Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior

Tamanho: px
Começar a partir da página:

Download "Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs."

Transcrição

1 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Introdução Até agora: conseqüêncas das escolhas dos consumdores são conhecdas com certeza. Nova suposção: consumdores e produtores tem apenas uma déa aproxmada dos resultados possíves e atrbuem probabldades para dstntos cenáros possíves. DECISÃO SOB INCERTEZA Probabldades (objetva e subjetva): permtem analsar decsão sob ncerteza. Aplcações: Mercado de seguros ampla-se o conjunto de commodtes. 2 [PPGE/UFRGS]

2 Perfl do tomador de rsco: A decsão por correr mas rsco e maxmzar ganhos (títulos na bolsa de valores) ou correr menos rsco e mnmzar os ganhos depende do perfl do tomador de rsco e de suas preferêncas pessoas. A teora da Utldade possblta ao tomador de decsão ncorporar ao processo decsóro suas preferêncas em relação ao rsco: aversão, neutraldade ou propensão ao rsco e outros fatores subjetvos. Para cada tomador de decsão uma função de utldade 3 Teora da Probabldade Mundo com certeza: Ação resultado certo = ocorre com certeza Agora: Mundo com ncerteza: Ação resultado ncerto = dferentes resultados possíves Se for possível atrbur probabldade postva para esses resultados ncertos é possível analsar decsão de rsco de forma semelhante a analse de decsões em jogos de azar. 4 [PPGE/UFRGS] 2

3 Teora da Probabldade Probabldade objetva: observável va expermento Ex: moeda não-vcada arremessada mutas vezes (000 a 0000 vezes) Moeda justa: p(ca)=p(co)= 50%. Obtém-se, portanto, uma dstrbução de probabldades sobre resultados que é objetva e sso permte fazer prevsões. 5 Teora da Probabldade Moeda Justa: Cara com probabldade ½ Coroa com probabldade ½ Dado justo: ponto pr /6 2 pontos pr /6 3 pontos pr /6 4 pontos pr /6 5 pontos pr /6 6 pontos pr /6 6 [PPGE/UFRGS] 3

4 Teora da Probabldade Probabldade subjetva: experênca; formação/pesqus (nformações a pror); crença. Ex: decdr entre dos atvos; decdr entre dos empregos; tratamento médco. Palpte do Gerente: Um Atvo para R$ 6 por ação com pr /3 e nada com pr zero. Outro Atvo paga R$ 3 com pr ½ e R$ com pr ½ Outro Gerente: tera outro conjunto de palptes. 7 O que devemos saber sobre probabldades? Somam Valor esperado Varânca Independênca 8 [PPGE/UFRGS] 4

5 O que devemos saber sobre probabldades?. Probabldades somam : Moeda: ½ + ½ = Dado: /6 + /6 + /6 + /6 + /6 + /6 = Atvos: /3 + 2/3 = Eventos são mutuamente exclusvos Exaurem todos os resultados possíves Apenas um evento ocorrerá 9 O que devemos saber sobre probabldades? 2. Valor esperado: valor médo dos resultados possíves. Num jogo jogado mutas vezes esse resultado é o esperado. Multplca-se cada resultado por sua probabldade e somam-se os produtos Aposta justa: o preço pago para partcpar do jogo (gamble) é gual ao valor esperado do jogo. 0 [PPGE/UFRGS] 5

6 E[A] = valor esperado do Atvo Se os atvos custam R$ 2, então, a aposta é justa: 2 E [ A ] = (6) + (0) = E [ A2 ] = (3) + () = Proposção: o valor esperado de um resultado certo (pr = ) é o própro valor do resultado. 3. Varânca: jogos dferentes com o mesmo valor esperado podem dferr na dspersão em relação a meda Varânca = é a soma da dferença ao quadrado entre os resultados possíves e o valor esperado da lotera, cada uma, multplcada por suas respectvas probabldades. 2 [PPGE/UFRGS] 6

7 Varânca: dspersão méda dos resultados em relação à méda. Var Var Var = (3 2) + ( 2) [ A ] = ( 6 2) ( 0 2) [ A ] = + = 8 [ A ], 0 2 = 3 4. Independênca Cada vez que o jogo é jogado a dstrbução de probabldades dos resultados é a mesma do jogo sendo uma únca vez. Resultados possíves são ndependentes: A ocorrênca de um evento não tem nfluênca sobre a probabldade de ocorrênca de outro evento. Toda vez que uma moeda justa é arremessada, a probabldade de ocorrer cara contnua sendo de ½ não mportando quantas coroas tenha ocorrdo ate então. 4 [PPGE/UFRGS] 7

8 Proposção: Se dos eventos são ndependentes então a probabldade de que ambos ocorram juntos é a multplcação de ambas as probabldades. Probabldade de obter cara e cara em dos arremessos sucessvos é: Pr(ca, ca) = (/2)(/2) = ¼ Pr(ca, co)= ¼ Pr(co, ca)= ¼ Pr(co, co)= ¼ 5 3 Arremessos: há 8 seqüêncas gualmente prováves Pr(ca, ca, ca)= (/2)(/2)(/2)= (/8) n-arremessos: Há 2 n seqüêncas gualmente prováves cada uma ocorrendo com probabldade (/2) n. Suposção: cada ação n-resultados ndependentes e dferentes. x = valor do - ésmo resultado p = probabld ade do - ésmo resultado ocorrerá. 6 [PPGE/UFRGS] 8

9 Propredades da probabldade n. p =, 0 = 2. pr ( x, x ) = j 3. E [ x ] n [ x ] = p ( x x ) 2 4. Var x = ( = n = p )( p x p ); n j = x = 2. 7 Função Utldade Esperada ou Funcao Utldade de von Neumann- Morgenstern. Lvro: Theory of Games and Economc Behavour Autores: John(y) Von Neumann e Oskar Morgenstern (944; 947) 8 [PPGE/UFRGS] 9

10 Paradoxo de São Petersburgo Voce deve pagar R$ 00 para jogar um dos seguntes jogos, qual voce escolhera? Jogo : Voce recebe de volta R$00. Jogo 2: arremessa-se uma Moeda justa e: Se sar Cara, voce ganha R$ 200. Se sar Coroa, voce ganha R$ 0. 9 Qual jogo, você escolhera? Jogo 3: Arremesso de um dado Justo que paga os seguntes premos: Se sar, voce ganha R$ 400 Se sar 2, voce ganha R$ 70 Se sar 3, voce ganha R$ 55 Se sar 4, voce ganha R$ 25 Se sar 5, voce ganha R$ 40 Se sar 6, voce ganha R$ 0 20 [PPGE/UFRGS] 0

11 Usando o crtéro do Valor Esperado: Todos os jogos têm valor esperado dêntco e gual a R$ 00. Nova questao: voce escolhera gualmente todos os jogos ou voce é ndferente aos tres jogos? Vamos calcular a varanca dos jogos: Jogo : varânca zero 2 2 Jogo 2: Var( jogo2) = ( ) + (0 00) = Jogo 3: Var( jogo3) = ( ) = Portanto, você podera optar pelo jogo que é o que apresenta a menor varânca. 22 [PPGE/UFRGS]

12 Paradoxo de São Petersburgo Danel Bernoull (738) Matemátco suíço do século XVIII. Fo Introduzdo pelo seu prmo Ncolaus Bernoull em 73. Hstora do jogo: uma moeda justa é arremessada até que cara aparece pela prmera vez. O payoff do jogador depende do numero de arremessos antes de cara aparecer pela prmera vez. 23 Payoffs do jogo: Se cara aparece na a tentatva: R$ 2 (p=/2) Se cara aparece na 2a tentatva: R$ 4 (p=/4) Se cara aparece na 3a tentatva: R$ 8 (p=/8) Se cara aparece na 4a tentatva: R$ 6 (p=/6) Se cara aparece na n-ésma tentatva: R$ 2 n (p=/ 2 n ) 24 [PPGE/UFRGS] 2

13 Valor Esperado desse Jogo: VE ( jogo VE ( jogo VE ( jogo ) = = n ) 2 n n = 2 ) = = Paradoxo: nnguém pagara uma quantdade nfnta para jogar esse jogo proposto, mesmo esperando ganha uma fortuna. Alás, poucos pagaram pouco mas do que alguns reas para jogar esse jogo. Motvo: a varânca também é nfnta. E mutos preferem menos ncerteza a mas ncerteza. 25 Motvação para Utldade Esperada: Paradoxo de São Petersburgo: sugere que precsamos de outro conceto além do valor esperado para tomar decsão num ambente envolvendo Incerteza e Rsco. Usamos a Utldade Esperada (EU): que se consttu numa representação das preferêncas sob ncerteza em termos de valor esperado de um conjunto de utldades sobre os resultados ou conseqüêncas possíves de uma ação ou escolha. A função utldade assoca aos prêmos monetáros valores de uma quantdade abstrata chamada utldade de modo a representar o comportamento do tomador de decsão em relação ao rsco. 26 [PPGE/UFRGS] 3

14 Utldade Esperada U vn M = EU = { } pu( x) = Lnear em Probabldades (p ) n Passos necessáros: a. Defnr um conjunto de suposções razoáves que o índce de Utldade Esperada deve satsfazer. b. Construr um Índce de Utldade Esperada. 27 Utldade Esperada- Axomas báscos (suposções). Preferêncas sobre resultados possíves são completas, reflexvas e transtvas. Supor rank de resultados:. X = por resultado Subscrto ndca ordem de 2. Xn = melhor resultado preferênca 2. Loteras compostas podem ser reduzdas a loteras smples x~. A lotera composta tem a mesma probabldade fnal sobre resultados que a lotera smples. 28 [PPGE/UFRGS] 4

15 Exemplo de Lotera composta: reduconsmo Prmero jogo (gamble): Regras ou hstóra do jogo: Arremesse uma moeda: se CARA aparece, você deve arremessar outra moeda, se CARA aparece novamente você ganha R$,00. Se aparece COROA você ganha R$ 0,75. Se aparece coroa no prmero arremesso: você deve jogar um dado. Seu prêmo agora é R$ 0,0 por ponto no dado, ou seja, você ganha: R$ 0,0 Ponto; R$ 0,20 2 Pontos; (...); R$ 0,60 6 Pontos. 29 Fgura ou representação gráfca do jogo Game : Pr (ca)= Pr(co)= 05 0,5 P(ca,ca)= (/2)(/2) = (¼) chance de obter R$,00 P(ca,co)=(/2)(/2) = (/4) chance do obter R$ 0,75 Game 2: Coroa na prmera rodada: P(co, )= (/2)(/6) = (/2) chance de obter R$ 0,0 P(co, 2)= (/2)(/6) = (/2) chance de obter R$ 0,20 P(co, 3)= (/2)(/6) = (/2) chance de obter R$ 0,30 P(co, 4)= (/2)(/6) = (/2) chance de obter R$ 0,40 P(co, 5)= (/2)(/6) = (/2) chance de obter R$ 0,50 P(co, 6)= (/2)(/6) = (/2) chance de obter R$ 0,60 30 [PPGE/UFRGS] 5

16 Nova Lotera: reduzda Oferece: R$,00 com pr =/4 R$ 0,75 com pr= ¼ R$ 0,60 com pr= /2 R$ 0,50 com pr= /2 R$ 0,40 com pr= /2 R$ 0,30 com pr= /2 R$ 0,20 com pr= /2 R$ 0,0 com pr= /2 Fgura do jogo: Lotera composta 3 lotera reduzda roda da fortuna Grar a RODA DA FORTUNA: ganha o prêmo assocado com a quantdade mostrada onde o pontero para. Pedaços de pzza Probabldade da Lotera smples. Axoma 2: dz que o consumdor é ndferente entre joga o prmero ou segundo jogo. Os dos jogos propcam a mesma utldade. 32 [PPGE/UFRGS] 6

17 Segundo jogo: roda da fortuna 33 Utldade Esperada: axomas báscos 3. Axoma da contnudade: para cada resultado x entre x ex n o consumdor pode atrbur uma probabldade p, tal que ele é ndferente entre obter x com certeza e jogar uma lotera (que envolve obter x n com probabldade p ex com probabldade (- p )). Vamos chama-la de lotera x~ Notação : x~ = lotera x = ( x, x n p = probabld ade de sar o resultado ( - p ) = probabld ade de obter o resultado ) = resultados possíves da lotera. x x n 34 [PPGE/UFRGS] 7

18 Axoma da Substtutbldade: a lotera x~ x sempre pode ser substtuída por seu Equvalente certo (EC) x em qualquer outra lotera, pos o consumdor é ndferente entre eles. 5. Preferêncas sobre loteras são transtvas 6. Axoma da monotoncdade: se duas loteras têm 2 alternatvas t dêntcas, cada uma dferndo d em probabldades, então a lotera que dá maor probabldade para a alternatva mas preferda é preferda à outra lotera. px + p) x p x + ( p ) x sse p [ ] [ ] p n ( n 35 Indvíduo raconal: escolhe a alternatva de rsco que maxmza utldade esperada Proposção: se preferêncas sobre loteras satsfazem os axomas () a (6) então podemos assnalar números U(x ) assocados com x, tal que se compararmos 2 loteras L e L que oferecem probabldade (p...p n ) e (p...p n ) de obter os mesmos resultados, L será preferível a L sse: n pu ( x ) > pu ( x ) = n = 36 [PPGE/UFRGS] 8

19 Interpretações: I. A ordem de classfcação no rankng de Utldades Esperadas, reflete a ordem no rankng de classfcação sobre Loteras. II. Indvduo raconal: Maxmza Utldade esperada ao escolher alternatvas quem envolvem rsco ou ncerteza. 37 O Índce de Utldade de vn-m Forma de construção: 38 [PPGE/UFRGS] 9

20 ) Constura o Rankng de todos os resultados possíves: x x 2 x3... x n x n Atrbua, ao resultado menos-preferdo, valor utldade zero: u(x )= 0; Atrbua, ao resultado mas-preferdo, valor utldade um: u(x n )= ; Atrbua, a todos os resultados ntermedáros possíves x um valor utldade p : 39 Resumo: U ( x ) 0 U ( x n U ( x ) ) p Onde: x = é um Equvalente Certo de uma lotera que gera o premo x n com probabldade p e x com probabldade p. Equvalente Certo: é a quantdade de dnhero pela qual o ndvduo é ndferente entre a lotera e a quantdade certa. 40 [PPGE/UFRGS] 20

21 Reforçando: x é o Equvalente Certo (EC) de uma lotera envolvendo x n com probabldade p e x com probabldade (-p ). Esse índce de utldade equvale a tomar valores esperados das utldades de x n e x usando as probabldades p e (-p ) assocadas com a lotera para a qual x é o EC: U ( x ) = pu ( xn) + ( p ) U ( x) = p + 0 = p (2) 4 Esse índce de utldade descrto em () e (2) é únco em transformações lneares ou afns: Uma transformação lnear preserva o EC. Consdere U(x ), então: V ( x ) = c + du ( x ) (3) Substtun V ( x ) = c + d.0 = c V ( x ) = c + d. = c + d n De (4) a Utldade do () em (3) : Esperada de x, dad o p V ( x ) = p ( c + d ) + ( p ) c = c + dp O valor de V(x ) é o mesmo da utldade transformada de x. Portanto, (5) mostra que quando avalamos a utldade esperada de x va transformação lneares das utldades de x e x n obtemos de volta a utldade transformada de x e sso sgnfca que transformações lneares preservam o EC. (4) (5) : 42 [PPGE/UFRGS] 2

22 Axoma da Independênca: Axoma da Independênca : a relação de preferêncas no espaço de loteras smples satsfaz o axoma da Independênca se para três loteras dstntas L, L' e L"pertencente ao espaço de Loteras,e tomando-se a dstrbução de Probabldades sobre resultados p [0,], temos que : se L L', então, p L + (- p )L" p L' + ( p ) L". Em palavras: Se combnarmos cada uma das duas loteras L e L com uma tercera lotera L, então a ordem das duas msturas resultantes não depende (ndependênca) da tercera lotera utlzada L. Ou seja, a ordem de preferêncas entre loteras L e L não se altera. 43 Comportamento em relação ao rsco Comportamento dos ndvíduos, que são defndos pela forma da UE:. Rsk averse: para uma rqueza constante um resultado certo é sempre preferível a uma lotera com o mesmo valor esperado, mas com alguma varânca postva 2. Rsk neutro: o ndvduo ndferente entre o resultadocertoealoterademesmovaloresperado. 3. Rsk lover: ndvduo prefere a lotera ao resultado certo. 44 [PPGE/UFRGS] 22

23 Aversão ao rsco 3 resultados possíves 2 ações que podem ser tomadas e que rendem os resultados com probabldades dferentes Resultado : R$ 50 U(50) = 30 Resultado 2: R$ 00 U(00) = 80 Resultado 3: R$ 50 U(50) = 0 (6) Ação A: rende R$ 00 e tem uma EU de 80: E{U(ação A)}= ().U(00)= 80. (7) Ação B: rende R$ 50 com pr. ½ e rende R$ 50 com pr. ½. 45 { ( ação B) } E U = U (50) + 2 E U 2 E U ( ação B) < E U ( ação A) 2 { ( ação B) } = (30 + 0) = 70 U (50) { } { } (8) Mesmo cada ação rendendo um payoff esperado de R$ 00, a Utldade Esperada da ação B é menor que a Utldade Esperada da ação A. Isso ocorre porque a função Utldade desse ndvduo é côncava. Questão: qual a forma R$ 00 U(00) = 80 funconal da função Utldade R$ 50 U(50) = 30 de Bernoull? R$ 50 U(50) = 0 Dca: é uma função Côncava 46 [PPGE/UFRGS] 23

24 Indvduo Avesso ao Rsco: Função Utldade U(x) côncava. $50 $00 $50 A EU do gamble 50/50 em [00+50] e [00-50] está no ponto médo da combnação lnear da utldade de R$ 50 e R$ 50. Essa EU = 70, é menor do que recebe R$ 00 com certeza, EU = 80. Proposção: ndvíduos que tem função utldade côncava são avessos ao rsco. 47 Aversão ao rsco: Este ndvduo, que é avesso ao rsco, estara dsposto a pagar a quantdade γ para evtar o rsco: Com um payoff de [00- γ] o ndvíduo obtém uma U(00- γ)= 70 e não tem que tomar qualquer rsco. Defnmos: γ = prêmo de rsco: é a quantdade que um ndvduo avesso ao rsco está dsposto a pagar para não correr rscos. [00- γ]= Equvalente certo 48 [PPGE/UFRGS] 24

25 Attudes em relação ao rsco: U (x) E{U(x)\ U x a x x + a x ã x x 4- a x-a x x + a x Rsk Neutro Rsk Averse Rsk Lover 49 Rsk Averse Utldade margnal dmnu com aumento da renda Prefere uma renda certa de 20 a uma lotera que oferece 0 com probabldade ½ e 30 com probabldade de ½. 50 [PPGE/UFRGS] 25

26 Rsk Lover A lotera propca mas utldade que o resultado certo (20). 0,5 5 [PPGE/UFRGS] 26

DECISÃO SOB INCERTEZA

DECISÃO SOB INCERTEZA PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br 1 Introdução

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior Icerteza: o básco Prof: Sabo da Slva Porto Júor Sabo@ppge.ufrgs.br Itrodução Até agora: coseqüêcas das escolhas dos cosumdores são cohecdas com certeza. Nova suposção: cosumdores e produtores tem apeas

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Probabilidade nas Ciências da Saúde

Probabilidade nas Ciências da Saúde UNIVERSIDDE ESTDUL DE GOIÁS Undade Unverstára de Cêncas Exatas e Tecnológcas Curso de Lcencatura em Matemátca robabldade nas Cêncas da Saúde Rafaela Fernandes da Slva Santos NÁOLIS 014 Rafaela Fernandes

Leia mais

Um protótipo de mercado de ações usando Algoritmos Genéticos

Um protótipo de mercado de ações usando Algoritmos Genéticos > REVISA DE INELIGÊNCIA COMPUACIONAL APLICADA (ISSN: XXXXXXX), Vol. X, No. Y, pp. 1-10 1 Um protótpo de mercado de ações usando Algortmos Genétcos W. Fretas Departamento de Físca, PUC-Ro Resumo O modelo

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS UNIVESIDADE FEDEAL DO IO GANDE DO SUL ESCOLA DE ADMINISTAÇÃO OGAMA DE ÓS-GADUAÇÃO EM ADMINISTAÇÃO ESECIALIZAÇÃO EM MECADO DE CAITAIS MODENA TEOIA DE CATEIAS: DESENVOLVIMENTO E ANÁLISE DE UM MODELO DE SELEÇÃO

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

CAPÍTULO IV TEORIA DE JOGOS

CAPÍTULO IV TEORIA DE JOGOS CAPÍTULO IV TEORIA DE JOGOS 66 Teora de Jogos Caracterzação:. Cenáro determnístco.. v. Um conjunto de agentes de decsão (jogadores) Um conjunto de estratégas (acções) puras Uma função utldade para cada

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 4.3 Decsão Intertemporal do Consumdor O Mercado de Captal Isabel Mendes 2007-2008 4/17/2008 Isabel Mendes/MICRO II 1 3. EQUILÍBRIO

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Forma extensiva: Jogos na forma extensiva: Definições: Observações

Forma extensiva: Jogos na forma extensiva: Definições: Observações Forma extensva: Jogos na forma extensva: Drew Fudenberg e Jean Trole (993, cap. 3) Chrstan Montet e Danel Serra (003, cap. ) Descrção exata dos sucessvos movmentos dos jogadores em conexão com a nformação

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Núcleo de Pesquisas em Qualidade de Vida FCECA 4 MENSURAÇÃO DO BEM-ESTAR SOCIAL: ALTERNATIVA METODOLÓGICA E REQUERIMENTO DE DADOS

Núcleo de Pesquisas em Qualidade de Vida FCECA 4 MENSURAÇÃO DO BEM-ESTAR SOCIAL: ALTERNATIVA METODOLÓGICA E REQUERIMENTO DE DADOS Núcleo de Pesqusas em Qualdade de Vda FCECA 4 MENSURAÇÃO DO BEM-ESTAR SOCIAL: ALTERNATIVA METODOLÓGICA E REQUERIMENTO DE DADOS 1. Introdução A busca de uma base concetual para a obtenção de meddas de bem-estar

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações.

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações. A CONSTRUÇÃO DE CARTEIRAS EFICIENTES POR INTERMÉDIO DO CAPM NO MERCADO ACIONÁRIO BRASILEIRO: UM ESTUDO DE CASO PARA O PERÍODO 006-010 Rodrgo Augusto Vera (PROVIC/UEPG), Emerson Martns Hlgemberg (Orentador),

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação números e funções Gua do professor Software Como comprar sua moto Objetvos da undade 1. Aplcar o conceto de juros compostos; 2. Introduzr o conceto de empréstmo sob juros; 3. Mostrar aplcações de progressão

Leia mais

Interação de Estratégias em um Mercado de Opções Européias: uma Abordagem de Jogos Evolucionários

Interação de Estratégias em um Mercado de Opções Européias: uma Abordagem de Jogos Evolucionários Interação de Estratégas em um Mercado de Opções Européas: uma Abordagem de Jogos Evoluconáros Autora: José Rafael Perera, Jaylson Jar da Slvera Resumo: A escolha de estratégas no mercado de opções européas

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS

ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS Dogo Raael de Arruda RESUMO Constam, neste trabalho, concetos relaconados aos rscos e as ncertezas exstentes nas carteras de nvestmento

Leia mais

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1 Como aposentadoras e pensões afetam a educação e o trabalo de jovens do domcílo 1 Rodolfo Hoffmann 2 Resumo A questão central é saber como o valor da parcela do rendmento domclar formada por aposentadoras

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO DEPARTAMENTO DE FÍSICA E MATEMÁTICA JOSÉ RAFAEL PEREIRA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO DEPARTAMENTO DE FÍSICA E MATEMÁTICA JOSÉ RAFAEL PEREIRA UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LERAS DE RIBEIRÃO PREO DEPARAMENO DE FÍSICA E MAEMÁICA JOSÉ RAFAEL PEREIRA INERAÇÃO DE ESRAÉGIAS EM UM MERCADO DE OPÇÕES EUROPÉIAS: UMA ABORDAGEM

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.2 Utilidade Esperada Von Neumann-Morgenstern: Aplicação ao Mercado de Seguros Isabel Mendes 2007-2008 18-03-2008

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 XXX.YY 22 a 25 Novembro de 2009 Recfe - PE GRUPO - VI GRUPO DE ESTUDO DE COMERCIALIZAÇÃO, ECONOMIA E REGULAÇÃO DE ENERGIA

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Problemas Associados a Cones de Segunda Ordem

Problemas Associados a Cones de Segunda Ordem Problemas Assocados a Cones de Segunda Ordem Dense S. Trevsol, Mara A. D. Ehrhardt, Insttuto de Matemátca, Estatístca e Computação Centífca, IMECC, UNICAMP, 1383-859, Campnas, SP E-mal: ra8477@me.uncamp.br,

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

RAE-eletrônica ISSN: 1676-5648 rae@fgv.br. Escola de Administração de Empresas de São Paulo. Brasil

RAE-eletrônica ISSN: 1676-5648 rae@fgv.br. Escola de Administração de Empresas de São Paulo. Brasil RAE-eletrônca ISSN: 676-5648 rae@fgv.br Escola de Admnstração de Empresas de São Paulo Brasl Gumarães, Ináco Andrusk; Chaves Neto, Anselmo RECONHECIMENTO DE PADRÕES: METODOLOGIAS ESTATÍSTICAS EM CRÉDITO

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Goal Programming como Ferramenta de Gestão

Goal Programming como Ferramenta de Gestão Resumo Goal Programmng como Ferramenta de Gestão Dmtr Pnhero SANTANNA Fláva Zóbol DALMÁCIO Lucene Laurett RANGEL Valcemro NOSSA O objetvo deste artgo é demonstrar como o gestor pode aplcar a técnca do

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

GST0045 MATEMÁTICA FINANCEIRA

GST0045 MATEMÁTICA FINANCEIRA GST0045 MATEMÁTICA FINANCEIRA Concetos Báscos e Smbologa HP-12C Prof. Antono Sérgo A. do Nascmento asergo@lve.estaco.br GST0045 Matemátca Fnancera 2 Valor do dnhero no tempo q O dnhero cresce no tempo

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Rastreando Algoritmos

Rastreando Algoritmos Rastreando lgortmos José ugusto aranauskas epartamento de Físca e Matemátca FFCLRP-USP Sala loco P Fone () - Uma vez desenvolvdo um algortmo, como saber se ele faz o que se supõe que faça? esta aula veremos

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010 Salvador BA, 7 a 9 de Julho de 00 ODELOS ATEÁTICOS E CONSUO DE ENERGIA ELÉTRICA Clece de Cássa Franco Cdade Centro Unverstáro Francscano klleyce@hotmal.com Leandra Anversa Foreze Centro Unverstáro Francscano

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas

Leia mais

Equipas Educativas Para uma nova organização da escola. João Formosinho Joaquim Machado

Equipas Educativas Para uma nova organização da escola. João Formosinho Joaquim Machado Equpas Educatvas Para uma nova organzação da escola João Formosnho Joaqum Machado TRANSFORMAÇÕES NA ESCOLA BÁSICA TRANSFORMAÇÕES NA ESCOLA BÁSICA A expansão escolar e a mplementação das polítcas de nclusão

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Impactos dos encargos sociais na economia brasileira

Impactos dos encargos sociais na economia brasileira Impactos dos encargos socas na economa braslera Mayra Batsta Btencourt Professora da Unversdade Federal de Mato Grosso do Sul Erly Cardoso Texera Professor da Unversdade Federal de Vçosa Palavras-chave

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 XXX.YY 22 a 25 Novembro de 2009 Recfe - PE GRUPO -VI GRUPO DE ESTUDO DE COMERCIALIZAÇÃO, ECONOMIA E REGULAÇÃO DE ENERGIA

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais