Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol."

Transcrição

1 Risco Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Definição: A probabilidade de um resultado (de uma lotaria) é a possibilidade desse resultado ocorrer, estimada normalmente pela frequência relativa histórica do resultado Noção de Probabilidade P - denota a probabilidade. A, B, e C - denota acontecimentos específicos. P (A) - denota a probabilidade de ocorrer o acontecimento A.

2 Probabilidade: conceito frequencista Realize (ou observe) uma experiência um grande nº de vezes, e conte o nº de vezes em que ocorreu o acontecimento A. Baseado nestes resultados, P(A) é estimada por P(A) = nº de vezes que A ocorreu nº de experiências realizadas Lei dos grandes números Quando uma experiência é repetida um grande nº de vezes, o valor da frequência relativa de um acontecimento tende a se aproximar do valor da verdadeira probabilidade.

3 Estabilização das frequências relativas Estabilização das frequências relativas A probabilidade de um acontecimento impossível é 0 (zero). A probabilidade de um acontecimento certo é. 0 P(A) para qualquer acontecimento A. 3

4 Distribuição de Probabilidade Uma variável aleatória é uma variável (usualmente representada por X) que toma um certo valor numérico, determinado pelo acaso, de cada vez que a experiência é realizada. A variável aleatória associa números aos acontecimentos do espaço dos possíveis. Uma distribuição de probabilidade permite calcular a probabilidade correspondente a cada valor ou conjunto de valores da variável aleatória. Distribuição de Probabilidade Definição: A distribuição de probabilidade da lotaria representa todos os possíveis payoffs na lotaria e suas probabilidades associadas. Propriedade (decorre dos slides anteriores): A probabilidade de um determinado resultado é entre 0 e A soma das probabilidades de todos os resultados possíveis é igual a. Definição: Probabilidades que reflectem crenças subjectivas sobre eventos de risco são chamadas probabilidades subjectivas. 4

5 Distribuição de Probabilidade Probabilidade % de hipóteses de perder 33% de hipóteses de ganhar Payoff $5 $00 Valor Esperado A média ponderada dos payoffs ou valores de todos os resultados possíveis. As probabilidades de cada resultado são utilizadas como seus respectivos pesos O valor esperado mede a tendência ao ponto central; o payoff ou valor que, na média, deveríamos esperar que viesse a ocorrer. 5

6 Geralmente, para n possíveis resultados: Possíveis resultados com payoffs X, X,, X n Probabilidades de cada resultado: Pr, Pr,, Pr n E(X) PrX Valor Esperado PrX... Prn Xn No No nosso exemplo, o valor esperado é: é: E(X) = x $ x $00 = $50. Utilidade Esperada O cabaz de bens é o consumo contingente (porque o payoff só acontece se certo evento ocorre) em cada estado da natureza, mutuamente exclusivos: (C, C ) Probabilidades dos estados da natureza: π e π, que somam Utilidade, formato geral: U c c;,, Consumo contingente, os bens probabilidades, os parâmetros 6

7 Utilidade Esperada Preferências sobre lotarias estão na forma de utilidade esperada se são a soma ponderada (pelas probabilidades) da utilidade do consumo contingente, que é dada pela função u( ) U c, c ; uc uc, Também chamada de utilidade de von Neumann- Morgenstern A função u( ) é chamada de utilidade de Bernoulli Preferências Face ao Risco Exemplo: Trabalhar para a IBM (recebe salário fixo certo de $54000) ou Amazon.Com (50% de hipóteses de ganhar $4000 e 50% de ganhar $04000)? Suponhamos que os indivíduos que enfrentam alternativas de risco procuram maximizar a utilidade esperada. U(IBM) = U($54,000) = 30 U(Amazon) =.5xU($4,000) +.5xU($04,000) =.5(60) +.5(30) = 90 Nota: Nota: E(Amazon) =.5($4000)+.5($04,000) = $54,000 $54,000 7

8 Preferências Face ao Risco Utilidade Função Utilidade U(04) = 30 U(54) = 30.5u(4) +.5U(04) = 90 U(4) = Rendimento (000 $ por ano) Prémio de Risco Quanto é que uma pessoa necessita para assumir um risco? Neste caso, o prémio de risco é de $7.000, porque um rendimento garantido de $ proporciona à pessoa a mesma utilidade esperada que o rendimento incerto, que tem um valor esperado de $ Utilidade U(04) = 30 Prémio de Risco = $7000 Função Utilidade U(54) = 30.5u(4) +.5U(04) = 90 U(4) = 60 E 7000 D Prémio de risco é negativo para uma pessoa propensa a risco Rendimento (000 $ por ano) 8

9 Preferências Face ao Risco Preferências Diferentes em Relação ao Risco Avessa ao risco: uma pessoa que prefere um rendimento garantido a um de risco com o mesmo valor esperado. Uma pessoa é considerada avessa ao risco se tem uma utilidade marginal decrescente do rendimento. A contratação de seguro demonstra um comportamento avesso a riscos. Preferências Face ao Risco Neutralidade Face ao Risco Utilidade Utilidade Amor ao Risco Função Utilidade Função Utilidade 0 Rendimento Rendimento 9

10 Preferências Face ao Risco Se a utilidade de Bernoulli u( ) é côncava (u < 0), então o agente é avesso ao risco Exemplo u(c) = ln(c), u(c) = c ½ Se a utilidade de Bernoulli u( ) é convexa (u > 0), então o agente é amante do risco Exemplo u(c) = exp(c),u(c) = c Se a utilidade de Bernoulli u( ) é linear (u = 0), então o agente é neutro ao risco Exemplo u(c) = c, u(c) = 0+34c Exemplo Um indivíduo está indeciso entre comprar acções de uma empresa da Internet ou de uma empresa pública. Os valores que as acções podem atingir (rendimento, designado por R) e a probabilidade de cada acção atingir cada valor são: Internet Empresa Pública R Probab. R Probab. $80.3 $80. $00.4 $00.8 $0.3 $0. 0

11 Exemplo Que decisão deveria ser tomada se a função utilidade for U = 00R? E se fosse U = R? UE(Internet) =.3U(80) +.4U(00) +.3U(0) UE(EP) =.U(80) +.8U(00) +.U(0) U = 00R U(80) = 89.40; U(00) = 00; U(0) = 09.5 UE(Internet) =.3(89.40)+.4(00)+.3(09.50) = UE(EP) =.(89.40) +.8(00) +.(09.50) = 99.9 O INDIVÍDUO ESCOLHERÁ A ACÇÃO DA EP U = R UE(Internet) =.3(80)+.4(00)+.3(0)=00 UE(EP)=.(80) +.8(00) +.3(0) = 00 O INDIVÍDUO É INDIFERENTE ENTRE AS ACÇÕES. Utilidade da média versus média das utilidades Lotaria: atira-se a moeda ao ar. Se sai cara, ganho 0; se sai coroa, ganho Então o agente é dito avesso ao risco se u Exemplo 0 u u0 Utilidade da média, ou utilidade esperada de uma lotaria que paga com certeza Utilidade média (ou esperada)

12 Exemplo Aversão ao risco Utils u( ) u(5.000) = utilidade da média ½u(0) + ½u(0.000) Função de Bernoulli Utilidade média $ Utils Exemplo Amor ao risco u( ) Utilidade média ½u(0) + ½u(0.000) Função de Bernoulli u(5.000) = utilidade da média $

13 Exemplo Utils Neutralidade ao risco u( ) u(5.000) = ½u(0) + ½u(0.000) Função de Bernoulli $ Medidas de aversão ao risco de Arrow-Pratt u (.) diz-nos o tipo de aversão ao risco do agente. Mas quanto? (i) Aversão absoluta ao risco U"( R) = - U' ( R) (ii) Aversão relativa ao risco = - R U"( R) U' ( R) A primeira derivada no denominador serve para tornar o índice insensível a unidades 3

14 Medidas de aversão ao risco de Arrow-Pratt Comparação entre níveis de riqueza diferentes: terão os pobres mais aversão ao risco do que os ricos? Se a medida de aversão absoluta ao risco de Arrow-Pratt é decrescente com o rendimento, então um indivíduo será menos avesso ao risco se ficar mais rico. O coeficiente de aversão absoluta ao risco mede a atitude do indivíduo perante o risco perante um ganho/perda em termos absolutos. Contudo, poder-se-á estar interessado em medir a atitude perante o risco em percentagem da riqueza dos indivíduos. Daí o uso da medida de aversão relativa ao risco de Arrow-Pratt. Embora todos os indivíduos podem ter aversão absoluta ao risco decrescente, podem não ter aversão relativa ao risco decrescente, pois a perda é proporcional à sua riqueza. Medida de aversão absoluta ao risco Só vamos usar a medida absoluta: ' R ar R ρ a é chamado de coeficiente de aversão absoluta ao risco Se u é tal que ρ a é constante com o Rendimento, diz-se que o agente tem aversão absoluta ao risco constante. Se u é tal que ρ a é decrescente com o Rendimento, o agente é avesso ao risco. Se u é tal que ρ a é crescente com o Rendimento, o agente é amante do risco. 4

15 A Procura por Seguros Riqueza = Chance de perder (por roubo) é ( estado, c ) Chance de não perder nada é ( ) ( estado, c ) Seguro de $K custa K Sem perdas: Com perdas: c K c 5000 ( ) K K K Problema: quanto segurar (K)? max K pu A Procura por Seguros K - K - pu K CPO p u - u ' 5 - K - - pu ' 35 -K ' 5 - K - p 35-K p- 0 Suponha que o seguro seja justo, ou seja, que a concorrência faz com que o lucro da seguradora seja 0: ( p p p p p) K p( ) K 0 K 0 5

16 Suponhamos que u < 0 (agente avesso ao risco) Então u é decrescente Para que é preciso que A Procura por Seguros Isto implica que : 5 - K 35 -K 5 - K 35 -K 5 - K 35-K - p p K 35 -K - K 35-K K 0 5 A Procura por Seguros Verificando a condição de ª ordem ' 5 K ' 35 K K 0 u '' dado que ' 0 Daí a importância do pressuposto da aversão ao risco 6

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

Capítulo 2 Probabilidades

Capítulo 2 Probabilidades Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x.

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções. x 2 5 = 40 x. Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 3 - Soluções 1) Dada as funções de demanda p(x) = 40 x e de oferta p(x) = x 5, pede-se: a) O ponto

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Prova de Microeconomia

Prova de Microeconomia Prova de Microeconomia 1) Acerca do comportamento do consumidor pode-se afirmar que: I. A relação de preferência é dita racional se ela é completa e transitiva; II. Somente a relação de preferência racional

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Universidade Federal de Ouro Preto (UFOP) Microeconomía II CSA-140 Prof. Martin H. Vargas Barrenechea Lista

Universidade Federal de Ouro Preto (UFOP) Microeconomía II CSA-140 Prof. Martin H. Vargas Barrenechea Lista Questão 1 (Preferências Altruísticas) A persona 1 se importa con sua renda e com a renda da persona 2. Precisamente, o valor que ela coloca sobre sua renda é o mesmo que dá para duas unidades de renda

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo :

PROBLEMA 1 O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória R com função de probabilidade dada abaixo : Módulo básico - Tópicos de Estatística e obabilidade ONS 006/007 - ofa. Mônica Barros LISTA DE EXERCÍCIOS # PROBLEMA O retorno mensal de certo investimento de risco pode ser modelado pela variável aleatória

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática plicada à Economia e Gestão UL 3.3 Escolha do Consumidor entre Mercadorias Contingentes e nálise de Partilha do Risco Isabel Mendes 007-008 8-03-008

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Teoria da Correlação. Luiz Carlos Terra

Teoria da Correlação. Luiz Carlos Terra Luiz Carlos Terra Você poderá, através de cálculos matemáticos, verificar a forma como a variação de um dado observado pode estar associada às alterações de outra variável. (Luiz Carlos Terra) 1 Objetivo

Leia mais

Microeconomia. Bibliografia. Teoria da Produção. Arilton Teixeira Mankiw, cap 13; Pindyck e Rubinfeld, caps 6 e 7.

Microeconomia. Bibliografia. Teoria da Produção. Arilton Teixeira Mankiw, cap 13; Pindyck e Rubinfeld, caps 6 e 7. Microeconomia Arilton Teixeira arilton@fucape.br 2012 1 Bibliografia Mankiw, cap 13; Pindyck e Rubinfeld, caps 6 e 7. 2 Teoria da Produção As firmas operam no mercado. O objetivo das firmas é maximização

Leia mais

Microeconomia. Parte 10. Prof.: Antonio Carlos Assumpção

Microeconomia. Parte 10. Prof.: Antonio Carlos Assumpção Microeconomia Parte 10 Escolha sob Incerteza Prof.: Antonio Carlos Assumpção Tópicos Discutidos Descrição do Risco Preferência em Relação ao Risco Redução do Risco A Demanda por Ativos de Risco O Modelo

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Teoria da Firma. Capítulo VI. Introdução. Introdução. Medição de custos: quais custos considerar?

Teoria da Firma. Capítulo VI. Introdução. Introdução. Medição de custos: quais custos considerar? Introdução Teoria da Firma A tecnologia de produção representa a relação entre os insumos e a produção. Dada a tecnologia de produção, os administradores da empresa devem decidir como produzir. Capítulo

Leia mais

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Utilidade 1 Valor Monetário Esperado Assumamos que sempre podemos medir o valor das consequencias em termos monetarios

Leia mais

Exercícios. Finanças Benjamin M. Tabak

Exercícios. Finanças Benjamin M. Tabak Exercícios Finanças Benjamin M. Tabak ESAF BACEN - 2002 Uma carteira de ações é formada pelos seguintes ativos: Ações Retorno esperado Desvio Padrão Beta A 18% 16% 1,10 B 22% 15% 0,90 Também se sabe que

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

Teoria das Desições Financeiras II p.1/15

Teoria das Desições Financeiras II p.1/15 Teoria das Desições Financeiras II José Fajardo Barbachan IBMEC Business School Rio de Janeiro Teoria das Desições Financeiras II p.1/15 Probabilidade para Finanças Teoria das Desições Financeiras II p.2/15

Leia mais

MEEMF-2010 Aula 01. Noções de inferência estatística: Diferença entre máxima verossimilhança e abordagem bayesiana

MEEMF-2010 Aula 01. Noções de inferência estatística: Diferença entre máxima verossimilhança e abordagem bayesiana MEEMF-2010 Aula 01 Noções de inferência estatística: Diferença entre máxima verossimilhança e abordagem bayesiana O que é inferência estatística? Inferência estatística é o importante ramo da Estatística

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125 A Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) 24 + 25 + 76 = (24 + 76) + 25 = 100 + 25 = 125 2) 192 + 65 = (200 8) + 65 = 200 + 65 8 = 200 + 57

Leia mais

VE = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27.

VE = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27. Pindyck & Rubinfeld, Capítulo 5, Incerteza :: EXERCÍCIOS 1. Considere uma loteria com três possíveis resultados: uma probabilidade de 0,1 para o recebimento de $100, uma probabilidade de 0,2 para o recebimento

Leia mais

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática DI Laboratório de Pesquisas em Redes Multimidia LPRM Objetivos 1. Definições: Experimento Espaço Amostral Evento

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

ECONOMIA INTERNACIONAL: NOTAS DE AULA

ECONOMIA INTERNACIONAL: NOTAS DE AULA ECONOMIA INTERNACIONAL: NOTAS DE AULA Versão: 2015/2 2 PARIDADE DE JUROS E CÂMBIO Uma análise mais completa deste tópico está disponível no capítulo 6 de Eun e Resnick (2011). 2.1 Preliminares Seja n o

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

Teoria do Consumidor: Escolha Envolvendo Risco

Teoria do Consumidor: Escolha Envolvendo Risco Teoria do Consumidor: Escolha Envolvendo Risco Excedente do consumidor e equação de Slutsky Roberto Guena de Oliveira USP 1 de julho de 2015 Estrutura da aula 1 Consumo contingente 2 Utilidade esperada

Leia mais

Estatística descritiva básica: Medidas de tendência central

Estatística descritiva básica: Medidas de tendência central Estatística descritiva básica: Medidas de tendência central ACH2021 Tratamento e Análise de Dados e Informações Marcelo de Souza Lauretto marcelolauretto@usp.br www.each.usp.br/lauretto *Parte do conteúdo

Leia mais

05/08/2014. sistema de medição. mensurando. Erro de Medição. Slides do livro FMCI - Professor Armando Albertazzi

05/08/2014. sistema de medição. mensurando. Erro de Medição. Slides do livro FMCI - Professor Armando Albertazzi O Erro de Medição Fundamentos da Metrologia Científica e Industrial Slides do livro FMCI - Professor Armando Albertazzi Erro de Medição sistema de medição mensurando indicação erro de medição valor verdadeiro

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.2 Utilidade Esperada Von Neumann-Morgenstern: Aplicação ao Mercado de Seguros Isabel Mendes 2007-2008 18-03-2008

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

Monopólio Puro. Capítulo 24 (Varian) Monopólio Puro. Porque Monopólios? Monopólio

Monopólio Puro. Capítulo 24 (Varian) Monopólio Puro. Porque Monopólios? Monopólio Monopólio Puro Monopólio Capítulo 24 (Varian) Um mercado monopolizado tem um vendedor único. A curva de demanda do monopolista é a curva de demanda do mercado (inclinação negativa). Então o monopolista

Leia mais

Ministério da Educação. Nome:... Número:

Ministério da Educação. Nome:... Número: Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

A Teoria Neoclássica da Firma. Aula de setembro de 2008

A Teoria Neoclássica da Firma. Aula de setembro de 2008 A Teoria Neoclássica da Firma Alfred Marshall Aula 7 29-30 de setembro de 2008 Questões principais abordadas pela Teoria Neoclássica Como se relacionam produtores e consumidores no mercado? Qual o resultado

Leia mais

4 O Erro de Medição. Erro de Medição. Fundamentos de Metrologia. sistema de medição. mensurando. erro de medição

4 O Erro de Medição. Erro de Medição. Fundamentos de Metrologia. sistema de medição. mensurando. erro de medição 4 O Erro de Medição Fundamentos de Metrologia Erro de Medição sistema de medição mensurando indicação erro de medição valor verdadeiro 1 Um exemplo de erros... Teste de precisão de tiro de canhões: Canhão

Leia mais

ActivALEA. active e actualize a sua literacia

ActivALEA. active e actualize a sua literacia ActivALEA active e actualize a sua literacia N.º 8 PROBABIILIIDADE: PROBLEMAS E SIIMULAÇÕES A probabilidade está presente sempre que estivermos perante um fenómeno aleatório, isto é, um fenómeno para o

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

CAPÍTULO 18. Abertura dos mercados de bens e dos mercados financeiros. Olivier Blanchard Pearson Education

CAPÍTULO 18. Abertura dos mercados de bens e dos mercados financeiros. Olivier Blanchard Pearson Education Olivier Blanchard Pearson Education Abertura dos mercados de bens e dos mercados financeiros CAPÍTULO 18 Capítulo 18: Abertura dos mercados de Abertura dos mercados de bens e dos mercados financeiros A

Leia mais

Artigo ECONOMIA MONETÁRIA I [A] 24/3/2005 PROF. GIÁCOMO BALBINOTTO NETO [UFRGS] 1. Demanda de Moeda por Especulação O Modelo de James Tobin (1958)

Artigo ECONOMIA MONETÁRIA I [A] 24/3/2005 PROF. GIÁCOMO BALBINOTTO NETO [UFRGS] 1. Demanda de Moeda por Especulação O Modelo de James Tobin (1958) Demanda de Moeda por Especulação O Modelo de James Tobin (1958) Prof. Giácomo Balbinotto Neto UFRGS/FCE 25 Artigo Tobin, James (1958). Liquidity Preference as a Behaviour Toward Risk. Review of Economics

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Lista de exercícios 5 Microeconomia 1

Lista de exercícios 5 Microeconomia 1 Lista de exercícios 5 Microeconomia 1 Graduação em economia Exercícios para entrega 08 de junho de 2016 Exercício 1. Uma empresa produz bolas de gude e possui a seguinte função de produção: Q = 2(KL) 0.5,

Leia mais

Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 )

Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 ) ROTAÇÃO E INTERPRETAÇÃO DAS COMPONENTES PRINCIPAIS Consideremos o seguinte exemplo (exercício 6): 15 alunos de uma determinada escola foram sujeitos a testes de 6 disciplinas e os resultados obtidos encontram-se

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Maximização de Lucro Roberto Guena de Oliveira USP 25 de julho de 2014 Roberto Guena de Oliveira (USP) Produção 25 de julho de 2014 1 / 33 Sumário 1 Introdução 2 Abordagem direta

Leia mais

EXERCICIOS SOBRE: TEORIA DO CONSUMIDOR VII Rendimento total, médio e marginal e conceito de elasticidade aplicado á procura e á oferta

EXERCICIOS SOBRE: TEORIA DO CONSUMIDOR VII Rendimento total, médio e marginal e conceito de elasticidade aplicado á procura e á oferta EXERCICIOS SOBRE: TEORIA DO CONSUMIDOR VII Rendimento total, médio e marginal e conceito de elasticidade aplicado á procura e á oferta Exercício Nº 1 Defina e caracterize os seguintes conceitos: a) Receita

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais