Diferença entre a classificação do PIB per capita e a classificação do IDH

Tamanho: px
Começar a partir da página:

Download "Diferença entre a classificação do PIB per capita e a classificação do IDH"

Transcrição

1 Curso Bem Estar Socal Marcelo Ner - Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca de metas socas? Quas metas devem ser estabelecdas? Como fnancar os programas socas necessáros para alcançar as metas? Ilustraçâo sobre dstânca que exste entre rankngs de desenvolvmento econômco (Pb percapta) do país e o seu desenvolvmento humano (IDH) Dferença entre a classfcação do PIB per capta e a classfcação do IDH Fonte: Nações Undas e Banco Mundal 2001 Países Sem nformação

2 Sstema de Incentvo Um típco contrato de procurement é aquele onde o governo paga o custo do projeto C mas uma transferênca t que depende do desempenho do agente, onde: t = a bc Contrato Cost-plus ou custo mas uma valor fxo (cost-plus-fxed-fee): é o caso onde b=0; neste caso o agente não tem nenhum ncentvo para reduzr o custo do projeto, pos ele sempre va receber o custo do projeto mas um valor fxo, que ndepende do custo ncorrdo. Contrato preço-fxo (fxed-prce): é o caso onde b=1; neste caso, o agente recebe um valor fxo pelo contrato, e fca responsável pelos custos do projeto; é a stuação onde o agente tem o máxmo de ncentvo para ser efcente e ncorrer nos menores custos possíves. Contratos lneares que apresentam um valor ntermedáro para b entre 0 e 1 são chamados de Contratos de Incentvo. 3. Modelo Básco O que vamos descrever a segur são as hpóteses báscas de um modelo de regulação ou procurement. Tal modelo básco será adaptado para o nosso caso, onde um prncpal (governo federal) oferece a város agentes (prefeturas) um contrato com metas socas estabelecdas, as quas devem ser alcançadas pela mplementação de uma sére de projetos socas. Veremos que o governo federal fcará responsável por arcar com os custos destes projetos, e as prefeturas receberão, além das verbas correspondentes aos custos ncorrdos nos projetos, uma verba extra varável, que dependerá do desempenho na mplementação dos projetos propostos Hpóteses Báscas 1. Regulação está sujeta aos problemas de seleção adversa e moral hazard: 2

3 Isto é, o prncpal não conhece nem o tpo do agente - parâmetro b de seleção adversa - nem consegue observar o esforço empregado - parâmetro e de moral hazard. C β > 0 C C e ee < 0 0 Defnremos a desutldade, em termos monetáros, do esforço e por parte do agente como sendo Ψ (e), onde Ψ > Ψ > Ψ > 0, 0 0 Observar que o modelo assume que o prncpal tem nformação ncompleta sobre a função custo mas não sobre a função desutldade do esforço. 2. O custo C ncorrdo e o resultado fnal são verfcáves: Contudo, o prncpal não consegue desmembrar o quanto do custo se deve a qualdade do agente ou ao seu esforço. 3. O agente pode se recusar a acetar o contrato se não receber um nível mínmo de utldade esperada Esta hpótese serve para respetar a restrção de partcpação do agente. Seja U a utldade esperada do agente. No nosso caso, vamos normalzar este valor para zero. 4. O prncpal pode realzar transferêncas monetáras para o agente: Esta hpótese é mportante, pos nos permte tratar o caso de procurement, que é o caso em questão. 5. O prncpal e o agente são neutros ao rsco em relação à renda 6. Por convenção, o prncpal recebe a sua receta a partr de mpostos cobrados dos consumdores e usa para pagar o custo C mas a transferênca t. 7. O agente se mporta somente com a receta recebda e com o esforço empregado 8. O prncpal se depara com um custo sombra, l>0, sobre a receta arrecadada va mpostos. A déa por trás desta hpótese é de que a arrecadação é feta através de mpostos dstorcvos. Desta forma, cada undade monetára custa à socedade (1+λ) undades 3

4 monetáras. Importante ressaltar, que o valor de λ é tomado como dado no nosso problema. 9. O objetvo do prncpal é maxmzar o excedente total da socedade (prncpal benevolente). 10. O prncpal é que elabora o contrato. Modelo Vamos trabalhar com a déa das metas socas como sendo parte das cláusulas contratuas estabelecdas por um prncpal ao contratar um agente para realzar um projeto. A função das metas será aumentar a efcênca do agente na realzação do projeto proposto, ao permtr que o prncpal forneça os ncentvos corretos para que o agente se esforce. Ilustraremos o modelo com um exemplo, onde o governo federal estabelece um contrato, com metas de taxa de matrícula escolar fxadas. O agente é a prefetura nteressada em receber verbas para nvestr em educação. O quanto cada prefetura recebe depende do seu desempenho em relação às metas. A meta estabelecda será consderada como sendo um projeto públco ndvsível que tem valor S para a socedade. O projeto tem um agente responsável. A função custo C do projeto é dada por: C = β - e Onde: β é um parâmetro que mede a efcênca ou qualdade admnstratva do agente; e é o esforço do agente (como hpótese smplfcadora, suporemos e>0 entretanto não há nenhum problema em tratar o caso onde o esforço pode assumr valores negatvos). Para o agente, realzar esforço mplca em desutldade. Quanto maor o esforço maor a desutldade. Já vmos que por esforço devemos entender não só o tempo gasto na realzação do projeto, mas também outros aspectos qualtatvos do trabalho desempenhado. A desutldade cresce com o esforço, Ψ > 0, e a taxas crescentes Ψ > 0, satsfazendo Ψ ( 0) = 0. 4

5 O agente recebe o custo do projeto mas uma transferênca (verba extra) t. A sua utldade é: U = t - Ψ(e), sendo t - Ψ(e) 0, restrção de partcpação (RP) Seja λ>0, logo o mposto dstorcvo mpõem uma desutldade de $ (1+λ) na socedade para cada $ 1 arrecadado. Na ótca do prncpal o bem-estar socal do projeto é: S ( 1 + λ ).( t + β - e ) + t - Ψ( e ) = S ( 1 + λ ).[ β - e + Ψ(e)] - λ.u (*) A característca prncpal desta função de bem-estar socal é que o prncpal não gosta de dexar uma renda, U, para o agente. Lembrar que uma renda postva sgnfca que o agente, prefeto, recebe uma transferênca t maor do que a desutldade do esforço empregado. A déa que está por trás desse nosso modelo é a segunte: todo prefeto, uma vez que ele assne o contrato, gostara de gastar o dnhero da forma menos custosa em esforço, esforço este conforme defndo anterormente. Porém, quanto menor for este esforço maor será o custo do projeto, o que não é de nteresse do governo, pos este é responsável por arcar com os custos. O que o governo faz é crar um ncentvo, através do estabelecmento de uma verba-extra (transferênca), tanto maor quanto menor o custo ncorrdo, procurando estmular o agente a se esforçar para reduzr os custos. Vamos analsar que tpo de contrato, ncentvo, o prncpal devera oferecer ao agente se ele pudesse observar tanto o tpo do agente quanto o seu esforço. Modelo com Informação Completa Neste caso, o prncpal observa o tpo, β, e o esforço do agente, e. O resultado da maxmzação de (*) sujeta a restrção de partcpação (RP) é que: U = 0 ou t = Ψ(e*) e = e* ou Ψ (e) = 1 : a transferênca é gual a desutldade de efetuar o esforço ótmo : o esforço realzado é o ótmo 5

6 Uma manera de obter tas resultados é o prncpal oferecer um contrato com preço fxo, tal que: t = a ( C C*) onde a Ψ(e*) e C β - e* Modelo com Informação Incompleta Nosso objetvo, porém, é tratar dos casos onde exste uma assmetra de nformações de forma que o prncpal não conhece nem o tpo nem observa o esforço do agente. Para tratar desse caso vamos supor que o agente possa ser de dos tpos β 1 e β 2 com β 1 < β 2. Supomos também que a probabldade de um agente ser do tpo mas capaz, β 1, é gual a v. O problema do prncpal é smlar ao caso anteror, com a dferença que agora teremos duas restrções de partcpação e duas restrções de compatbldade de ncentvos. A solução do problema traz como resultado que o nível de esforço realzado pelo agente mas capaz será gual ao ótmo e ele obterá uma renda postva, o que não ocorra no caso com nformação completa. O agente menos capaz realzará um esforço menor do que ótmo, ao contráro do caso com nformação completa, e obterá uma renda gual a zero como ocorra naquele caso. Uma característca crucal desse tpo de modelo é que a assmetra de nformações mplca que o prncpal pode ser obrgado a dar uma renda aos agentes. Essa renda sgnfca que um prefeto mas competente acaba por receber como transferênca mas do que ele tem de desutldade por realzar o esforço ótmo. Modelo com Metas baseadas na Performance Relatva Em vrtude da redução da efcênca dos contratos quando exste uma assmetra de nformações, o prncpal deve utlzar todas as nformações dsponíves para reduzr estas assmetras. Uma manera de fazer sso é comparando a performance dos dferentes agentes, de forma a aprender algo sobre o tpo de cada um dos agentes. Suponha que o prncpal quer obter as mesmas metas em duas regões dstntas. Suponha que a função custo dos a agentes seja do tpoc = β + β e, onde a β é um choque agregado comum a todos os 6

7 agentes e β é um choque dossncrátco, ndependente de utldade (renda) do agente. O bem estar-socal será gual a: j β. Seja, U t Ψ( e ) =,a { S (1 + λ )[ C + Ψ( e )] λu } O prncpal observa somente os custos realzados. Os agentes conhecem a realzação de β a e β antes de frmar o contrato. No caso de só termos choques dossncrátcos, a β = 0, o prncpal age como nos casos estudados anterormente com nformaçã o ncompleta. Entretanto, se tvermos o caso onde só ocorrem choques agregados, β = 0, o resultado frst-best equvalente ao caso com nformação completa - pode ser obtdo, ndependentemente do fato do prncpal ter menos nformação do que os agentes. Para sso, o que o prncpal precsa fazer é oferecer um contrato que leve em conta os custos relatvos entre os agentes: t = Ψ( e * ) ( C C J ) Desta forma, ambos os agentes termnam por escolher o esforço ótmo, e*, e obtém U=0, tal como com nformação completa. No caso em que ambos os tpos de choques ocorrem, temos uma stuação ntermedára, onde o bem-estar será como se o prncpal pudesse observar os choques agregados, mas não pudesse observar os choques dossncrátcos. Apesar sua atratvdade, a utlzação de mecansmos de comparação de performance é de dfícl mplementação, pos mutas vezes os aspectos dossncrátcos prevalecem sobre os aspectos agregados. Extensões ao Modelo Básco 7

8 Modelos Dnâmcos Laffont e Trole (1988) tratam da dnâmca dos contratos de ncentvo. Este artgo faz uma extensão do modelo básco acma descrto. Nele estuda-se um modelo de prncpal-agente em dos períodos, no qual o prncpal atualza o seu ncentvo depos de observar a performance do agente no 1 o período. O agente possu mas nformação sobre suas habldades do que o prncpal, o qual oferece um esquema de ncentvo (contrato) no 1 o período e observa de alguma forma uma medda de performance do agente (no nosso caso, a melhora dos ndcadores socas em questão), a qual depende da habldade do agente e do seu esforço (não observável). No 2 o período, o prncpal atualza o esquema de ncentvos e o agente é lvre para acetar ou não o novo esquema. Caso ele não acete, o contrato é desfeto. As estratégas neste modelo devem ser perfetas, e a atualzação das crenças do prncpal sobre a habldade do agente devem segur a regra de Bayes. O ponto central do artgo é que o efeto ratchet leva a muto poolng no 1 o período. Uma prmera conclusão é que para qualquer esquema de ncentvos do 1 o período não exste equlíbro separador. Além dsso, quando a ncerteza sobre a habldade do agente é pequena, o esquema ótmo deve envolver uma grande quantdade de poolng. O artgo também mostra as condções necessáras e sufcentes para a exstênca dos equlíbros de partção. Comparação de Performance Um dos problemas dos modelos descrtos é como cumprr as metas num ambente onde exstem choques, de forma que o resultado obtdo pelo agente não dependa somente do seu esforço, mas também, em parte, de fatores aleatóros fora do seu controle. Para tratar dessa questão, exste uma bblografa que procura estudar mecansmos de ncentvos baseados na comparação da performance relatva entre os agentes. No nosso caso de metas socas, tas modelos poderam servr para determnar o quanto o governo transferra para os agentes em função dos desempenhos relatvos desses em relação às metas estabelecdas. Entre os artgos que tratam desse tema temos Mookherjee (1984) e Meyer e Vckers (1997). Este últmo analsando a utlzação da comparação de performances em modelos dnâmcos. 8

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

INFLAÇÃO E DESIGUALDADE*

INFLAÇÃO E DESIGUALDADE* Artgos Outono 2009 INFLAÇÃO E DESIGUALDADE* Isabel H. orrea** 1. INTRODUÇÃO A baxa persstente da taxa de nflação é talvez a mudança de polítca maor, mas sustentada, e comum a um maor número de países desenvolvdos.

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Resumo: Qualdade é hoje uma palavra chave para as organzações. Sob o símbolo da Qualdade abrgam-se flosofas, sstemas

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

CAPÍTULO IV TEORIA DE JOGOS

CAPÍTULO IV TEORIA DE JOGOS CAPÍTULO IV TEORIA DE JOGOS 66 Teora de Jogos Caracterzação:. Cenáro determnístco.. v. Um conjunto de agentes de decsão (jogadores) Um conjunto de estratégas (acções) puras Uma função utldade para cada

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot)

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot) Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 2.1 Olgopólo em Quantdades (Cournot) Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO II 1 2.1 Olgopólo em Quantdades

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

EFEITO SOBRE A EQUIDADE DE UM AUMENTO DO IMPOSTO SOBRE O VALOR ACRESCENTADO*

EFEITO SOBRE A EQUIDADE DE UM AUMENTO DO IMPOSTO SOBRE O VALOR ACRESCENTADO* Artgos Prmavera 2007 EFEITO SOBRE A EQUIDADE DE UM AUMENTO DO IMPOSTO SOBRE O VALOR ACRESCENTADO* Isabel Correa**. INTRODUÇÃO Apesar das reformas fscas serem um fenómeno recorrente nas últmas décadas em

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

DECISÃO SOB INCERTEZA

DECISÃO SOB INCERTEZA PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br 1 Introdução

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

IMPOSTO ÓTIMO SOBRE O CONSUMO: RESENHA DA TEORIA E UMA APLICAÇÃO AO CASO BRASILEIRO*

IMPOSTO ÓTIMO SOBRE O CONSUMO: RESENHA DA TEORIA E UMA APLICAÇÃO AO CASO BRASILEIRO* ISSN 1415-4765 TEXTO PARA DISCUSSÃO Nº 811 IMPOSTO ÓTIMO SOBRE O CONSUMO: RESENHA DA TEORIA E UMA APLICAÇÃO AO CASO BRASILEIRO* Ana Luza Neves de Holanda Barbosa** Rozane Bezerra de Squera *** Ro de Janero,

Leia mais

CAPÍTULO 11 JOGOS REPETIDOS

CAPÍTULO 11 JOGOS REPETIDOS CAPÍTULO 11 JOGOS REPETIDOS Objetvos: Defnr o conceto de jogo repetdo, desenvolver as noções de equlíbro perfeto em subjogos para esses jogos e mostrar, por meo de uma versão do Teorema Popular, que o

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil Unversdade Federal de Santa Catarna UFSC Departamento de Engenhara Cvl Laboratóro de Efcênca Energétca em Edfcações - LabEEE Netuno 4 Manual do Usuáro Enedr Ghs Marcelo Marcel Cordova Floranópols, Junho

Leia mais

Resolução de Conflitos

Resolução de Conflitos Mestrado em Engenhara Informátca Tecnologas do Conhecmento e Decsão Sstemas Baseados em Agentes Resolução de Confltos Abrl de 2008 Realzado por: 1020541 Ivo Perera Índce Índce... 1 1. Introdução... 2 2.

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA Redes de Dstrbução de Água Rede de dstrbução de água: um sstema de tubagens e elementos acessóros nstalados na va públca, em terrenos da entdade dstrbudora ou em outros sob concessão especal, cua utlzação

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

1. Caracterização de séries com

1. Caracterização de séries com 1. Caracterzação de séres com sazonaldade Como dscutdo na Aula 1, sazonaldade é um padrão que se repete anualmente. A sazonaldade é determnístca quando o padrão de repetção anual é exato, ou estocástca,

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

FUNÇÃO DE PRODUÇÃO DE FRONTEIRA E TOMADA DE DECISÃO NA AGROPECUÁRIA

FUNÇÃO DE PRODUÇÃO DE FRONTEIRA E TOMADA DE DECISÃO NA AGROPECUÁRIA FUNÇÃO DE RODUÇÃO DE FRONTEIRA E TOMADA DE DECISÃO NA AGROECUÁRIA ADRIANO ROVEZANO GOMES ANTONIO JOSÉ MEDINA DOS SANTOS BATISTA Resumo: Este estudo teve o objetvo de estmar e analsar as funções de produção

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

I. TEORIAS KEYNESIANAS TRADICIONAIS DAS FLUTUAÇÕES (Continuação) 5.4. Assunções alternativas quanto à rigidez dos salários e dos preços

I. TEORIAS KEYNESIANAS TRADICIONAIS DAS FLUTUAÇÕES (Continuação) 5.4. Assunções alternativas quanto à rigidez dos salários e dos preços I. TEORIAS KEYNESIANAS TRADICIONAIS DAS FLUTUAÇÕES (Contnuação) 5.4. Assunções alternatvas quanto à rgdez dos saláros e dos preços Caso 1: O modelo Keynesano (saláros nomnas rígdos e mercado de bens compettvo)

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade Aplcações de Estmadores Bayesanos Empírcos para Análse Espacal de Taxas de Mortaldade Alexandre E. dos Santos, Alexandre L. Rodrgues, Danlo L. Lopes Departamento de Estatístca Unversdade Federal de Mnas

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs.

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs. Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br Introdução Até agora: conseqüêncas das escolhas dos consumdores

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X ANEXO II Nota Técnca nº 256/2009-SRE/ANEEL Brasíla, 29 de julho de 2009 METODOLOGIA E ÁLULO DO FATOR X ANEXO II Nota Técnca n o 256/2009 SRE/ANEEL Em 29 de julho de 2009. Processo nº 48500.004295/2006-48

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

INSTITUIÇÕES FISCAIS E DESEMPENHO FISCAL: UMA RESENHA

INSTITUIÇÕES FISCAIS E DESEMPENHO FISCAL: UMA RESENHA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA INSTITUIÇÕES FISCAIS E DESEMPENHO FISCAL: UMA RESENHA MILTON ANDRÉ STELLA Porto Alegre,

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

TRANSPLANTES RENAIS NO BRASIL: UMA ABORDAGEM DA TEORIA DA AGÊNCIA

TRANSPLANTES RENAIS NO BRASIL: UMA ABORDAGEM DA TEORIA DA AGÊNCIA TRANSPLANTES RENAIS NO BRASIL: UMA ABORDAGEM DA TEORIA DA AGÊNCIA RESUMO Cássa Kely Favoretto Costa (CESUMAR) Gácomo Balbnotto Neto (PPGE/UFRGS). Lucano Menezes Bezerra Sampao (UFRN) O objetvo deste estudo

Leia mais

3 O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS

3 O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS 39 3 O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS Como fo vsto na seção 1.3, a produção frme total do sstema resultante de uma operação ntegrada das usnas, onde todas

Leia mais

Núcleo de Pesquisas em Qualidade de Vida FCECA 4 MENSURAÇÃO DO BEM-ESTAR SOCIAL: ALTERNATIVA METODOLÓGICA E REQUERIMENTO DE DADOS

Núcleo de Pesquisas em Qualidade de Vida FCECA 4 MENSURAÇÃO DO BEM-ESTAR SOCIAL: ALTERNATIVA METODOLÓGICA E REQUERIMENTO DE DADOS Núcleo de Pesqusas em Qualdade de Vda FCECA 4 MENSURAÇÃO DO BEM-ESTAR SOCIAL: ALTERNATIVA METODOLÓGICA E REQUERIMENTO DE DADOS 1. Introdução A busca de uma base concetual para a obtenção de meddas de bem-estar

Leia mais

Construção e aplicação de índices-padrão

Construção e aplicação de índices-padrão Construção e aplcação de índces-padrão Artgo Completo José Aparecdo Moura Aranha (Admnstrador e Contador, Professor Assstente do Curso de Admnstração da Unversdade Federal de Mato Grosso do Sul - Câmpus

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Estrutura Tributária e Formalização da Economia: Simulando Diferentes Alternativas para o Brasil 1

Estrutura Tributária e Formalização da Economia: Simulando Diferentes Alternativas para o Brasil 1 Estrutura Trbutára e Formalzação da Economa: Smulando Dferentes Alternatvas para o Brasl Reynaldo Fernandes Amaury Patrck Gremaud Renata Del Tedesco Narta Resumo Neste artgo mplementa-se um modelo de equlíbro

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

), demonstrado no capítulo 3, para

), demonstrado no capítulo 3, para 6 Conclusão Neste trabalho foram realzados cnco estudos de casos como meo de nvestgar a nfluênca de trbutos no processo decsóro de localzação. Buscou-se realzar as entrevstas em dferentes negócos para

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA Túlo Alves Matta MONOGRAFIA SUBMETIDA À COORDENAÇÃO DE CURSO DE ENGENHARIA DE PRODUÇÃO DA UNIVERSIDADE

Leia mais

A IMPORTÂNCIA DA SAÚDE COMO UM DOS DETERMINANTES DA DISTRIBUIÇÃO DE RENDIMENTOS DA POPULAÇÃO ADULTA NO BRASIL

A IMPORTÂNCIA DA SAÚDE COMO UM DOS DETERMINANTES DA DISTRIBUIÇÃO DE RENDIMENTOS DA POPULAÇÃO ADULTA NO BRASIL A IMPORTÂNCIA DA SAÚDE COMO UM DOS DETERMINANTES DA DISTRIBUIÇÃO DE RENDIMENTOS DA POPULAÇÃO ADULTA NO BRASIL Autoras: Kenya Valera Mcaela de Souza Noronha (CEDEPLAR/UFMG) E-mal: knoronha@ssc.wsc.edu Monca

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices Unversdade Federal Flumnense Insttuto de Matemátca e Estatístca Métodos Estatístcos Aplcados à Economa I (GET7) Números Índces Ana Mara Lma de Faras Departamento de Estatístca Agosto 25 Sumáro Índces Smples.

Leia mais