Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol.

Tamanho: px
Começar a partir da página:

Download "Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol."

Transcrição

1 Risco Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Definição: A probabilidade de um resultado (de uma lotaria) é a possibilidade desse resultado ocorrer, estimada normalmente pela frequência relativa histórica do resultado Noção de Probabilidade P - denota a probabilidade. A, B, e C - denota acontecimentos específicos. P (A) - denota a probabilidade de ocorrer o acontecimento A.

2 Probabilidade: conceito frequencista Realize (ou observe) uma experiência um grande nº de vezes, e conte o nº de vezes em que ocorreu o acontecimento A. Baseado nestes resultados, P(A) é estimada por P(A) = nº de vezes que A ocorreu nº de experiências realizadas Lei dos grandes números Quando uma experiência é repetida um grande nº de vezes, o valor da frequência relativa de um acontecimento tende a se aproximar do valor da verdadeira probabilidade.

3 Estabilização das frequências relativas Estabilização das frequências relativas A probabilidade de um acontecimento impossível é 0 (zero). A probabilidade de um acontecimento certo é. 0 P(A) para qualquer acontecimento A. 3

4 Distribuição de Probabilidade Uma variável aleatória é uma variável (usualmente representada por X) que toma um certo valor numérico, determinado pelo acaso, de cada vez que a experiência é realizada. A variável aleatória associa números aos acontecimentos do espaço dos possíveis. Uma distribuição de probabilidade permite calcular a probabilidade correspondente a cada valor ou conjunto de valores da variável aleatória. Distribuição de Probabilidade Definição: A distribuição de probabilidade da lotaria representa todos os possíveis payoffs na lotaria e suas probabilidades associadas. Propriedade (decorre dos slides anteriores): A probabilidade de um determinado resultado é entre 0 e A soma das probabilidades de todos os resultados possíveis é igual a. Definição: Probabilidades que reflectem crenças subjectivas sobre eventos de risco são chamadas probabilidades subjectivas. 4

5 Distribuição de Probabilidade Probabilidade % de hipóteses de perder 33% de hipóteses de ganhar Payoff $5 $00 Valor Esperado A média ponderada dos payoffs ou valores de todos os resultados possíveis. As probabilidades de cada resultado são utilizadas como seus respectivos pesos O valor esperado mede a tendência ao ponto central; o payoff ou valor que, na média, deveríamos esperar que viesse a ocorrer. 5

6 Geralmente, para n possíveis resultados: Possíveis resultados com payoffs X, X,, X n Probabilidades de cada resultado: Pr, Pr,, Pr n E(X) PrX Valor Esperado PrX... Prn Xn No No nosso exemplo, o valor esperado é: é: E(X) = x $ x $00 = $50. Utilidade Esperada O cabaz de bens é o consumo contingente (porque o payoff só acontece se certo evento ocorre) em cada estado da natureza, mutuamente exclusivos: (C, C ) Probabilidades dos estados da natureza: π e π, que somam Utilidade, formato geral: U c c;,, Consumo contingente, os bens probabilidades, os parâmetros 6

7 Utilidade Esperada Preferências sobre lotarias estão na forma de utilidade esperada se são a soma ponderada (pelas probabilidades) da utilidade do consumo contingente, que é dada pela função u( ) U c, c ; uc uc, Também chamada de utilidade de von Neumann- Morgenstern A função u( ) é chamada de utilidade de Bernoulli Preferências Face ao Risco Exemplo: Trabalhar para a IBM (recebe salário fixo certo de $54000) ou Amazon.Com (50% de hipóteses de ganhar $4000 e 50% de ganhar $04000)? Suponhamos que os indivíduos que enfrentam alternativas de risco procuram maximizar a utilidade esperada. U(IBM) = U($54,000) = 30 U(Amazon) =.5xU($4,000) +.5xU($04,000) =.5(60) +.5(30) = 90 Nota: Nota: E(Amazon) =.5($4000)+.5($04,000) = $54,000 $54,000 7

8 Preferências Face ao Risco Utilidade Função Utilidade U(04) = 30 U(54) = 30.5u(4) +.5U(04) = 90 U(4) = Rendimento (000 $ por ano) Prémio de Risco Quanto é que uma pessoa necessita para assumir um risco? Neste caso, o prémio de risco é de $7.000, porque um rendimento garantido de $ proporciona à pessoa a mesma utilidade esperada que o rendimento incerto, que tem um valor esperado de $ Utilidade U(04) = 30 Prémio de Risco = $7000 Função Utilidade U(54) = 30.5u(4) +.5U(04) = 90 U(4) = 60 E 7000 D Prémio de risco é negativo para uma pessoa propensa a risco Rendimento (000 $ por ano) 8

9 Preferências Face ao Risco Preferências Diferentes em Relação ao Risco Avessa ao risco: uma pessoa que prefere um rendimento garantido a um de risco com o mesmo valor esperado. Uma pessoa é considerada avessa ao risco se tem uma utilidade marginal decrescente do rendimento. A contratação de seguro demonstra um comportamento avesso a riscos. Preferências Face ao Risco Neutralidade Face ao Risco Utilidade Utilidade Amor ao Risco Função Utilidade Função Utilidade 0 Rendimento Rendimento 9

10 Preferências Face ao Risco Se a utilidade de Bernoulli u( ) é côncava (u < 0), então o agente é avesso ao risco Exemplo u(c) = ln(c), u(c) = c ½ Se a utilidade de Bernoulli u( ) é convexa (u > 0), então o agente é amante do risco Exemplo u(c) = exp(c),u(c) = c Se a utilidade de Bernoulli u( ) é linear (u = 0), então o agente é neutro ao risco Exemplo u(c) = c, u(c) = 0+34c Exemplo Um indivíduo está indeciso entre comprar acções de uma empresa da Internet ou de uma empresa pública. Os valores que as acções podem atingir (rendimento, designado por R) e a probabilidade de cada acção atingir cada valor são: Internet Empresa Pública R Probab. R Probab. $80.3 $80. $00.4 $00.8 $0.3 $0. 0

11 Exemplo Que decisão deveria ser tomada se a função utilidade for U = 00R? E se fosse U = R? UE(Internet) =.3U(80) +.4U(00) +.3U(0) UE(EP) =.U(80) +.8U(00) +.U(0) U = 00R U(80) = 89.40; U(00) = 00; U(0) = 09.5 UE(Internet) =.3(89.40)+.4(00)+.3(09.50) = UE(EP) =.(89.40) +.8(00) +.(09.50) = 99.9 O INDIVÍDUO ESCOLHERÁ A ACÇÃO DA EP U = R UE(Internet) =.3(80)+.4(00)+.3(0)=00 UE(EP)=.(80) +.8(00) +.3(0) = 00 O INDIVÍDUO É INDIFERENTE ENTRE AS ACÇÕES. Utilidade da média versus média das utilidades Lotaria: atira-se a moeda ao ar. Se sai cara, ganho 0; se sai coroa, ganho Então o agente é dito avesso ao risco se u Exemplo 0 u u0 Utilidade da média, ou utilidade esperada de uma lotaria que paga com certeza Utilidade média (ou esperada)

12 Exemplo Aversão ao risco Utils u( ) u(5.000) = utilidade da média ½u(0) + ½u(0.000) Função de Bernoulli Utilidade média $ Utils Exemplo Amor ao risco u( ) Utilidade média ½u(0) + ½u(0.000) Função de Bernoulli u(5.000) = utilidade da média $

13 Exemplo Utils Neutralidade ao risco u( ) u(5.000) = ½u(0) + ½u(0.000) Função de Bernoulli $ Medidas de aversão ao risco de Arrow-Pratt u (.) diz-nos o tipo de aversão ao risco do agente. Mas quanto? (i) Aversão absoluta ao risco U"( R) = - U' ( R) (ii) Aversão relativa ao risco = - R U"( R) U' ( R) A primeira derivada no denominador serve para tornar o índice insensível a unidades 3

14 Medidas de aversão ao risco de Arrow-Pratt Comparação entre níveis de riqueza diferentes: terão os pobres mais aversão ao risco do que os ricos? Se a medida de aversão absoluta ao risco de Arrow-Pratt é decrescente com o rendimento, então um indivíduo será menos avesso ao risco se ficar mais rico. O coeficiente de aversão absoluta ao risco mede a atitude do indivíduo perante o risco perante um ganho/perda em termos absolutos. Contudo, poder-se-á estar interessado em medir a atitude perante o risco em percentagem da riqueza dos indivíduos. Daí o uso da medida de aversão relativa ao risco de Arrow-Pratt. Embora todos os indivíduos podem ter aversão absoluta ao risco decrescente, podem não ter aversão relativa ao risco decrescente, pois a perda é proporcional à sua riqueza. Medida de aversão absoluta ao risco Só vamos usar a medida absoluta: ' R ar R ρ a é chamado de coeficiente de aversão absoluta ao risco Se u é tal que ρ a é constante com o Rendimento, diz-se que o agente tem aversão absoluta ao risco constante. Se u é tal que ρ a é decrescente com o Rendimento, o agente é avesso ao risco. Se u é tal que ρ a é crescente com o Rendimento, o agente é amante do risco. 4

15 A Procura por Seguros Riqueza = Chance de perder (por roubo) é ( estado, c ) Chance de não perder nada é ( ) ( estado, c ) Seguro de $K custa K Sem perdas: Com perdas: c K c 5000 ( ) K K K Problema: quanto segurar (K)? max K pu A Procura por Seguros K - K - pu K CPO p u - u ' 5 - K - - pu ' 35 -K ' 5 - K - p 35-K p- 0 Suponha que o seguro seja justo, ou seja, que a concorrência faz com que o lucro da seguradora seja 0: ( p p p p p) K p( ) K 0 K 0 5

16 Suponhamos que u < 0 (agente avesso ao risco) Então u é decrescente Para que é preciso que A Procura por Seguros Isto implica que : 5 - K 35 -K 5 - K 35 -K 5 - K 35-K - p p K 35 -K - K 35-K K 0 5 A Procura por Seguros Verificando a condição de ª ordem ' 5 K ' 35 K K 0 u '' dado que ' 0 Daí a importância do pressuposto da aversão ao risco 6

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.1 Introdução à Teoria das Probabilidades e da Preferência pelo Risco Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

ESCOLHA SOB INCERTEZA

ESCOLHA SOB INCERTEZA MICROECONOMIA I ESCOLHA SOB INCERTEZA Rafael V. X. Ferreira rafaelferreira@usp.br Março e Abril de 2017 Universidade de São Paulo (USP) Faculdade de Economia, Administração e Contabilidade (FEA) Departamento

Leia mais

MICROECONOMIA PA R T E I I. Demanda Individual e de Mercado Slutsky (Efeito Renda e Substituição) Escolha Intertemporal Elasticidades Incerteza

MICROECONOMIA PA R T E I I. Demanda Individual e de Mercado Slutsky (Efeito Renda e Substituição) Escolha Intertemporal Elasticidades Incerteza MICROECONOMIA PA R T E I I Demanda Individual e de Mercado Slutsky (Efeito Renda e Substituição) Escolha Intertemporal Elasticidades Incerteza DEMANDA INDIVIDUAL E DE MERCADO A demanda individual revela

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV

O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Fundamental no Brasil é o de valor esperado

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x.

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x. Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções 1) Dada as funções de demanda p(x) = 40 x e de oferta p(x) = x 5, pede-se: a) O ponto

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Valor Esperado. Valor Esperado. Valor Esperado. Valor Esperado. Valor Esperado

Valor Esperado. Valor Esperado. Valor Esperado. Valor Esperado. Valor Esperado 1 2 Sumário (7ª aula), pp. 32-48 1. Conceitos básicos de estatística descritiva 1.8 Noção de valor esperado Fim da estatística descritiva 2. Noção de valor e de preço/cotação 2.1 Noção de preço relativo

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Capítulo 2 Probabilidades

Capítulo 2 Probabilidades Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto REC MICROECONOMIA II EXERCÍCIOS SOBRE MONOPÓLIO PROF. DR. ROBERTO GUENA DE OLIVEIRA () O seguinte jogo é oferecido a uma consumidora:

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Prova de Microeconomia

Prova de Microeconomia Prova de Microeconomia 1) Acerca do comportamento do consumidor pode-se afirmar que: I. A relação de preferência é dita racional se ela é completa e transitiva; II. Somente a relação de preferência racional

Leia mais

Universidade Federal de Ouro Preto (UFOP) Microeconomía II CSA-140 Prof. Martin H. Vargas Barrenechea Lista

Universidade Federal de Ouro Preto (UFOP) Microeconomía II CSA-140 Prof. Martin H. Vargas Barrenechea Lista Questão 1 (Preferências Altruísticas) A persona 1 se importa con sua renda e com a renda da persona 2. Precisamente, o valor que ela coloca sobre sua renda é o mesmo que dá para duas unidades de renda

Leia mais

Métodos Quantitativos. aula 1

Métodos Quantitativos. aula 1 Métodos Quantitativos aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo PROBABILIDADE CONDICIONAL - Informação Adicional Ter o privilégio do conhecimento prévio em relação ao mercado

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática plicada à Economia e Gestão UL 3.3 Escolha do Consumidor entre Mercadorias Contingentes e nálise de Partilha do Risco Isabel Mendes 007-008 8-03-008

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Teoria do consumidor. Propriedades do Conjunto Consumo,

Teoria do consumidor. Propriedades do Conjunto Consumo, Teoria do consumidor 1 Pedro Rafael Lopes Fernandes Qualquer modelo que vise explicar a escolha do consumidor é sustentado por quatro pilares. Estes são o conjunto consumo, o conjunto factível, a relação

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA Monopólio 1. Indique se as afirmações a seguir são verdadeiras ou falsas e

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

EXERCICIOS SOBRE: TEORIA DO PRODUTOR VIII Teoria da produção (analise em período curto)

EXERCICIOS SOBRE: TEORIA DO PRODUTOR VIII Teoria da produção (analise em período curto) EXERCICIOS SOBRE: TEORIA DO PRODUTOR VIII Teoria da produção (analise em período curto) Exercício Nº 1 Defina e caracterize os seguintes conceitos: a) Função produção É uma relação técnica entre os factores

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

Economia do Trabalho OFERTA DE TRABALHO. CAP. 2 Borjas

Economia do Trabalho OFERTA DE TRABALHO. CAP. 2 Borjas Economia do Trabalho OFERTA DE TRABALHO CAP. 2 Borjas 1. INTRODUÇÃO Indivíduos procuram maximizar bem estar, consumindo bens e lazer Existe trade-off entre trabalho e lazer Indivíduos precisam de trabalho

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

AULA 6 MODELOS PROBABILÍSTICOS

AULA 6 MODELOS PROBABILÍSTICOS UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos AULA 6 MODELOS PROBABILÍSTICOS Docente: Cira Souza

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Risco x Retorno. Fundamentos de Risco e Retorno: Fundamentos de Risco e Retorno. Risco de um Ativo Individual. Risco de uma Carteira de Ativos.

Risco x Retorno. Fundamentos de Risco e Retorno: Fundamentos de Risco e Retorno. Risco de um Ativo Individual. Risco de uma Carteira de Ativos. Risco x Retorno Fundamentos de Risco e Retorno. Risco de um Ativo Individual. Risco de uma Carteira de Ativos. Fundamentos de Risco e Retorno: Em administração e finanças, risco é a possibilidade de perda

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo :

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo : Módulo básico - Tópicos de Estatística e obabilidade ONS 006/007 - ofa. Mônica Barros LISTA DE EXERCÍCIOS # PROBLEMA O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Microeconomia. Parte 10. Prof.: Antonio Carlos Assumpção

Microeconomia. Parte 10. Prof.: Antonio Carlos Assumpção Microeconomia Parte 10 Escolha sob Incerteza Prof.: Antonio Carlos Assumpção Tópicos Discutidos Descrição do Risco Preferência em Relação ao Risco Redução do Risco A Demanda por Ativos de Risco O Modelo

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

I. Conceitos Básicos

I. Conceitos Básicos I. Conceitos Básicos Escolha Múltipla 1. A economia foca-se em a) Indivíduos e como os recursos são utilizados para satisfazer as necessidades humanas. b) Dinheiro. c) Bancos d) Control 2. Um recurso é

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

Unidade: Risco e Retorno. Unidade I:

Unidade: Risco e Retorno. Unidade I: Unidade I: 0 Unidade: Risco e Retorno A análise de investimentos está baseada nas estimativas dos fluxos de caixa de um projeto. Nem sempre essas previsões de fluxo de caixa coincidem com os resultados

Leia mais

Decisão Decidir Análise / Teoria da Decisão

Decisão Decidir Análise / Teoria da Decisão Decisão Decidir é o acto de seleccionar uma linha de acção preferida entre várias alternativas existentes. Existem diversos instrumentos que podem contribuir para a tomada de decisões, dependentes do ambiente

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

VE = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27.

VE = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27. Pindyck & Rubinfeld, Capítulo 5, Incerteza :: EXERCÍCIOS 1. Considere uma loteria com três possíveis resultados: uma probabilidade de 0,1 para o recebimento de $100, uma probabilidade de 0,2 para o recebimento

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.2 Utilidade Esperada Von Neumann-Morgenstern: Aplicação ao Mercado de Seguros Isabel Mendes 2007-2008 18-03-2008

Leia mais

Princípios de Modelagem Matemática Aula 09

Princípios de Modelagem Matemática Aula 09 Princípios de Modelagem Matemática Aula 09 Prof. José Geraldo DFM CEFET/MG 12 de maio de 2014 1 Modelos estatísticos e estimação de parâmetros A verificação de um modelo matemático demanda a realização

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

ECONOMIA INTERNACIONAL: NOTAS DE AULA

ECONOMIA INTERNACIONAL: NOTAS DE AULA ECONOMIA INTERNACIONAL: NOTAS DE AULA Versão: 2015/2 2 PARIDADE DE JUROS E CÂMBIO Uma análise mais completa deste tópico está disponível no capítulo 6 de Eun e Resnick (2011). 2.1 Preliminares Seja n o

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade Introdução à Probabilidade Silvia Shimakura silvia.shimakura@ufpr.br Probabilidade O que é probabilidade? Medida que quantifica a incerteza de um acontecimento futuro. Como quantificar incerteza? Definição

Leia mais

Distribuições Estatísticas

Distribuições Estatísticas Distribuições Estatísticas Para darmos sequência ao estudo da estatística, será necessário conhecer um pouco mais sobre as distribuições mais utilizadas, como distribuição normal, distribuição Gama, distribuição

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais