DECISÃO SOB INCERTEZA

Tamanho: px
Começar a partir da página:

Download "DECISÃO SOB INCERTEZA"

Transcrição

1 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor 1 Introdução Até agora: conseqüêncas das escolhas dos consumdores são conhecdas com certeza. Nova suposção: consumdores e produtores tem apenas uma déa aproxmada dos resultados possíves e atrbuem probabldades para dstntos cenáros possíves. DECISÃO SOB INCERTEZA Probabldades (objetva e subjetva): permtem analsar decsão sob ncerteza. Aplcações: Mercado de seguros ampla-se o conjunto de commodtes. 2 Incerteza e Rsco 1

2 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Teora da Probabldade Mundo com certeza: Ação resultado certo = ocorre com certeza Agora: Mundo com ncerteza: Ação resultado ncerto = dferentes resultados possíves Se for possível atrbur probabldade postva para esses resultados ncertos é possível analsar decsão de rsco de forma semelhante a analse de decsões em jogos de azar. 3 Teora da Probabldade Probabldade objetva: observável va expermento Ex: moeda não-vcada arremessada mutas vezes (1000 a vezes) Moeda justa: p(ca)=p(co)= 50%. Obtém-se, portanto, uma dstrbução de probabldades sobre resultados que é objetva e sso permte fazer prevsões. 4 Incerteza e Rsco 2

3 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Teora da Probabldade Moeda Justa: Cara com probabldade ½ Coroa com probabldade ½ Dado justo: 1 ponto pr 1/6 2 pontos pr 1/6 3 pontos pr 1/6 4 pontos pr 1/6 5 pontos pr 1/6 6 pontos pr 1/6 5 Teora da Probabldade Probabldade subjetva: experênca; formação/pesqus (nformações a pror); crença. Ex: decdr entre dos atvos; decdr entre dos empregos; tratamento médco. Palpte do Gerente: Um Atvo para R$ 6 por ação com pr 1/3 e nada com pr zero. Outro Atvo paga R$ 3 com pr ½ e R$ 1 com pr ½ Outro Gerente: tera outro conjunto de palptes. 6 Incerteza e Rsco 3

4 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 O que devemos saber sobre probabldades? Somam 1 Valor esperado Varânca Independênca 7 O que devemos saber sobre probabldades? 1. Probabldades somam 1: Moeda: ½ + ½ = 1 Dado: 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1 Atvos: 1/3 + 2/3 = 1 Eventos são mutuamente exclusvos Exaurem todos os resultados possíves Apenas um evento ocorrerá 8 Incerteza e Rsco 4

5 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 O que devemos saber sobre probabldades? 2. Valor esperado: valor médo dos resultados possíves. Num jogo jogado mutas vezes esse resultado é o esperado. Multplca-se cada resultado por sua probabldade e somam-se os produtos Aposta justa: o preço pago para partcpar do jogo (gamble) é gual ao valor esperado do jogo. 9 E[A1] = valor esperado do Atvo 1 Se os atvos custam R$ 2, então, a aposta é justa: E [ A E [ A ] = (6) + (0) = ] = (3) + (1) = Incerteza e Rsco 5

6 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Proposção: o valor esperado de um resultado certo (pr = 1) é o própro valor do resultado. 3. Varânca: jogos dferentes com o mesmo valor esperado podem dferr na dspersão em relação a meda Varânca = é a soma da dferença ao quadrado entre os resultados possíves e o valor esperado da lotera, cada uma, multplcada por suas respectvas probabldades. 11 Varânca: dspersão méda dos resultados em relação à méda. Var Var Var 2 [ A ] = ( 6 2) ( 0 2) 1 [ A ] = + = [ A ] = (3 2) (1 2) = 1, Incerteza e Rsco 6

7 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/ Independênca Cada vez que o jogo é jogado a dstrbução de probabldades dos resultados é a mesma do jogo sendo uma únca vez. Resultados possíves são ndependentes: A ocorrênca de um evento não tem nfluênca sobre a probabldade de ocorrênca de outro evento. Toda vez que uma moeda justa é arremessada, a probabldade de ocorrer cara contnua sendo de ½ não mportando quantas coroas tenha ocorrdo ate então. 13 Proposção: Se dos eventos são ndependentes então a probabldade de que ambos ocorram juntos é a multplcação de ambas as probabldades. Probabldade de obter cara e cara em dos arremessos sucessvos é: Pr(ca, ca) = (1/2)(1/2) = ¼ Pr(ca, co)= ¼ Pr(co, ca)= ¼ Pr(co, co)= ¼ 14 Incerteza e Rsco 7

8 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/ Arremessos: há 8 seqüêncas gualmente prováves Pr(ca, ca, ca)= (1/2)(1/2)(1/2)= (1/8) n-arremessos: Há 2 n seqüêncas gualmente prováves cada uma ocorrendo com probabldade (1/2) n. Suposção: cada ação n-resultados ndependentes e dferentes. x = valor do - ésmo resultado p = probabld ade do - ésmo resultado ocorrerá. 15 Propredades da probabldade n 1. p = 1, 0 = 1 2. pr ( x, x ) = j 3. E 4. Var [ x ] ( = n = 1 n = 1 p )( p x [] x = p ( x x ) 2 p ); n j = x = Incerteza e Rsco 8

9 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Função Utldade Esperada ou Funcao Utldade de von Neumann- Morgenstern. Lvro: Theory of Games and Economc Behavour Autores: John(y) Von Neumann e Oskar Morgenstern (1944; 1947) 17 Motvação Paradoxo de São Petersburgo: sugere que precsamos de outro conceto além do valor esperado e da varânca para tomar decsão num ambente envolvendo Incerteza e Rsco. Usamos a Utldade Esperada (EU): que se consttu numa representação das preferêncas sob ncerteza em termos de valor esperado de um conjunto de utldades sobre os resultados ou conseqüêncas possíves de uma ação ou escolha. 18 Incerteza e Rsco 9

10 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Utldade Esperada U vn M = EU = n { } pu( x) = 1 Lnear em Probabldades 19 Utldade Esperada- Axomas báscos 1. Preferêncas sobre resultados possíves são completas, reflexvas e transtvas. Supor rank de resultados: 1. X 1 = por resultado 2. Xn = melhor resultado 2. Loteras compostas podem ser reduzdas a loteras smples x~ 20 Incerteza e Rsco 10

11 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Lotera composta: reduconsmo Prmero jogo (gamble): Regras ou hstóra do jogo: Arremesse uma moeda: se CARA aparece, você deve arremessar outra moeda, se CARA aparece novamente você ganha R$ 1,00. Se aparece COROA você ganha R$ 0,75. Se aparece coroa no prmero arremesso: você deve jogar um dado. Seu prêmo agora é R$ 0,10 por ponto no dado, ou seja, você ganha: R$ 0,10 1 Ponto; R$ 0,20 2 Pontos; (...); R$ 0,60 6 Pontos. 21 Fgura ou representação gráfca do jogo Game 1: Pr (ca)= Pr(co)= 0,5 P(ca,ca)= (1/2)(1/2) = (¼) chance de obter R$ 1,00 P(ca,co)=(1/2)(1/2) = (1/4) chance do obter R$ 0,75 Game 2: Coroa na prmera rodada: P(co, 1)= (1/2)(1/6) = (1/12) chance de obter R$ 0,10 P(co, 2)= (1/2)(1/6) = (1/12) chance de obter R$ 0,20 P(co, 3)= (1/2)(1/6) = (1/12) chance de obter R$ 0,30 P(co, 4)= (1/2)(1/6) = (1/12) chance de obter R$ 0,40 P(co, 5)= (1/2)(1/6) = (1/12) chance de obter R$ 0,50 P(co, 6)= (1/2)(1/6) = (1/12) chance de obter R$ 0,60 22 Incerteza e Rsco 11

12 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Nova Lotera: reduzda Oferece: R$ 1,00 com pr =1/4 R$ 0,75 com pr= ¼ R$ 0,60 com pr= 1/12 R$ 0,50 com pr= 1/12 R$ 0,40 com pr= 1/12 R$ 0,30 com pr= 1/12 R$ 0,20 com pr= 1/12 R$ 0,10 com pr= 1/12 23 Segundo Gamble: grar a RODA DA FORTUNA: ganha o prêmo assocado com a quantdade mostrada onde o pontero para. Pedaços de pzza Probabldade da Lotera smples. Axoma 2: dz que o consumdor é ndferente entre joga o prmero ou segundo jogo. Os dos jogos propcam a mesma utldade. 24 Incerteza e Rsco 12

13 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Utldade Esperada: axomas báscos 3. Axoma da contnudade: para cada resultado x entre x 1 ex n o consumdor pode atrbur uma probabldade p, tal que ele é ndferente entre obter x com certeza e jogar uma lotera que envolve obter x n com probabldade p e x 1 com probabldade (1-p ). Vamos chama-la de lotera 4. Axoma da Substtutbldade: a lotera x~ sempre pode ser substtuída por seu Equvalente certo (EC) x em qualquer outra lotera, pos o consumdor é ndferente entre eles. 5. Preferêncas sobre loteras são transtvas 6. Axoma da monotoncdade: se duas loteras têm 2 alternatvas dêntcas, cada uma dferndo em probabldades, então a lotera que dá maor probabldade para a alternatva mas preferda é preferda à outra lotera. px + 1 p) x f px + (1 p ) x ssep f [ ] [ ] p n ( 1 n 1 25 Indvíduo raconal: escolhe a alternatva de rsco que maxmza utldade esperada Proposção: se preferêncas sobre loteras satsfazem os axomas (1) a (6) então podemos assnalar números U(x ) assocados com x, tal que se compararmos 2 loteras L e L que oferecem probabldade (p 1...p n ) e (p 1...p n ) de obter os mesmos resultados, L será preferível a L sse: n = 1 p U ( x ) > n = 1 p U ( x ) 26 Incerteza e Rsco 13

14 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 O Índce de Utldade de vn-m Forma de construção: 27 1) Rank de todos os resultados possíves: x1 p x 2 p x3... x n 1 p x n Atrbu-se ao resultado menos-preferdo valor utldade zero: u(x1)= 0; Atrbu-se ao resultado mas-preferdo valor utldade um: u(xn)= 1; Atrbu-se a todos os resultados ntermedáros possíves x um valor utldade p: U( x 1 ) 0 U( x ) 1 n U( x ) p 28 Incerteza e Rsco 14

15 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Game l Game 2 J. ; ^,$0.75 $0.10 $0.20 $0.30 $0.40 $0.50 $ Incerteza e Rsco 15

16 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Onde x é o Equvalente Certo (EC) de uma lotera envolvendo x n com probabldade p e x1 com probabldade (1-p). Esse índce de utldade equvale a tomar valores esperados das utldades de x n e x 1 usando as probabldades p e (1-p ) assocadas com a lotera para a qual x é o EC: U ( x ) = pu ( xn) + (1 p ) U ( x1) = p + 0 = p (2) 31 Esse índce de utldade descrto em (1) e (2) é únco em transformações lneares ou afns: Uma transformação lnear preserva o EC. Consdere U(x ), então: V ( x) = c + du ( x) (3) Substtundo (1) em (3) : V ( x ) = c + d.0 = c 1 V ( x ) = c + d.1 = c + d n (4) De (4) a Utldade Esperada de x, dado p : V ( x ) = p ( c + d) + (1 p ) c = c + dp O valor de V(x ) é o mesmo da utldade transformada de x. Portanto, (5) mostra que quando avalamos a utldade esperada de x va transformação lneares das utldades de x 1 e x n obtemos de volta a utldade transformada de x e sso sgnfca que transformações lneares preservam o EC. (5) 32 Incerteza e Rsco 16

17 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Comportamento em relação ao rsco Comportamento dos ndvíduos, que são defndos pela forma da UE: 1. Rsk averse: para uma rqueza constante um resultado certo é sempre preferível a uma lotera com o mesmo valor esperado, mas com alguma varanca postva 2. Rsk neutro: o ndvduo ndferente entre o resultado certo e a lotera de mesmo valor esperado. 3. Rsk lover: ndvduo prefere a lotera ao resultado certo. 33 Aversão ao rsco 3 resultados possíves 2 ações que podem ser tomadas e que rendem os resultados com probabldades dferentes Resultado 1: R$ 50 U(50) = 30 Resultado 2: R$ 100 U(100) = 80 Resultado 3: R$ 150 U(150) = 110 (6) Ação A: rende R$ 100 e tem uma EU de 80: E{U(ação A)}= (1).U(100)= 80. (7) Ação B: rende R$ 50 com pr. ½ e rende R$ 150 com pr. ½. 34 Incerteza e Rsco 17

18 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 { ( ação B) } E U { ( ação B) } E U = 1 U (50) = ( ) = 70 2 U (150) { ( ação B) } < E{ U ( ação A) } (8) E U Mesmo cada ação rendendo um payoff esperado de R$ 100, a Utldade Esperada da ação B é menor que a Utldade Esperada da ação A. Isso ocorre porque a função Utldade desse ndvduo é côncava. R$ 100 U(100) = 80 R$ 50 U(50) = 30 R$ 150 U(150) = Indvduo Avesso ao Rsco: Função Utldade U(x) côncava. $50 $100 $150 A EU do gamble 50/50 em [100+50] e [100-50] está no ponto médo da combnação lnear da utldade de R$ 50 e R$ 150. Essa EU = 70, é menor do que recebe R$ 100 com certeza, EU = 80. Proposção: ndvíduos que tem função utldade côncava são avessos ao rsco. 36 Incerteza e Rsco 18

19 PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Aversão ao rsco: Este ndvduo, que é avesso ao rsco, estara dsposto a pagar a quantdade γ para evtar o rsco: Com um payoff de [100- γ] o ndvíduo obtém uma U(100- γ)= 70 e não tem que tomar qualquer rsco. Defnmos: γ = prêmo de rsco: é a quantdade que um ndvduo avesso ao rsco está dsposto a pagar para não correr rscos. [100- γ]= Equvalente certo 37 Attudes em relação ao rsco: U (x) E{U(x)\ U x a x x + a x ã x x 4- a x-a x x + a x 38 Incerteza e Rsco 19

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs.

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs. Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br Introdução Até agora: conseqüêncas das escolhas dos consumdores

Leia mais

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior Icerteza: o básco Prof: Sabo da Slva Porto Júor Sabo@ppge.ufrgs.br Itrodução Até agora: coseqüêcas das escolhas dos cosumdores são cohecdas com certeza. Nova suposção: cosumdores e produtores tem apeas

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

CAPÍTULO IV TEORIA DE JOGOS

CAPÍTULO IV TEORIA DE JOGOS CAPÍTULO IV TEORIA DE JOGOS 66 Teora de Jogos Caracterzação:. Cenáro determnístco.. v. Um conjunto de agentes de decsão (jogadores) Um conjunto de estratégas (acções) puras Uma função utldade para cada

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Forma extensiva: Jogos na forma extensiva: Definições: Observações

Forma extensiva: Jogos na forma extensiva: Definições: Observações Forma extensva: Jogos na forma extensva: Drew Fudenberg e Jean Trole (993, cap. 3) Chrstan Montet e Danel Serra (003, cap. ) Descrção exata dos sucessvos movmentos dos jogadores em conexão com a nformação

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol.

Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Risco Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Definição: A probabilidade de um resultado (de uma lotaria) é a possibilidade

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.1 Introdução à Teoria das Probabilidades e da Preferência pelo Risco Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Diversificação - exemplo

Diversificação - exemplo INCETEZA E ISCO /4/009 Dversfcação - exemplo oss cap. 0 Cartera com N atvos Nova stuação: Cartera mas dversfcada Todos os títulos têm a mesma Varânca Todas as covarâncas são guas Todos os Títulos tem a

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

4. Conceitos de Risco-Retorno, diversificação e índices de desempenho de Fundos de Investimento

4. Conceitos de Risco-Retorno, diversificação e índices de desempenho de Fundos de Investimento 4. Concetos de Rsco-Retorno, dversfcação e índces de desempenho de Fundos de Investmento O alto dnamsmo e a crescente sofstcação do mercado fnancero mundal fazem com que os nvestdores tenham o constante

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

4.1. Tábuas de mortalidade

4.1. Tábuas de mortalidade 42 4. Metodologa A verfcação da estênca de dferença na taa de mortaldade de partcpantes ue abandonam um plano de seguro de vda ou prevdênca complementar será realzada medante a comparação entre as probabldades

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS UNIVESIDADE FEDEAL DO IO GANDE DO SUL ESCOLA DE ADMINISTAÇÃO OGAMA DE ÓS-GADUAÇÃO EM ADMINISTAÇÃO ESECIALIZAÇÃO EM MECADO DE CAITAIS MODENA TEOIA DE CATEIAS: DESENVOLVIMENTO E ANÁLISE DE UM MODELO DE SELEÇÃO

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Probabilidade nas Ciências da Saúde

Probabilidade nas Ciências da Saúde UNIVERSIDDE ESTDUL DE GOIÁS Undade Unverstára de Cêncas Exatas e Tecnológcas Curso de Lcencatura em Matemátca robabldade nas Cêncas da Saúde Rafaela Fernandes da Slva Santos NÁOLIS 014 Rafaela Fernandes

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

CAPÍTULO 7 TESTES DE HIPÓTESES

CAPÍTULO 7 TESTES DE HIPÓTESES CAPÍTULO 7 TESTES DE HIPÓTESES Além dos métodos de estmação de parâmetros e de construção de ntervalos de confança, os testes de hpóteses são procedmentos usuas da nferênca estatístca, útes na tomada de

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

CAPÍTULO 11 JOGOS REPETIDOS

CAPÍTULO 11 JOGOS REPETIDOS CAPÍTULO 11 JOGOS REPETIDOS Objetvos: Defnr o conceto de jogo repetdo, desenvolver as noções de equlíbro perfeto em subjogos para esses jogos e mostrar, por meo de uma versão do Teorema Popular, que o

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

MODELO DE SELEÇÃO DE PORTFOLIO USANDO FUNÇÃO DE UTILIDADE

MODELO DE SELEÇÃO DE PORTFOLIO USANDO FUNÇÃO DE UTILIDADE MODELO DE SELEÇÃO DE PORTFOLIO SDO FÇÃO DE TILIDDE Renata Patríca L. Jeronymo M. Pnto nversdade Federal da Paraíba Departamento de Estatístca João Pessoa, P rasl renata@de.ufpb.br Roberto Qurno do ascmento

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES

ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES Lela A. de Castro Motta 1 & Maxmlano Malte Resumo Este trabalho aborda a ntrodução da segurança baseada em métodos probablístcos,

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Finanças - BACEN 1997 CESPE

Finanças - BACEN 1997 CESPE Fnanças - BACE 997 CESPE Legenda: Tema, Itens Importantes Certo, Errado Questão 3. Exstem dversos nstrumentos fnanceros a dsposção do nvestdores: LIBOR, ações, opções, Eurobond, Swaps. Quanto às característcas

Leia mais

Um protótipo de mercado de ações usando Algoritmos Genéticos

Um protótipo de mercado de ações usando Algoritmos Genéticos > REVISA DE INELIGÊNCIA COMPUACIONAL APLICADA (ISSN: XXXXXXX), Vol. X, No. Y, pp. 1-10 1 Um protótpo de mercado de ações usando Algortmos Genétcos W. Fretas Departamento de Físca, PUC-Ro Resumo O modelo

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices Unversdade Federal Flumnense Insttuto de Matemátca e Estatístca Métodos Estatístcos Aplcados à Economa I (GET7) Números Índces Ana Mara Lma de Faras Departamento de Estatístca Agosto 25 Sumáro Índces Smples.

Leia mais

4 Otimização e Diversificação: o Binômio Risco-Retorno

4 Otimização e Diversificação: o Binômio Risco-Retorno 4 Otmzação e Dversfcação: o Bnômo Rsco-Retorno O alto dnamsmo e a crescente sofstcação do mercado fnancero mundal fazem com que os nvestdores tenham o constante desafo de utlzarem estratégas que maxmzem

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

AS CARTEIRAS DE INVESTIMENTO E A SEMIVARIÂNCIA

AS CARTEIRAS DE INVESTIMENTO E A SEMIVARIÂNCIA AS CARTEIRAS DE INVESTIMENTO E A SEMIVARIÂNCIA chrstóvão thago de brto neto Professor Adjunto II do Programa de Engenhara de Produção da Unversdade Federal do Ro Grande do Norte (UFRN) - E-mal: brto@ufrnet.br

Leia mais