CAPÍTULO IV TEORIA DE JOGOS

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO IV TEORIA DE JOGOS"

Transcrição

1 CAPÍTULO IV TEORIA DE JOGOS

2 66 Teora de Jogos Caracterzação:. Cenáro determnístco.. v. Um conjunto de agentes de decsão (jogadores) Um conjunto de estratégas (acções) puras Uma função utldade para cada jogador que permte determnar os ganhos assocados a cada estratéga. Jogos de Soma Nula Os jogadores são oponentes A soma das utldades dos os jogadores é constante (nula) Se tvermos dos jogadores, o que um ganha é gual ao que o outro perde. 66

3 67 Exemplo ,-3,- 5,-5 2,-2 2 5,-5 3,-3 2,-2 0,-0 3 4,-4 0,0,- 4,-4 O que é ganho pelo jogador A é perddo pelo jogador B É natural admtr que o resultado é o mas favorável Repetções do jogo conduzram a cclos Não estável 67

4 68 Exemplo ,-3,- 5,-5 2,-2 2 5,-5 3,-3 4,-4 0,-0 3 4,-4 0,0,- 4,-4 Nem sempre é possível encontrar uma estratéga pura estável (ponto sela) Nestes casos tem de se recorrer a estratégas mstas Uma estratéga msta é uma dstrbução de probabldades das estratégas puras. 68

5 69 Exemplo Estratéga Msta: Jogador A (/2,/2,0) Jogador B (/6,0,5/6) 69

6 70 Seja p (q) a probabldade do jogador A (B) optar pela estratéga pura. O vector p=[p,p2,...,pn] (q=[q,q2,...,qn]) defnrá a estratéga do jogador A (B). A solução que procuramos corresponde a optmzar as seguntes funções: max mn p j p u com p = j e max mn q j uj com q j = q j j j 70

7 7 A resolução dos seguntes problemas de PL corresponde à solução pretendda. Maxmzar x Sujeto a : p p 0 p u = j x Mnmzar y Sujeto a : q j q j j j 0 q u = j j y A solução óptma corresponde a um ponto sela uma vez que nenhum dos jogadores pode melhorar o seu resultado por alteração somente da sua estratéga. 7

8 72 Jogo de Soma Nula Estratégas Mstas Resolução gráfca: Apenas se pode usar com dos jogadores; Um deles não pode ter mas de duas/três estratégas; Sejam x e (-x ) as probabldades das estratégas do A; Sejam y, y 2,..., y 3 as probabldades das estratégas do B. Ganhos do jogador B assocados a cada estratéga: Estratéga : p u + ( p) u2 Estratéga 2: p u2 + ( p) u22 Estratéga M: p u M + ( p) u2m O ponto máxmo da função lnear por segmentos obtda mnmzando os ganhos corresponde à solução óptma. 72

9 73 Exemplo

10 74 Jogo de Soma Nula Estratégas Mstas Isto faz sentdo se o jogo for jogado repettvamente. Mas se for jogado uma só vez qual é a lógca? Há uma e uma s só estratéga smples a ser jogada! Nenhuma estratéga é melhor que outra sem a nfluênca do oponente. Importante é garantr que o adversáro não sabe qual a nossa opção nem quas as nossas probabldades. Assm, a melhor estratéga é escolher aleatoramente uma estratéga pura a partr da dstrbução de probabldades da estratéga msta óptma. 74

11 75 Jogo de Soma não Nula Stuações de conflto, mas nem sempre se verfca. Este tpo de jogos dvde-se em:. Conflto não há comuncação antes do jogo. Cooperação há comuncação antes do jogo Dlema do prsonero (Ball 985) Dos prsoneros foram apanhados na posse de dnhero falso. A este delto corresponde uma pena dee 2 anos de prsão. Apesar das autordades desconfarem que os dos prsoneros também são responsáves pela produção do referdo dnhero falso, não têm provas. A este segundo crme corresponde uma pena de 8 anos. A políca oferece a cada prsonero a possbldade de confessar em troca do anulamento da sua pena se o outro prsonero não confessar. Se ambos confessarem a pena é reduzda para 5 anos. 75

12 76 O ponto de Sela é generalzado para de Equlíbro (Nash, 950). A escolha feta pelos jogadores é um ponto de equlbro se nenhum jogador puder melhorar o seu resultado por alteração somente da sua decsão. Exemplo 6 Exemplo 8 C C2 C C2 C3 C4 R 0,4,5 R2 9,9 0,3 R 5,0 0,,20 0,0 R2 4,0, 2,0 20,0 R3 3,2 0,4 4,3 50, R4 2,93 0,92 0,9 00,90 Exemplo 7 C C2 C3 R 0,4,5 98,4 R2 9,9 0,3 99,8 R3,98 0,00 00,98 Exemplo 9 C C2 C3 C4 R 5,0 0,,0 0,20 R2 4,0, 2,0 20, R3 3,2 0,4 4,3 50, R4 2,93 0,92 0,9 00,90 76

13 77 Negocação -- Cooperação Dvsão da Tarte Sejam A e B 2 jogadores e θ A e θ B as suas porções. Os ganhos serão: Se θ A +θ B π A = θ A e π B = θ B. Se θ A +θ B > π A = π B = 0. Qualquer estratéga (θ A,θ B ): θ A +θ B = é equlíbro de Nash. θ Β Equlíbro de Nash X Ganhos Possíves U B U B X U Frontera de Pareto θ A U A U A Axomas Smetra a ordem dos jogadores não afecta a solução óptma Efcênca a solução satsfaz a optmaldade de Pareto Invarânca a solução está na frontera Independênca se elmnarmos soluções a óptma mantém-se 77

14 78 Solução de Nash A solução óptma corresponde a U * = max U X U U ( U U A )( U U B ) A B Para o caso da dvsão da tarte max θ A + θ B ( θ 0)( θ 0) A B ou equvalentemente max ( θ ( θ )) A A e a solução é obtda quando d 2 ( θ θ ) A dθ A A = 0 θ A = 2 78

15 79 Negocação Partlha de Rsco Nenhum dos ndvíduos está nteressado neste jogo. E conjuntamente? Como o poderam dvdr? 79

16 80 Negocação Partlha de rsco Seja (x 0,y 0 ) não pertencente a A nem a A 2. Se for possível encontrar (x,y ), (x 2,y 2 ) tal que: x+x2=x 0 y+y2=y 0 y g(x) e y2 g(x2) Então o jogo é colectvamente acetável. Jogo partlhado xk e x2k Cada partção corresponde a uma matrz de m 2 e a soma da lnha k é xk. A utldade de cada jogador é u =p u(x )+p 2 u(x 2 )+...+p n u(x n ). Todas as soluções que satsfaçam a optmaldade de pareto são soluções nteressantes. 80

17 8 Negocação Partlha de rsco Frontera de Pareto.Para cada ponto na frontera exste uma tangente descrta por λ u u = k, onde λ + λ e λ λ 0 + λ2 2 Para cada par, ) ( λ2 2 =, 2 λ encontra-se o par, ) max ( λ u + λ u ) e que se obtém fazendo λ u' ( x ) = λ2u' 2 ( x2 ) 2 2 ( u u2 que A frontera é obtda varando λ e λ 2 entre 0 e, tal que λ + λ2 = De entre estas soluções escolhe-se a que maxmza o produto dos ganhos dos ndvíduos (solução de Nash) max 0 { u ( x x ) u ( x x 0 )}

18 82 Dos empresáros têm a hpótese de fazer um negóco conjunto que requer um nvestmento de 00 ml euros. Se este for bem suceddo proporconará um retorno de 60%, enquanto que se fracassar 20% do captal nvestdo é perddo. Os empresáros estmam as probabldades de sucesso e fracasso em 80% e 20%, respectvamente. Caso os empresáros não cheguem a acordo, ou seja o negóco não se faça, ambos têm já prevsta uma alternatva de nvestmento. Neste últmo caso o empresáro obtera um rendmento de 7% enquanto para o empresáro 2 este sera de 5%. a) Sabendo que a função utldade da rqueza adconal para cada 3 empresáro é u ( x) = x, determne e represente grafcamente todas as partlhas do referdo negóco com nteresse para ambos os empresáros. b) Indque no gráfco da alínea anteror qual a partlha a escolher recorrendo ao crtéro de Nash. (Dado que se pretende uma aproxmação da solução de Nash e não propramente a solução de Nash, pode ndcar uma parte da curva em vez de um ponto.) Notas ) Use x para a quantdade de rqueza adconal e em mlhares de euros. ) Se o negóco não se fzer há uma alternatva de nvestmento. 3 u ( x) = x ' u ( x) = 3 x

19 83 Resolução As partlhas com nteresse para ambos satsfazem Pareto. λ u ' ( x k ) = λ u 2 ' 2 ( x 2k ) 3 λ 3 2 xk = 3 λ x2k 3/ 2 x k = ( λ λ2 ) x2k Como xk x2k = xk x2k = xk xk + logo 3/ 2 λ xk = x 3/ 2 3/ 2 k λ + λ2 Varando o valor de λ entre 0 e (λ 2 =-λ ) obtêm-se todos os valores de x k (x e x 2 ) e x 2k (x 2 e x 22 ). Os valores de utldade serão então calculados como U = 0.8 u( x ) u( x 2 ) U 2 = 0.8 u( x 2 ) u( x 22 ) 83

20 84 λ x x 2 U x 2 x 22 U

21 85 Negocação Não Cooperação Vejamos o exemplo da dvsão da tarte, mas onde exste a possbldade de fazer ofertas e contra ofertas. Neste caso as estratégas não são apenas acções mas sm regras de escolha de acções baseadas em acções escolhdas em períodos anterores (decsões encadeads). Problema: Jogadores: A e B. Acções: oferta, acetação e rejeção. Ganhos: se A for acete ao fm de m períodos A = m A m, B = m ( - A m, =/(+r) < é um factor de desconto (ncentvo para negocar mas cedo). 85

22 86 Negocação Não Cooperação Prmero, sem descontar: = Suponhamos que o jogador A é o prmero a propor A e o jogador B o últmo a aceta ou recusar. Suponhamos também que em caso de ndferença, o jogador em causa aceta a proposta. O jogador A só está nteressado na solução A =. Neste caso o jogador B é ndferente pos se rejetar ambos recebem zero, A = B = 0. Se acetar A = e B = 0. A vantagem do jogador A resde no facto de ser o últmo a propor (oferecer), logo recebe toda a tarte. 86

23 87 Negocação Não Cooperação Factor de desconto: =0.9 Suponhamos que o jogador A é o prmero a propor A e o jogador B o últmo a aceta ou recusar. Análse temporal do fm para o níco. Período A B π Oferece T 0 T =. T- A T- - T- =. T-2 B T-2 -(-) (-) T-2 =. T-3 A T-3 (-(-)) -(-(-)) T-3 =. T-4 B A/B obtém uma maor fata quando propõe oferta. Consderando só os períodos em que A propõe (ou B) o ganho dmnu com o tempo. Contnuando a parte de A tende para /(+) (=0.526) 87

24 88 Negocação Não Cooperação Factor de desconto dferentes,.e. A e B Quasquer que sejam os factores de desconto, a parte de A é dada por: θ A γ B = γ γ A B Consderando os factores de desconto forem guas podemos conclur que: Se for baxo então há ncentvo a chegar a acordo cedo logo a mportânca do prmero período é muto grande. (=0. então A =0.909) Se for elevado então não há ncentvo a chegar a acordo cedo. (=0.99 então A =0.503) 88

25 89 Negocação Não Cooperação Com custo de negocação (sem desconto) e tendo B um custo de atraso maor. Análse temporal. Período A B Oferece T x -x B T+ x+c B -x-c B A T+2 x+c B -C A -x-c B +C A B T+3 x+2c B -C A -x-2c B +C A A T+4 x+2c B -2C A -x-2c B +2C A B Como o custo do B é maor do que o custo de A, o A recebe cada vez mas (e B cada vez menos), ou seja, B estara dsposto a desstr e ganhar zero. A fca com tudo, pos o B tem mas a perder. 89

26 90 Negocação Não Cooperação Com custo de negocação (sem desconto) e tendo A um custo de atraso maor. O A recebe c B e o B recebe -c B. O A sabe que o B va oferecer (0,) no segundo período. Do prmero para o segundo período o B va perder c B então está dsposto a acetar - c B no prmero período. Com custos de negocação guas (sem desconto). Qualquer dvsão onde cada um dos ntervenentes receba pelo menos c=c A =c B corresponde a um ponto de equlíbro. 90

27 9 Jogos com n-pessoas Função característca {,2, n} N, = --conjunto de jogadores. S N -- é uma colgação de S jogadores. V (S) --função característca. Exemplo : O José Slva desenvolveu um medcamento novo que não consegue produzr e comercalzar soznho. No entanto pode vender a fórmula a uma de duas empresas farmacêutcas. O José e a empresa por ele selecconada dvdrão o lucro de mlhão de euros. V ({}) = 0, V ({ José}) = V ({ empresa}) V ({ José, empresa}) = = 0 9

28 92 Exemplo 2: O Sr. Antóno é dono de um terreno que vale mlhão de euros. O terreno pode ser urbanzado e como tal o seu valor comercal aumentará. Se a urbanzação for feta pela empresa SC o seu valor passará para 2 mlhões de euros, enquanto que se esta for feta pela ME este valor será de 3 mlhões de euros. Encontre a função característca para cada um destes exemplos. 92

29 93 Propredades da Função Característca Superadtvdade Sejam A e B dos subconjuntos de jogadores A, B N e A B = {}. Então V ( A B) V ( A) + V ( B) Raconaldade Seja X = { x, x2,, xn} o vector dos ganhos. X é solução canddata se V ( N) x n = = x V ({ }), N Determne as soluções do exemplo 2. 93

30 94 Domnânca Dados dos vectores de ganhos X = { x, x2,, xn} e Y { y, y2,, yn} = dz-se que Y domna X com uma colgação S, Y > S X se: S y V j S : ( S) y > x j e y x, S A solução X pode ser elmnada, pos nunca será escolhda, já que os jogadores em S se podem juntar em colgação e como tal receber os ganhos em Y. 94

31 95 Exemplo 3: Consdere um jogo com 3 pessoas, com a segunte função característca. V V V V V ({}) = 0 ({ }) = V ({2}) = V ({3}) = ({,2}) ({,3}) ({2,3}) = = = V ({,2,3}) = Sejam X e Y as soluções dadas a segur: X = (0.05,0.09,0.05) e = (0.,0.8,0. ) X. Mostre que Y {,3} >. X 95

32 96 Encontrar Soluções Não Domnadas Exemplo : X { x, x2,, x = n é solução sse: } x V ({ }), =,2,3 e x = n = X é não domnada sse: S x V ( S) S N Exemplo 2: 96

33 97 Valor de Shappley As soluções não domnadas nem sempre proporconam ganhos equtatvos. No exemplo, o nventor do medcamento é o jogador mas mportante. Mas faz sentdo receber todo o lucro? Lloyd Shappely desenvolveu uma forma alternatva de dstrbur os ganhos, baseada nos seguntes axomas. Axoma : alterar a ordem dos jogadores conduz á troca dos respectvos ganhos. n Axoma 2: x = V ( N) = Axoma 3: Um jogador que não acrescente valor a nenhuma colgação recebe 0. 97

34 98 Axoma 4: Se x e y são os valores de shappley para os jogos V ev, respectvamente. Então x+y é o valor de shappley para o V + V Valor de Shappley Se os axomas forem acetes então x = S : P n S N ( S)( V ( S { }) V ( S)) onde S!( n S )! P n ( S) = n! 98

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot)

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot) Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 2.1 Olgopólo em Quantdades (Cournot) Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO II 1 2.1 Olgopólo em Quantdades

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

Implementação Bayesiana

Implementação Bayesiana Implementação Bayesana Defnção 1 O perfl de estratégas s.) = s 1.),..., s I.)) é um equlíbro Nash-Bayesano do mecansmo Γ = S 1,..., S I, g.)) se, para todo e todo θ Θ, u gs θ ), s θ )), θ ) θ Eθ u gŝ,

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia I

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia I UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Cêncas Económcas e Empresaras Mcroeconoma I Lcencaturas em Admnstração e Gestão de Empresas e em Economa 9 de Janero de 004 Fernando Branco Teste Fnal fbranco@fceeucppt

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Roteiro. Horário da disciplina: 14h15 a 15h45

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Roteiro. Horário da disciplina: 14h15 a 15h45 Teora dos Jogos Prof. Mauríco Bugarn Eco/UnB 04-I Rotero Horáro da dscplna: 4h5 a 5h45 Introdução: Por que pensar estrategcamente? Exemplos de stuações nas quas pensar estrategcamente faz sentdo Concetos

Leia mais

DECISÃO SOB INCERTEZA

DECISÃO SOB INCERTEZA PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br 1 Introdução

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Modelação com Variáveis Discretas

Modelação com Variáveis Discretas Engenhara de Processos e Sstemas Modelação com Varáves Dscretas Fernando Bernardo Fev 2011 mn f ( x, y, θ ) x, y s. t. h( x, y, θ ) = 0 g( x, y, θ ) 0 x x x L x real y {0,1}) U Leque de aplcações. Tpos

Leia mais

Microeconomia I. Licenciaturas em Administração e Gestão de Empresas e em Economia

Microeconomia I. Licenciaturas em Administração e Gestão de Empresas e em Economia Mcroeconoma I Lcencaturas em Admnstração e Gestão de Empresas e em Economa Ano lectvo 010-011 Teste Intermédo 1º Semestre 5 de Outubro de 010 Regente: Fernando Branco (fbranco@ucppt) Catarna Slva, Danel

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs.

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs. Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br Introdução Até agora: conseqüêncas das escolhas dos consumdores

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Responda às questões utilizando técnicas adequadas à solução de problemas de grande dimensão.

Responda às questões utilizando técnicas adequadas à solução de problemas de grande dimensão. Departamento de Produção e Sstemas Complementos de Investgação Operaconal Exame Época Normal, 1ª Chamada 11 de Janero de 2006 Responda às questões utlzando técncas adequadas à solução de problemas de grande

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Jogos. Jogos. Jogo. Jogo. Óptimo alvo investigação

Jogos. Jogos. Jogo. Jogo. Óptimo alvo investigação Jogos Óptmo alvo nvestgação O seu estado é fácl de representar; As acções são bem defndas e o seu número lmtado; A presença de oponentes ntroduz ncerteza tornando o problema de decsão mas complcado. Estamos

Leia mais

UNIVERSIDADE NOVA DE LISBOA Faculdade de Economia Análise de Dados e Probabilidade 2º Semestre 2008/2009 Exame Final 1ª Época. Grupo I (4 Valores)

UNIVERSIDADE NOVA DE LISBOA Faculdade de Economia Análise de Dados e Probabilidade 2º Semestre 2008/2009 Exame Final 1ª Época. Grupo I (4 Valores) UNIVERSIDADE NOVA DE LISBOA Faculdade de Economa Análse de Dados e Probabldade º Semestre 008/009 Exame Fnal ª Época Clara Costa Duarte Data: 8/05/009 Graça Slva Duração: h0 Grupo I (4 Valores) A gelatara

Leia mais

Covariância na Propagação de Erros

Covariância na Propagação de Erros Técncas Laboratoras de Físca Lc. Físca e Eng. omédca 007/08 Capítulo VII Covarânca e Correlação Covarânca na propagação de erros Coefcente de Correlação Lnear 35 Covarânca na Propagação de Erros Suponhamos

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia I

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia I UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Cêncas Económcas e Empresaras Mcroeconoma I Lcencaturas em Admnstração e Gestão de Empresas e em Economa de Abrl de 003 Fernando Branco Exame para Fnalstas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 4.3 Decsão Intertemporal do Consumdor O Mercado de Captal Isabel Mendes 2007-2008 4/17/2008 Isabel Mendes/MICRO II 1 3. EQUILÍBRIO

Leia mais

Forma extensiva: Jogos na forma extensiva: Definições: Observações

Forma extensiva: Jogos na forma extensiva: Definições: Observações Forma extensva: Jogos na forma extensva: Drew Fudenberg e Jean Trole (993, cap. 3) Chrstan Montet e Danel Serra (003, cap. ) Descrção exata dos sucessvos movmentos dos jogadores em conexão com a nformação

Leia mais

TESTE DO QUI-QUADRADO - Ajustamento

TESTE DO QUI-QUADRADO - Ajustamento Exemplo 3: Avalar se uma moeda ou um dado é honesto; Em 100 lances de moeda, observaram-se 65 coroas e 35 caras. Testar se a moeda é honesta. 1 H 0 : a moeda é honesta; H 1 : a moeda não é honesta; 2 α

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro UNIVERIDADE DE ÃO PAULO FACULDADE DE ECONOMIA, ADMINITRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINITRAÇÃO RAD1507 Estatístca Aplcada à Admnstração I Prof. Dr. Evandro Marcos adel Rbero

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Lnear (PL) Aula : Dualdade. Defnção do Problema Dual. Defnção do problema dual. O que é dualdade em Programação Lnear? Dualdade sgnfca a exstênca de um outro problema de PL, assocado a cada

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Optimização com variáveis discretas

Optimização com variáveis discretas Engenhara de Processos e Sstemas Optmzação com varáves dscretas Fernando Bernardo Fev 2013 mn f ( x,, θ ) x, s. t. h( x,, θ ) = 0 g( x,, θ ) 0 x x x L U x real, {0,1} Por que necesstamos de varáves dscretas?

Leia mais

Modelo Logístico. Modelagem multivariável com variáveis quantitativas e qualitativas, com resposta binária.

Modelo Logístico. Modelagem multivariável com variáveis quantitativas e qualitativas, com resposta binária. Modelagem multvarável com varáves quanttatvas e qualtatvas, com resposta bnára. O modelo de regressão não lnear logístco ou modelo logístco é utlzado quando a varável resposta é qualtatva com dos resultados

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

5 Implementação Procedimento de segmentação

5 Implementação Procedimento de segmentação 5 Implementação O capítulo segunte apresenta uma batera de expermentos prátcos realzados com o objetvo de valdar o método proposto neste trabalho. O método envolve, contudo, alguns passos que podem ser

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca Undade B Capítulo 9 Geradores elétrcos esoluções dos testes propostos 1 T.195 esposta: d De U r, sendo 0, resulta U. Portanto, a força eletromotrz da batera é a tensão entre seus termnas quando

Leia mais

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) UNDADE V DELNEAMENTO NTERAMENTE CASUALZADO (DC) CUABÁ, MT 015/ PROF.: RÔMULO MÔRA romulomora.webnode.com 1. NTRODUÇÃO Este delneamento apresenta como característca prncpal a necessdade de homogenedade

Leia mais

Modelo de Programação Estocástica

Modelo de Programação Estocástica Modelo de Programação Estocástca 23 2 Modelo de Programação Estocástca 2.. Concetos báscos A programação estocástca (PE) é defnda como um modelo de otmzação que apresenta um ou mas parâmetros estocástcos

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo 3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

CAPÍTULO 11 JOGOS REPETIDOS

CAPÍTULO 11 JOGOS REPETIDOS CAPÍTULO 11 JOGOS REPETIDOS Objetvos: Defnr o conceto de jogo repetdo, desenvolver as noções de equlíbro perfeto em subjogos para esses jogos e mostrar, por meo de uma versão do Teorema Popular, que o

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

MAP Cálculo Numérico e Aplicações

MAP Cálculo Numérico e Aplicações MAP0151 - Cálculo Numérco e Aplcações Lsta 5 (Correção Neste ponto, todos já sabemos que todas as questões têm o mesmo valor, totalzando 10.0 pontos. (Questão 1 Fque com vontade de fazer mas do que fo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Nome: Nº: Estatística para Economia e Gestão Licenciaturas em Economia e Gestão. 2.º Semestre de 2008/2009

Nome: Nº: Estatística para Economia e Gestão Licenciaturas em Economia e Gestão. 2.º Semestre de 2008/2009 Estatístca para Economa e Gestão Lcencaturas em Economa e Gestão.º Semestre de 008/009 Exame Fnal (.ª Época) 16 de Junho de 009; 17h30m Duração: 10 mnutos INSTRUÇÕES Escreva o nome e número de aluno em

Leia mais

3 A técnica de computação intensiva Bootstrap

3 A técnica de computação intensiva Bootstrap A técnca de computação ntensva ootstrap O termo ootstrap tem orgem na expressão de língua nglesa lft oneself by pullng hs/her bootstrap, ou seja, alguém levantar-se puxando seu própro cadarço de bota.

Leia mais

ESTATÍSTICA APLICADA II ANO LECTIVO 2011/2012. Exame Final 26 de Julho de 2012

ESTATÍSTICA APLICADA II ANO LECTIVO 2011/2012. Exame Final 26 de Julho de 2012 ETATÍTICA APLICADA II ANO LECTIVO / Exame Fnal 6 de Julho de Duração : H 3 M Nota: Responder um grupo por folha (utlze frente e verso de cada folha) Em todas as questões apresentar os cálculos efectuados

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

MODELOS DE REGRESSÃO PARAMÉTRICOS

MODELOS DE REGRESSÃO PARAMÉTRICOS MODELOS DE REGRESSÃO PARAMÉTRICOS Às vezes é de nteresse nclur na análse, característcas dos ndvíduos que podem estar relaconadas com o tempo de vda. Estudo de nsufcênca renal: verfcar qual o efeto da

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

Teoremas de Otimização com Restrições de Desigualdade

Teoremas de Otimização com Restrições de Desigualdade Teoremas de Otmzação com Restrções de Desgualdade MAXIMIZAÇÃO COM RESTRIÇÃO DE DESIGUALDADE Consdere o segunte problema (P) de maxmzação condconada: Maxmze Fx onde x x,x,...,x R gx b As condções de Prmera

Leia mais

INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR. (Exercícios)

INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR. (Exercícios) INVESTIGAÇÃO OPERACIONAL PROGRAMAÇÃO NÃO LINEAR (Exercícos) ( Texto revsto para o ano lectvo 2001-2002 ) Antóno Carlos Moras da Slva Professor de I.O. Recomendações 1. Fazer dez exercícos ou o mesmo exercíco

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 B Teoria dos Jogos Maurício Bugarin. Desenvolver o modelo de jogo repetido

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 B Teoria dos Jogos Maurício Bugarin. Desenvolver o modelo de jogo repetido Teora dos Jogos Prof. Mauríco Bugarn Eco/UnB 015-II Rotero Capítulo 3. Jogos Jogos Repetdos Desenvolver o modelo de jogo repetdo Provar o teorema popular Aplcar para conluo no jogo de dlema dos prsoneros

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES Prof. Responsável: José Manuel Viegas

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES Prof. Responsável: José Manuel Viegas Mestrado Integrado em Engenhara Cvl Dscplna: TRANSPORTES Prof. Responsável: José Manuel Vegas Sessão Prátca 7 (Tpo A): Dmensonamento de ntersecções semaforzadas smples Curso 2008/09 1/22 INTERSECÇÕES Introdução

Leia mais

DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS

DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS 177 DIFERENCIANDO SÉRIES TEMPORAIS CAÓTICAS DE ALEATÓRIAS ATRAVÉS DAS TREND STRIPS Antôno Carlos da Slva Flho Un-FACEF Introdução Trend Strps (TS) são uma nova técnca de análse da dnâmca de um sstema,

Leia mais

Variáveis indexadas, somatórios e produtórios

Variáveis indexadas, somatórios e produtórios 1 Computação MIEC - FEUP complado por Ana Mara Faustno Varáves ndexadas, somatóros e produtóros Varáves ndexadas Quando se pretende estudar váras característcas de um conjunto de ndvíduos convém armazenar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS DECvl ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO ÉTODO DE CROSS Orlando J. B. A. Perera 20 de ao de 206 2 . Introdução O método teratvo ntroduzdo por Hardy Cross (Analyss of Contnuous Frames by Dstrbutng Fxed-End

Leia mais

4.1 Modelagem dos Resultados Considerando Sazonalização

4.1 Modelagem dos Resultados Considerando Sazonalização 30 4 METODOLOGIA 4.1 Modelagem dos Resultados Consderando Sazonalzação A sazonalzação da quantdade de energa assegurada versus a quantdade contratada unforme, em contratos de fornecmento de energa elétrca,

Leia mais

Introdução a Processos Estocásticos:Exercícios

Introdução a Processos Estocásticos:Exercícios lvroexerccos 2017/3/19 11:24 page #1 Introdução a Processos Estocástcos:Exercícos Luz Antono Baccalá Escola Poltécnca da USP Departamento de Engenhara de Telecomuncações e Controle 2016 lvroexerccos 2017/3/19

Leia mais

Método do limite superior

Método do limite superior Introdução O método do lmte superor é uma alternata analítca apromada aos métodos completos (e: método das lnhas de escorregamento) que possu um domíno de aplcabldade muto asto e que permte obter alores

Leia mais

SIMULADO PROVA DE MICROECONOMIA. 19/07/2012 QUINTA-FEIRA HORÁRIO: 10:30h às 12:45h

SIMULADO PROVA DE MICROECONOMIA. 19/07/2012 QUINTA-FEIRA HORÁRIO: 10:30h às 12:45h SIMULDO PROV DE MICROECONOMI 9/07/0 QUINT-FEIR HORÁRIO: 0:30h às :5h QUESTÃO 0 Com respeto aos efetos renda e substtução, avale as afrmatvas: (0) Quando o preço de um bem vara, se os efetos substtução

Leia mais

6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA)

6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA) ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA 7 6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA As desvantagens do método BM apresentadas no capítulo 5 sugerem que a alocação dos benefícos seja feta proporconalmente ao prejuízo causado

Leia mais

Testes não-paramétricos

Testes não-paramétricos Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ val@mat.ufrgs.br Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Nesse prátca, estudaremos a potênca dsspada numa resstênca de carga, em função da resstênca nterna da fonte que a almenta. Veremos o Teorema da Máxma Transferênca de Potênca, que dz que a potênca transferda

Leia mais

TRANSPORTES. Sessão Prática 11 Dimensionamento de Interseções Semaforizadas

TRANSPORTES. Sessão Prática 11 Dimensionamento de Interseções Semaforizadas Mestrado Integrado em Engenhara Cvl TRANSPORTES Prof. Responsável: Lus Pcado Santos Sessão Prátca 11 Dmensonamento de Interseções Semaforzadas Insttuto Superor Técnco / Mestrado Integrado Engenhara Cvl

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

N 70 = 40 25N+1500 = N = 1300 N = 52 LETRA D

N 70 = 40 25N+1500 = N = 1300 N = 52 LETRA D QUESTÃO 01 QUESTÃO 0 Seja x a méda dos saláros do departamento comercal. A méda procurada é tal que 00 = x + 30 + 4 4 + + 4 x = 000 0 3300 x = R$ 400,00. QUESTÃO 03 4 0+ 3 Tem-se xp I = = 1,8 e 4+ Logo,

Leia mais

Parênteses termodinâmico

Parênteses termodinâmico Parênteses termodnâmco Lembrando de 1 dos lmtes de valdade da dstrbução de Maxwell-Boltzmann: λ

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais