 5, então OA

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3

216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3 1 Prof. Ranildo Lopes U. E. PROFª HELENA CARVALHO Obrigado pela preferência de nossa ESCOLA! Pegue o material no http://uehelenacarvalho.wordpress.com ESTUDANDO A POTENCIAÇÃO E SUAS PROPRIEDADES POTENCIAÇÃO

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010.

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010. Matemática Essencial Números Racionais Conteúdo Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Relacionando

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 SUMÁRIO Apresentação ------------------------------------------------- 2 Capítulo 2

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

Representação decimal dos números racionais

Representação decimal dos números racionais Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 4 de abril de 2017 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta é

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

MATEMÁTICA. Produtos Notáveis, Fatoração e. Expressões Algébricas. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Produtos Notáveis, Fatoração e. Expressões Algébricas. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Produtos Notáveis, Fatoração e Expressões Algébricas Professor : Dêner Rocha Monster Concursos 1 PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS QUADRADO DA DIFERENÇA DE DOIS TERMOS Monster

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Representação decimal dos números racionais

Representação decimal dos números racionais Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta

Leia mais

A evolução do caderno. matemática. 8 o ano ENSINO FUNDAMENTAL

A evolução do caderno. matemática. 8 o ano ENSINO FUNDAMENTAL A evolução do caderno matemática 8 o ano ENSINO FUNDAMENTAL 3 a edição são paulo 013 Coleção Caderno do Futuro Matemática IBEP, 013 Diretor superintendente Jorge Yunes Gerente editorial Célia de Assis

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Notas de aula - MAT Introdução à Análise Real

Notas de aula - MAT Introdução à Análise Real Notas de aula - MAT0315 - Introdução à Análise Real Martha Salerno Monteiro IME-USP Em cursos de cálculo, algumas ideias são apresentadas de modo intuitivo e informal. Historicamente, foi desse modo, intuitivo

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Axiomas de corpo ordenado

Axiomas de corpo ordenado Axiomas de corpo ordenado 2 a lista de exercícios Análise real A abordagem axiomática dos números reais previne erros que a intuição pode ocasionar e torna mais rigoroso o processo de demonstração matemática,

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Aula 10 Regiões e inequações no plano

Aula 10 Regiões e inequações no plano MÓDULO 1 - AULA 10 Aula 10 Regiões e inequações no plano Objetivos Resolver inequações do segundo grau. Analisar sistemas envolvendo inequações do primeiro e segundo graus. Resolver inequações modulares

Leia mais