Microeconomia 1 Professor: Carlos Eugênio Monitor: Bruno Lund Gabarito da 6 a Lista de Exercícios

Tamanho: px
Começar a partir da página:

Download "Microeconomia 1 Professor: Carlos Eugênio Monitor: Bruno Lund Gabarito da 6 a Lista de Exercícios"

Transcrição

1 Microeconomia 1 Profeor: Carlo Eugênio Monitor: Bruno Lund Gabarito da 6 a Lita de Exercício 1. Conidere trê payo monetário, $0, $100 e $200. Conidere trê loteria ob ee payo : L 1 = (1/3,1/3,1/3) L 2 = (1/2,0,1/2) L 3 = (0,3/4,1/4) Um conumidor repreentativo a rma que L 1 L 2 e L 1 L 3 (a) Motre que a preferência dete conumidor contradizem a maximização da utilidade eperada. (b) Como o reultado do item (a) e relaciona com o axioma da independência? R. (a) Seja u (0) = u 1 ; u (100) = u 2 e u (200) = u 3 Então, e o agente poui utilidade na forma eperada, temo: 1=3u 1 +1=3u 2 +1=3u 3 > 1=2u 1 +1=2u 3 () 2u 2 > u 1 +u 3 (1) Além dio, também vale: 1=3u 1 +1=3u 2 +1=3u 3 > 3=4u 2 +1=4u 3, 4u 1 +u 3 > 5u 2 (2) Somando 3u 2 em ambo o lado da deigualdade (1), egue: 5u 2 > u 1 +3u 2 +u 3 (3) Como a utilidade é crecente na renda, temo: u 2 > u 1 =) u 1 +3u 2 > 4u 1 (4) Portanto, de 3 e 4, egue: 4u 1 + u 3 < 5u 2 ; o que é uma contradição com a deigualdade 2. (b) Sempre que utilizamo utilidade na forma eperada, etamo upondo que o axioma da independência etá atendido. Aqui, podemo motrar que o axioma da independência no leva a uma contradição. Vamo ecrever a loteria L 1 e L 2 em termo de loteria comun e ditinta: L 1 = 2=3(1=2; 0; 1=2) + 1=3(0; 1; 0) L 2 = 2=3(1=2; 0; 1=2) + 1=3(1=2; 0; 1=2) Cao o axioma da independência eja válido: L 1 L 2 () (0; 1; 0) (1=2; 0; 1=2) (5) Da mema forma, temo: L 1 = 1=2(0; 1=2; 1=2) + 1=2(1=6; 2=3; 1=6) 1

2 L 3 = 1=2(0; 1=2; 1=2) + 1=2(0; 1; 0) Mai uma vez, cao eja válido o axioma da independência: L 1 L 3 () (1=6; 2=3; 1=6) (0; 1; 0) Entretanto, note que, a partir de (5) e do axioma da independência, temo: (1=6; 2=3; 1=6) = 1=3(1=2; 0; 1=2) + 2=3(0; 1; 0) (0; 1; 0) Ora, ma ito é uma contradição, poi: (0; 1; 0) (1=6; 2=3; 1=6) (0; 1; 0): 2. (Problema de ecolha do portfólio) Conidere o problema de um invetidor que deve decidir quanto de ua renda inicial W invetir em um ativo de rico. O ativo arricado pode ter taxa de retorno r i (a quai podem er tanto poitiva quanto negativa) com probabilidade de ocorrência p i = 1; 2; :::; n: Seja o montante de ua renda inicial a er invetida no ativo com rico, então o problema do invetidor é: max n p i u(w + r i ) em que a função utilidade Bernoulli u(:) é crecente e etritamente côncava. (a) Motre que um indivíduo aveo ao rico e abtém completamente do ativo com rico e e omente e o ativo poui um retorno eperado não poitivo. (Dica: analie a olução de canto em que a função objetivo atinge máximo em = 0). (b) Qual é a implicação empírica dete reultado? Em particular, o reultado obtido é compatível com o comportamento obervado de vária peoa que não invetem em açõe? Você conegue dar uma explicação para ee aparente parodoxo? (c) Suponha que o ativo com rico poui retorno eperado poitivo e que < W (portanto o problema poui olução interior). Analie como varia com W. R. (a) Suponha que o agente é aveo ao rico. Tomando a C.P.O do problema, temo: n p i r i u(w + r i ) 0 (= 0 e > 0) Aim, e = 0; eta condição pode er reecrita como: n n p i r i u(w) 0! p i r i 0; poi u(w) > 0 e contante: 2

3 Agora, auma que u(w) u(w + n p i r i 0: Nee cao, temo que,8 > 0; n n p i r i ) = u( p i (w + r i )) n p i u(w + r i ) O último termo da expreão acima é jutamente a utilidade eperada quando > 0: Logo, a melhor opção é etabelecer = 0: (b) A implicação intereante é que peoa avea ao rico empre invetiriam uma parte de ua riqueza em açõe cujo retorno eperado foe poitivo. Entretanto, na prática, divera peoa não aplicam em açõe que pouem retorno não dominado por ativo livre de rico, como título público por exemplo. Uma poível caua para ete parodoxo é a exitência de cuto de tranação e informação; outra explicação pode reidir na não-validade da utilidade eperada (ma, nee cao, qual eria a abordagem correta?). (c) Como temo olução interior, a C.P.O. do problema é: n p i r i u(w + r i ) = 0 Agora, apliquemo o Teorema da Funçõe Implícita na expreão acima para avaliarmo d dw : d dw = n p i r i u(w + r i ) n p i r i u(w + r i ) = n p i ri 2u(w + r i ) n p i ri 2u(w + r i ) O inal deta expreão depende da derivada terceira de u(:): Se a derivada terceira de u(:) for poitiva, então a expreão é poitiva. Do contrário, a expreão é negativa. Uma condição que garante a normalidade do ativo é que a averão aboluta ao rico eja decrecente. 3. Conidere o problema de eguro etudado no exemplo 6.C.1 do MWG. (a) O que ocorre quando o indivíduo é neutro ao rico? (b) O que ocorre quando o indivíduo é propeno ao rico? (c) Motre que, e o eguro não é atuarialmente juto (q > ), então o indivíduo não e aegurará totalmente. (d) Na prática, não é comum encontrarmo indivíduo e aegurando completamente. Você conegue encontrar um motivo para eta aparente contradição? 3

4 R. (a) Se o agente é neutro ao rico, então ua utilidade marginal é contante e, portanto, qualquer quantidade de eguro reolve o problema. (b) No cao de um agente propeno ao rico, a condição de primeira ordem obtida no MWG não caracteriza um máximo, ma im um mínimo. Como o agente prefere a loteria ao eu valor eperado, então percebemo que ele não compra nenhum eguro. Na verdade, e pudee, o agente ofertaria eguro. (c) Suponha, por contradição, que o agente compra eguro total, ou eja, = D: Nee cao, a C.P.O. no dá: (1 q)u(w q) (1 )qu(w q) = 0 () (1 q) = (1 )q () q = o que é um aburdo. É fácil vermo que < D: (d) Em grande medida, a probabilidade de initro não ão exógena. Na verdade, uma vez que um indivíduo eteja totalmente egurado, ua atitude com relação à prevenão de initro acabam e alterando, o que provoca uma mudança na probabilidade originai. Ete fenômeno, conhecido como Moral Hazard, explica o fato de que eguradora não etão, em geral, dipota a fornecer eguro total em cobrar algo a mai por io (você já deve ter ouvido falar a repeito da franquia em um eguro de automóvel). Há, portanto, uma mudança no incentivo à compra de eguro total. 4. Suponha que um indivíduo maximiza ua utilidade eperada com Bernoulli u(:) de nida em relação a quantia monetária. Motre que a eguinte propoiçõe ão equivalente: (a) o indivíduo é neutro ao rico; (b) u(:) é linear; Z (c) c(f; u) = xdf (x); 8 F (:); (d) (x; "; u) = 0 8 x; " R. (a) a) =) b) Se o indivíduo é neutro ao rico, então u(e(x)) = E(u(x)); o que, pela Deigualdade de Jenen, de ne a linearidade de u(:): (b) b) =) c) Da de nição de c(f; u); u(c(f; u)) = E(u(x)) = u(e(x)) = u( R xdf (x)); conforme o item anterior. Ma, dado que a função Bernoulli é etritamente crecente, temo que c(f; u) = R xdf (x); fato que vale 8 F (:): (c) c) =) d) Tome uma loteria do eguinte tipo: o agente ganha x + ", com probabilidade 1=2 + ; e ganha x "; com probabilidade 1=2 : Da de nição de equivalente à certeza e dado a reultado anterior, temo: u (x) = u((c(:; :)) = (1=2 )u(x ") + (1=2 + )u(x + ") = u((1=2 )(x ") + (1=2 + )(x + ")) = u(x + ") () " = 0! = 0: 4

5 (d) d) =) a) De d), temo que u(x) = 1=2[u(x ")+u(x+")]: Derivando a expreão com relação a "; temo: 0 = u(x + ") u(x "): Da de nição de derivada, egue: u(x+h) u(x h) u(x) = lim h!0 2h = 0; portanto, o coe ciente de averão aboluta ao rico é nulo. 5. (Taxação obre o retorno de ativo de rico) A economia poui um agente maximizador de ua utilidade eperada com função Bernoullu u(). Há doi etado da natureza (A e B), o quai ocorrem com probabilidade e (1-): Há um ativo de rico com retorno r a e r b em cada etado, repectivamente, com r a > r b. O agente poui renda inicial w e alíquota de impoto obre o rendimento do capital é t. Aumindo olução interior, reponda: (a) Qual é a condição de ótimo no que tange a ecolha de invetimento no ativo de rico quando t = 0? E quando t 6= 0? (b) Encontre a relação entre o invetimento em cada cao. (c) Você conegue dar uma intuição econômica para ete reultado aparentemente paradoxal? R. (a) Quando t = 0, o problema do agente é: max x E(u(x)) = u(w + xr A ) + (1 )u(w + xr B ) Tirando a C.P.O., que no preente contexto é condição u ciente, temo: Se t 6= 0; temo: u(w + x r A )r A + (1 )u(w + x r B )r B = 0 u(w+~x (1 t) r A ) (1 t) r A +(1 )u(w+~x (1 t) r B )(1 t)r B = 0 Podemo cancelar (1 t) na última expreão, de orte que teremo: u(w + ~x (1 t) r A )r A + (1 )u(w + ~x (1 t) r B )r B = 0 (b) Se x reolve o problema quando t = 0, então, e etabelecermo ~x =, claramente reolvemo o problema para t 6= 0: x (1 t) (c) Parece paradoxal o fato de que a impoição de uma taxa obre o retorno aumenta a demanda pelo ativo de rico, ma a explicação é batante imple. Primeiro, note que, na medida em que não há aplicaçõe alternativa ao ativo de rico e dado que etamo aumindo olução interior, então ocorre que r B < 0, poi, do contrário, 5

6 o agente invetiria toda a ua riqueza (o ativo de rico dominaria o não-invetimento). Ok, ma e por qual motivo aumenta o invetimento? Ora, é verdade que a taxação diminui o retorno no etado bom, ma também é verdade que diminui a perda no etado ruim. Ao aumentar eu nível de invetimento, o agente pode reproduzir eu padrão de riqueza quando da não incidência do impoto, o que caracteriza uma ecolha ótima. Ou eja, o tributo diminui eu retorno eperado, ma também diminui o rico da aplicação. Finalmente, vemo que t é, ao memo tempo, um tributo obre o rendimento no etado bom e um ubídio obre o rendimento no etado ruim. 6. Suponha uma economia com n ben fíico e doi etado. Inicialmente, a única diferença entre um etado e outro é a temperatura, que, por hipótee, não afeta a demanda do ben. O agente aveo ao rico e maximizador de utilidade eperada aloca, então, ua renda para cada etado - (imagine que o agente poui uma renda ex ante e pode decidir como ditribuí-la entre o doi etado). Suponha, agora, que o agente decobre que, no etado doi, além da diferença de temperatura, o preço de um determinado bem i é maior. Motre que, e o coe ciente de averão relativa ao rico for maior do que a elaticidade-renda do bem i, então o agente aumenta a renda detinada ao egundo etado. R: Ex ante, o ótimo é caracterizado por: v y (y 1 ) = (1 )v y (y 2 ) com y 1 + y 2 = y Temo que analiar, portanto, o inal ; abendo que o agente delocará renda para o etado 2 > y(y 2) = : Pela identidade de = y (y 2 ) ) = x i y (R r(y 2 ) i ) > 0, R r (y 2 ) > 2 v x 2 x y ( y v yy v y x i ) 7. Suponha uma rma maximizadora da função objetivo E t=0 (p); em que (p) é o lucro no etado do tempo 1. Certo dia, um banco oferece ao diretor nanceiro da emprea um produto nanceiro capaz de eliminar o rico do vetor de preço. Ito é, garante-e que a emprea poderá comprar inumo e vender produto ao vetor de preço E t p: Quanto a rma etaria dipota a pagar por ete produto? R: Como a função lucro é convexa, temo que E t (p) (E t p). Logo, a rma não etaria dipota a pagar nenhuma quantia poitiva pelo produto oferecido. 6

7 8. Quetão 4 (Prova ) Conidere doi agente iguai em tudo exceto ua riqueza inicial (que é ua única fonte de renda). Ambo têm função utilidade u (c) = c1 1 De na a riqueza invetida do indivíduo como I = W riqueza inicial e c 0 é o conumo no primeiro período. Sendo = 1 ; :::; K, a proporção, k = A kp k I c 0 ; onde W é a da quantidade invetida alocada em cada ativo (ou eja a carteira do indivíduo), motre que o doi ecolhem exatamente a mema carteira. (dica: motre que a carteira ótima independe de I). R: Conidere o problema ecrito como max ;I u(w I) + u(i:(1 + k k r k)) t k = 1 k Sua CPO em erá dada por, u 0 (I(1 + rport_ otimo))rl k I = (p/o ativo l) Sabemo que u (c)=c : Subtituindo-e, então, na CPO, (I(1 + c)) rl I = (p/o ativo l) Logo, (1 + rport_ otimo)) rl = =I 1 Multiplicando cada retrição por l e omando no ativo, teremo (1+rport_ otimo)) rl l = (1+rport_ otimo)) rport_ otimo = l l Subtraindo-e ito da CPO, teremo que cada ativo l erá ecolhido de forma a termo: (1 + rport_ otimo)) (rl rport_ otimo) = 0 Note que, eta condição não depende da ecolha de I. Portanto, a ditribuição do ativo dentro do portfolio não irá depender de quanto decide-e invetir. l =I 1 = =I 1 7

8 9. Quetão 6 (Prova ) Reponda Verdadeiro ou Falo juti cando ua repota 1) Conidere dua loteria, L 1 e L 2 de média iguai e uponha que a variância de L 1 é maior do que a variância de L 2 ; então, todo agente com utilidade Bernoulli u () crecente e côncava prefere L 2 a L 1 : 2) Conidere dua loteria, L 1 e L 2 de média iguai e uponha que a variância de L 1 é maior do que a variância de L 2 ; então, é empre poível encontrar um agente com utilidade Bernoulli u () crecente e côncava que prefere L 2 a L 1 : 3) A condiçõe de primeira ordem ão u ciente para o problema de minimização de cuto da rma dede que a função de produção eja côncava. 4) Se dua rma ão iguai em todo o apecto exceto eu cuto xo não-afundado então ua curva de oferta ão iguai no curto, ma não no longo prazo. Se, porém, a diferença é omente em cuto afundado então a curva de oferta erão iguai independentemente do prazo. R: i) Falo. Não exite critério de dominância que avalie a loteria com bae apena na variância da ditribuiçõe (DESO olha para toda a ditribuição atravé de R x 0 F (t)dt) ii) Verdadeiro. Por exemplo, alguém com utilidade quadrática. iii) Verdadeiro. A concavidade da função de produção irá garantir a u ciência da CPO para caracterizar o máximo. No entanto, há condiçõe mai fraca (bata garantir que o Heiano Orlado eja negativo emi-de nido- ver Simon e Blume, Matemática para Economita). iv) Verdadeiro. No curto prazo, a rma e comportarão de maneira idêntica, uma vez que toda a ua variávei de ecolha de curto prazo terão o memo efeito. No longo prazo (quando podem reotimizar todo o inumo), porém, erão diferente, bem como erão ua curva de oferta. Quanto ao cuto afundado, como não ão mai variávei de ecolha uma vez iniciada a rma, não irão in uenciar o comportamento da rma em nenhum prazo. 8

R. IP CA(t=1)= IP CA(t=2)= A inação é: IP CA(t=2) IP CA(t=1) IP CA(t=1)

R. IP CA(t=1)= IP CA(t=2)= A inação é: IP CA(t=2) IP CA(t=1) IP CA(t=1) Gabarito - Lita 1 - Introdução à Economia 2 - FCE/UERJ - 2016.2 1 - Explique por que o PIB real, e não o PIB nominal, deve er uado como medida de renda. 2 - Conidere uma economia com doi ben: carro e computadore.

Leia mais

1 Jogos Estáticos de Informação Incompleta

1 Jogos Estáticos de Informação Incompleta Nota de Aula - Teoria do Jogo - FCE/UERJ 016. Verão preliminar - favor não circular) Profeor Pedro Hemley Horário: xxxx Sala: xxxx Ementa e informaçõe relevante: página do curo 1 Jogo Etático de Informação

Leia mais

1 Jogos Estáticos de Informação Incompleta

1 Jogos Estáticos de Informação Incompleta Nota de Aula - Teoria do Jogo - FCE/UERJ 016. (Verão preliminar - favor não circular) Profeor Pedro Hemley Horário: xxxx Sala: xxxx Ementa e informaçõe relevante: página do curo 1 Jogo Etático de Informação

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I º Semetre de 207 Profeore: Gilberto Tadeu Lima e Pedro Garcia Duarte Gabarito

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

Introdução à Economia 2018/2019 Pedro Telhado Pereira Frequência 30/10/2018 (Duração - 45 minutos)

Introdução à Economia 2018/2019 Pedro Telhado Pereira Frequência 30/10/2018 (Duração - 45 minutos) Introdução à Economia 208/209 Pedro Telhado Pereira Frequência 30/0/208 (Duração - 45 minuto) Nome: Nº: A repota devem er dada na folha de enunciado I Uma da competência que deve adquirir neta unidade

Leia mais

1 Transformada de Laplace de u c (t)

1 Transformada de Laplace de u c (t) Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema

Leia mais

Controle de Sistemas. Estabilidade. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. Estabilidade. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sitema Etabilidade Renato Dourado Maia Univeridade Etadual de Monte Claro Engenharia de Sitema Etabilidade: Uma Idéia Intuitiva... Etável... Neutro... Intável... 2/5 Etabilidade Ma o que é

Leia mais

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Medidas de Dispersão

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Medidas de Dispersão Univeridade Cruzeiro do Sul Campu Virtual Unidade I: Unidade: Medida de Diperão 010 0 A medida de variação ou diperão avaliam a diperão ou a variabilidade da equência numérica em análie. São medida que

Leia mais

Física I. Oscilações - Resolução

Física I. Oscilações - Resolução Quetõe: Fíica I Ocilaçõe - Reolução Q1 - Será que a amplitude eacontantenafae de um ocilador, podem er determinada, e apena for epecificada a poição no intante =0? Explique. Q2 - Uma maa ligada a uma mola

Leia mais

CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média

CAPÍTULO 4. Movimento Variado. Introdução. 2-Aceleração Escalar Média CAPÍTULO 4 Movimento Variado Introdução O movimento do corpo no dia-a-dia ão muito mai variado do que propriamente uniforme, até porque, para entrar em movimento uniforme, um corpo que etava em repouo,

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semetre e 2017 Profeor Fernano Rugitky Lita e Exercício 5 [1] Coniere

Leia mais

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços 2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento

Leia mais

Modelação e Simulação Problemas - 4

Modelação e Simulação Problemas - 4 Modelação e Simulação - Problema Modelação e Simulação Problema - P. Para cada uma da funçõe de tranferência eguinte eboce qualitativamente a repota no tempo ao ecalão unitário uando empre que aplicável)

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroeconomia I º Semetre e 27 Profeore: Gilberto Taeu Lima e Pero Garcia Duarte Lita e Exercício

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univeridade Salvador UNIFACS Curo de Engenharia Método Matemático Aplicado / Cálculo Avançado / Cálculo IV Profa: Ila Rebouça Freire A Tranformada de Laplace Texto 0: A Tranformada Invera. A Derivada da

Leia mais

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número

Leia mais

Condução de calor numa barra semi-infinita

Condução de calor numa barra semi-infinita Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade

Leia mais

Lista 4 Prof. Diego Marcon

Lista 4 Prof. Diego Marcon Lita 4 Prof. Diego Marcon Método Aplicado de Matemática I 6 de Junho de 07 Lita de exercício referente ao retante da primeira área da noa diciplina: Exponencial de matrize Tranformada de Laplace Delocamento

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

Intervalo de Confiança para a Diferença entre Duas Médias Amostrais

Intervalo de Confiança para a Diferença entre Duas Médias Amostrais Intervalo de Confiança para a Diferença entre Dua Média Amotrai Quando e quer etimar a diferença, µ µ, entre a média de dua populaçõe e, procede-e da eguinte maneira: toma-e uma amotra de cada população,

Leia mais

3 Equações de movimentos

3 Equações de movimentos 3 Equaçõe de movimento A formulação da equaçõe governante e da condiçõe de contorno, memo que para um cao geral, é uualmente muito direta. ontudo, a olução analítica do problema, em muito cao é impoível

Leia mais

Transformada de Laplace

Transformada de Laplace Sinai e Sitema - Tranformada de Laplace A Tranformada de Laplace é uma importante ferramenta para a reolução de equaçõe diferenciai. Também é muito útil na repreentação e análie de itema. É uma tranformação

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Etatítica Material teórico Medida de Diperão ou Variação Reponável pelo Conteúdo: Profª M. Roangela Maura C. Bonici MEDIDAS DE DISPERSÃO OU VARIAÇÃO Introdução ao Conteúdo Cálculo da

Leia mais

Aula 08 Equações de Estado (parte I)

Aula 08 Equações de Estado (parte I) Aula 8 Equaçõe de Etado (parte I) Equaçõe de Etado input S output Já vimo no capítulo 4 ( Repreentação de Sitema ) uma forma de repreentar itema lineare e invariante no tempo (SLIT) atravé de uma função

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035

Leia mais

3 Critérios de Confiabilidade

3 Critérios de Confiabilidade 3 Critério de Confiabilidade Uma da funçõe do regulador conite na definição de critério de confiabilidade. Define-e um conjunto de rico aceitável e uma medida de rico para determinar e o rico de uma determinada

Leia mais

ESTABILIDADE MALHA FECHADA

ESTABILIDADE MALHA FECHADA Departamento de Engenharia Química e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS ESTABILIDADE Método critério de Routh-Hurwitz Cao Epeciai Prof a Ninoka Bojorge ESTABILIDADE MALHA FECHADA Regiõe

Leia mais

E dinheiro. fumaça. dinheiro

E dinheiro. fumaça. dinheiro Eternalidade Eternalidade de produção - quando a poibilidade de produção de uma firma ão afetada pela eolha do nível de produção ou onumo de outra firma ou onumidor umante uponha doi olega dividindo apartamento.

Leia mais

Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS

Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS 1 SOLO CONCEITOS BÁSICOS O olo, ob o ponto de vita da Engenharia, é um conjunto de partícula ólida com vazio ou poro entre ela. Ete vazio podem etar preenchido com água, ar ou ambo. Aim o olo é : - eco

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 10 Nível 2

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 10 Nível 2 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Reolução do treinamento 10

Leia mais

IV.4 Análise de Dados da Avaliação

IV.4 Análise de Dados da Avaliação Melhor e Pior? IV - Avaliação IV.4 Análie de Dado da Avaliação Interactive Sytem Deign, Cap. 0, William Newman Melhor e Pior? Reumo Aula Anterior Avaliação com utilizadore Local (Laboratório, Ambiente

Leia mais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício 9.1 1. Motre que y 1 é uma olução

Leia mais

Medidas e algarismos significativos

Medidas e algarismos significativos Medida e algarimo ignificativo Como repreentar o reultado de uma medida, algarimo ignificativo Erro, média e devio padrão Hitograma e ditribuição normal Propagação de erro Medida em fíica ex. medida do

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional MECÂNICA DO CONTÍNUO Tópico 2 Cont. Elaticidade Linear Cálculo Variacional PROF. ISAAC NL SILVA Lei de Hooke Até o limite elático, a tenão é diretamente proporcional à deformação: x E. e x e e y z n E

Leia mais

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa Bruno Hott Algoritmo e Etrutura de Dado I DECSI UFOP Clae de Comportamento Aintótico Se f é uma função de complexidade para um algoritmo F, então O(f) é coniderada

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinai e Sitema Mecatrónico Análie de Sitema no Domínio do Tempo Etabilidade Joé Sá da Cota Joé Sá da Cota T9 - Análie de Sitema no Tempo - Etabilidade 1 Análie e Projecto de Sitema A análie e a íntee (projecto)

Leia mais

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Câmpu Francico Beltrão Diciplina: Prof. Dr. Jona Joacir Radtke Tranformada de Laplace Se f (t) for uma função definida para todo t 0, ua tranformada de Laplace é a integral de f

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

PSI3213 CIRCUITOS ELÉTRICOS II

PSI3213 CIRCUITOS ELÉTRICOS II PSI33 CIRCUITOS ELÉTRICOS II Solução do Exercício Complementare Correpondente à Matéria da a Prova a) il ( ) = ( não há geradore independente ) Reitência equivalente vita pelo indutor: i i 5 i E i = i

Leia mais

Transformadas de Laplace

Transformadas de Laplace ranformada de Laplace Definição e exemplo Recorde-e a definição de integral impróprio de ª epécie: Definição: Seja f uma função real ou complexa definida no intervaloa, e integrável em cada ubintervalo

Leia mais

Lista de exercícios 2 Resposta no Tempo, Erros Estacionários e Lugar Geométrico das Raízes

Lista de exercícios 2 Resposta no Tempo, Erros Estacionários e Lugar Geométrico das Raízes 16003 Controle Dinâmico ENE - UnB Lita de exercício 16003 Controle Dinâmico o emetre de 01 Lita de exercício Repota no Tempo, Erro Etacionário e Lugar Geométrico da Raíze 1. Quando o itema motrado na figura

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Anotaçõe obre omatório 3 Rodrigo Carlo Silva de Lima Univeridade Federal Fluminene - UFF-RJ rodrigo.uff.math@gmail.com Sumário Somatório 3. Outra propriedade de omatório...................... 3.. Delta

Leia mais

QUESTÃO 21 ITAIPU/UFPR/2015

QUESTÃO 21 ITAIPU/UFPR/2015 QUTÃO TAPU/UFPR/5. Um gerador com conexão etrela-aterrado etá prete a er conectado a um itema elétrico atravé de um tranformador elevador ligado com conexão delta-etrela aterrado, tal como repreentado

Leia mais

2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDES DELGADAS.

2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDES DELGADAS. 2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO BERT E PREDES DELGDS. Nete capítulo ão apreentado, de forma concia, com bae no trabalho de Mori e Munaiar Neto (2009), algun conceito báico neceário ao entendimento do

Leia mais

Projeto do compensador PID no lugar das raízes

Projeto do compensador PID no lugar das raízes Projeto do compenador PID no lugar da raíze 0 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campo Neta apotila erão etudado o projeto do compenadore PI, PD e PID atravé do lugar da raíze

Leia mais

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns: A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema)

Leia mais

4. CONTROLE PID COM O PREDITOR DE SMITH

4. CONTROLE PID COM O PREDITOR DE SMITH 4 CONTROLADOR PID COM O PREDITOR DE SMITH 28 4. CONTROLE PID COM O PREDITOR DE SMITH 4.1 SINTONIA DO CONTROLADOR PID Nete capítulo erá apreentada a metodologia para a intonia do controlador PID. Reultado

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Teste para Médias: duas amostras independentes

Teste para Médias: duas amostras independentes Etatítica II.09.07 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Etatítica I - UNIR Etatítica II Tete para Média: dua amotra independente Profa. Renata Gonçalve

Leia mais

Fenômenos de Transporte III. Aula 07. Prof. Gerônimo

Fenômenos de Transporte III. Aula 07. Prof. Gerônimo Fenômeno de Tranporte III ula 7 Prof. Gerônimo 7- DIFUSÃO EM REGIME PERMETE COM REÇÃO QUÍMIC 7.- Conideraçõe a repeito Vimo até então a difuão ocorrendo em que houvee geração ou conumo do oluto no meio

Leia mais

Colégio Santa Dorotéia Área de Ciências da Natureza Disciplina: Física Ano: 1º - Ensino Médio Professor: Newton Barroso

Colégio Santa Dorotéia Área de Ciências da Natureza Disciplina: Física Ano: 1º - Ensino Médio Professor: Newton Barroso Área de Ciência da Natureza Diciplina: Ano: º - Enino Médio Profeor: Newton Barroo Atividade para Etudo Autônomo Data: 5 / 6 / 09 ASSUNTO: MCU (CAP. 9) Aluno(a): N o : Turma: ) (UFU 08) Auma que a dimenõe

Leia mais

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido.

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido. FÍSICA º ANO I- ETOES - GANDEZA ESCALA E ETOIAL a) G Ecalar: é aquela que fica perfeitamente definida quando conhecemo o eu valor numérico e a ua unidade de medida Ex: maa, tempo, comprimento, energia,

Leia mais

CONTRASTANDO DUAS FERRAMENTAS PARA ANÁLISE DE CORPUS DE APRENDIZES: ANTCONC E PACOTE TM

CONTRASTANDO DUAS FERRAMENTAS PARA ANÁLISE DE CORPUS DE APRENDIZES: ANTCONC E PACOTE TM CONTRASTANDO DUAS FERRAMENTAS PARA ANÁLISE DE CORPUS DE APRENDIZES: ANTCONC E PACOTE TM GOMIDE, Andrea Rodrigue 1 RESUMO: O recuro de mineração de texto e linguítica de corpu permitem o tratamento de grande

Leia mais

Suponha ser possível determinar um modelo de regressão. Considere um experimento fatorial com fatores testados a l

Suponha ser possível determinar um modelo de regressão. Considere um experimento fatorial com fatores testados a l Modelagem da Variância em Experimento Não-Replicado Flávio Fogliatto, Ph.D. 1 Prof. Fogliatto 1 Panorâmica (Continuação) Deeja-e verificar e o reíduo, dentro de um determinado nível de um fator de controle,

Leia mais

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definiçõe O gráfico do Lugar geométrico da raíze, conite no deenho de todo o valore que o pólo de malha fechada de uma função

Leia mais

Introdução à Macroeconomia 2ª Ficha de trabalho (Enunciado para as turmas 1, 3, 5, 7 e 9)

Introdução à Macroeconomia 2ª Ficha de trabalho (Enunciado para as turmas 1, 3, 5, 7 e 9) NOV School of Buine and Economic 2º Semetre 2011/2012 Introdução à Macroeconomia 2ª Ficha de trabalho (Enunciado para a turma 1, 3, 5, 7 e 9) Data limite de entrega: 2 de bril (até à 14h no gabinete ou

Leia mais

1 s(s+0,7). (1.1) O controlador deve ser tal que o sistema em malha fechada apresente as seguintes características para entrada degrau: G p (s) =

1 s(s+0,7). (1.1) O controlador deve ser tal que o sistema em malha fechada apresente as seguintes características para entrada degrau: G p (s) = 1 Projeto de Controlador Digital - v1.1 1.1 Objetivo A finalidade deta experiência é projetar um controlador digital por meio técnica convencionai [Franklin, Powell e Workman 2006], [Ogata 1995], implementá-lo

Leia mais

CIRCUITO EQUIVALENTE DA MÁQUINA ASSÍNCRONA. José Roberto Cardoso. Motor de Indução Parado com terminais do rotor em aberto

CIRCUITO EQUIVALENTE DA MÁQUINA ASSÍNCRONA. José Roberto Cardoso. Motor de Indução Parado com terminais do rotor em aberto CIRCUITO EQUIVALENTE DA MÁQUINA ASSÍNCRONA Joé Roberto Cardoo Motor de Indução Parado com terminai do rotor em aberto O circuito da figura motra o circuito equivalente por fae do motor de indução com o

Leia mais

Sociedade de Engenharia de Áudio. Artigo de Convenção. Apresentado na VII Convenção Nacional de maio de 2003, São Paulo, Brasil

Sociedade de Engenharia de Áudio. Artigo de Convenção. Apresentado na VII Convenção Nacional de maio de 2003, São Paulo, Brasil Sociedade de Engenharia de Áudio Artigo de Convenção Apreentado na VII Convenção Nacional 68 de maio de 003, São Paulo, Brail Ete artigo foi reproduzido do original entregue pelo autor, em ediçõe, correçõe

Leia mais

chega e encontra uma cadeira livre e os atendentes ocupados senta e espera pelo serviço. Os clientes

chega e encontra uma cadeira livre e os atendentes ocupados senta e espera pelo serviço. Os clientes . Um erviço de engraxar apato em um aeroporto tem cinco cadeira e doi atendente. Um cliente que chega e encontra uma cadeira livre e o atendente ocupado enta e epera pelo erviço. O cliente potenciai que

Leia mais

Capítulo 5 COMPARAÇÃO ENTRE ESTRATÉGIAS DE MODULAÇÃO HÍBRIDAS Introdução

Capítulo 5 COMPARAÇÃO ENTRE ESTRATÉGIAS DE MODULAÇÃO HÍBRIDAS Introdução 76 Capítulo 5 COMPARAÇÃO ENTRE ESTRATÉGIAS DE MODULAÇÃO HÍBRIDAS 5.. Introdução No capítulo precedente foi deenvolvido um etudo para ecolher a configuração da amplitude da fonte CC do inveror com trê célula

Leia mais

Eletrônica 1. Transistores Análise AC

Eletrônica 1. Transistores Análise AC apítulo 3 N O T A S D A U L A, R 2.0 U R J 2 0 1 8 F L Á O A L N A R D O R Ê G O B A R R O S letrônica 1 Tranitore Análie A Flávio Alencar do Rego Barro Univeridade do tado do Rio de Janeiro -mail: falencarrb@gmail.com

Leia mais

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace:

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace: Secção 6 Tranformada de aplace (Farlow: Capítulo 5) Definição Tranformada de aplace A tranformada de aplace é, baicamente, um operador matemático que tranforma uma função numa outra Ea operação é definida

Leia mais

Optimização de um reactor biológico baseada em simulação

Optimização de um reactor biológico baseada em simulação Modelação e Simulação 2011/12 Trabalho de Laboratório nº 2 Optimização de um reactor biológico baeada em imulação Objectivo Apó realizar ete trabalho, o aluno deverá er capaz de utilizar o SIMULINK para

Leia mais

6 Previsões teóricas Cálculo segundo procedimento de Leon et al. (1996) Momento resistente da ligação

6 Previsões teóricas Cálculo segundo procedimento de Leon et al. (1996) Momento resistente da ligação Previõe teórica Ete capítulo apreentada a previõe de reultado teórico do comportamento da ligação etudada, egundo o modelo analítico utilizado nete trabalho. O primeiro procedimento decrito é referente

Leia mais

ERG FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula 2

ERG FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula 2 ERG-009 - FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula Profeor Joé R. Simõe-Moreira, Ph.D. e-mail: jrimoe@up.br ESPECIALIZAÇÃO EM ENERGIAS RENOVÁVEIS, GERAÇÃO DISTRIBUÍDA E EFICIÊNCIA ENERGÉTICA

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXI Olimpíada Braileira de Matemática GBRITO Segunda Fae Soluçõe Nível Segunda Fae Parte PRTE Na parte erão atribuído ponto para cada repota correta e a pontuação máxima para ea parte erá 0 NENHUM PONTO

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Olimpíada Braileira de Matemática GABARITO Segunda Fae Soluçõe Nível Segunda Fae Parte A CRITÉRIO DE CORREÇÃO: PARTE A Cada quetão vale 4 ponto e, e omente e, para cada uma o reultado ecrito pelo

Leia mais

2. Apresentação da IHM Basic Operator Panel (BOP)

2. Apresentação da IHM Basic Operator Panel (BOP) SINAMICS V20 Comiionamento báico SINAMICS V20 Comiionamento báico Bruno Firmino - 28/07/2014 Objetivo: Orientar obre o pao a pao de comiionamento rápido do inveror SINAMICS V20 Avio: Ete documento apreenta

Leia mais

MODULAÇÃO E CODIFICAÇÃO

MODULAÇÃO E CODIFICAÇÃO Intituto Superior de Ciência do rabalho e da Emprea Departamento de Ciência e ecnologia de Inormação MODULAÇÃO E CODIFICAÇÃO º ete Ano Lectivo 005/006 0 emetre 07/06/06 Ecreva o eu nome e número de aluno

Leia mais

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8]

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8] .. - Medida de Diperão O objetivo da medida de diperão é medir quão próximo un do outro etão o valore de um grupo (e alguma menuram a diperão do dado em torno de uma medida de poição). Intervalo É a medida

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Univeridade Federal do ABC Eng. de Intrumentação, Automação e Robótica Circuito Elétrico II Joé Azcue, Prof. Dr. Tranformada invera de Laplace Definição Funçõe racionai Expanão em fraçõe parciai Teorema

Leia mais

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sitema Deempenho de Sitema de Controle Renato Dourado Maia Univeridade Etadual de Monte Claro Engenharia de Sitema Repota Tranitória de Sitema de Ordem Superior A repota ao degrau de um itema

Leia mais

1 Inferência Estatística - Teoria da Estimação

1 Inferência Estatística - Teoria da Estimação 1 Inferência Etatítica - Teoria da Etimação 1.1 Introdução Nete capítulo abordaremo ituaçõe em que o interee etá em obter informaçõe da população com bae em amotra. Como exemplo, conidere a eguinte ituaçõe.

Leia mais

2 º Semestre 2017/2018 (MAero, MeMec, MeAmbi, Nav) 2º Teste, 25 de Maio de 2018, Duração: 2h

2 º Semestre 2017/2018 (MAero, MeMec, MeAmbi, Nav) 2º Teste, 25 de Maio de 2018, Duração: 2h ermodinâmica I 2 º Semetre 2017/2018 (MAero, MeMec, MeAmbi, Nav) 2º ete, 25 de Maio de 2018, Duração: 2 Nome: Nº Sala roblema 1 (5v=0.4+0.3+0.3+0.4+0.3+0.3+0.4+0.3+0.3+0.4+0.3+0.3+0.5+0.5) No oceano a

Leia mais

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos.

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos. 132 7.6. Acoplamento do Momento Angular. A informação dada atravé da ditribuição electrónica no átomo não é uficiente para decrever completamente o etado do átomo, uma vez que não explica como o momento

Leia mais

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Repreentação de Modelo Dinâmico em Epaço de Etado Grau de Liberdade para Controle Epaço de Etado (CP1 www.profeore.deq.ufcar.br/ronaldo/cp1 DEQ/UFSCar 1 / 79 Roteiro 1 Modelo Não-Linear Modelo Não-Linear

Leia mais

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA UNIVESIDADE FEDEAL DE CAMPINA GANDE CENTO DE ENGENHAIA ELÉTICA E INFOMÁTICA DEPATAMENTO DE ENGENHAIA ELÉTICA LABOATÓIO DE ELETÔNICA Experimento #4 Filtro analógico ativo EXPEIMENTO #4 Objetivo Gerai Eta

Leia mais

2.3 Simetrias cinemáticas e geradores infinitesimais

2.3 Simetrias cinemáticas e geradores infinitesimais .3 Simetria cinemática e geradore infiniteimai O método de contruir uma repreentação de um itema diretamente a partir da freqüência relativa medida, como exemplificado no pin, eria completamente inviável

Leia mais

DERIVADA. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

DERIVADA. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I DERIVADA COMO MEDIMOS VELOCIDADE MÉDIA? A velocidade média de um objeto ao longo de um determinado percuro é o delocamento total do objeto ( ) dividido pelo tempo gato no percuro ( t). Io não igniica que

Leia mais

Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Univeridade de Coimbra Análie e Proceamento de BioSinai Metrado Integrado em Engenharia Biomédica Faculdade de Ciência e Tecnologia Univeridade de Coimbra Slide Análie e Proceamento de BioSinai MIEB Adaptado

Leia mais

INTERVALO DE CONFIANÇA

INTERVALO DE CONFIANÇA INTERVALO DE CONFIANÇA Supoha que etejamo itereado um parâmetro populacioal verdadeiro (ma decohecido) θ. Podemo etimar o parâmetro θ uado iformação de oa amotra. Chamamo o úico úmero que repreeta o valor

Leia mais

Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa MECÂNICA

Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa MECÂNICA Diciplina de Fíica Aplicada A 212/2 Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MECÂNICA Neta aula etudaremo a primeira parte da Fíica Cláica: a Mecânica. A Mecânica divide-e

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Gabarito da Lista VI - Microeconomia II Professor: Rodrigo Moura. um consumidor i, sua restrição orçamentária (sempre esgotada) é:

Gabarito da Lista VI - Microeconomia II Professor: Rodrigo Moura. um consumidor i, sua restrição orçamentária (sempre esgotada) é: Gabarito da Lista VI - Microeconomia II Professor: Rodrigo Moura Monitor: Je erson Bertolai. Lei de Walras: Para qualquer vetor de preços p, temos que pz(p) 0, onde z(p) é o vetor de excesso de demanda.

Leia mais

Cov(P p, P o ) = Cov(g ap, g ao ) + Cov(g dp, g do ) Cov(P p, P o ) = Cov(g ap, ½g ap + α m ) Cov(P p, P o ) = Cov(g ap, ½g ap ) + Cov(g ap, α m )

Cov(P p, P o ) = Cov(g ap, g ao ) + Cov(g dp, g do ) Cov(P p, P o ) = Cov(g ap, ½g ap + α m ) Cov(P p, P o ) = Cov(g ap, ½g ap ) + Cov(g ap, α m ) Como etudar genética em genótipo? Correlação entre parente epota à eleção Cruamento controlado Correlação entre parente Covariância fenotípica - mede o quanto o fenótipo de doi indivíduo deviam da média

Leia mais

Despertando o(a) Discente Ativo(a)

Despertando o(a) Discente Ativo(a) Etatítica II 4.0.07 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Etatítica II Profa. Renata Gonçalve Aguiar Fonte: naomearrependonemmeorgulho.blogpot. Sábio

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 9 e 10

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 9 e 10 Licenciatura em Engenharia Civil 4º Ano 1º Semetre MECÂNICA DOS SOLOS 1 Ano lectivo 2002/2003 FOLHA DE EXERCÍCIOS Nº 2 Caracterítica Fíica do Solo Exercício para reolução fora do âmbito da aula teórico-prática

Leia mais

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares.

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares. Reolução da atividade complementare Matemática M9 Geometria nalítica: Ponto e Reta p. 08 (MK-SP) Identifique a entença fala: a) O ponto (0, ) pertence ao eio. b) O ponto (4, 0) pertence ao eio. c) O ponto

Leia mais

Resolução do exame de 1 a época

Resolução do exame de 1 a época Reolução do exame de a época Programação Matemática - O itema linear: x + y x y x + y + z x + y + αz β x y x y x y z x + y + αz β é do tipo Ax b onde A = α e b = Por um corolário do lema de Farka, um itema

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioetatítica e Computação I Intervalo de confiança Maria Virginia P Dutra Eloane G Ramo Vania Mato Foneca Pó Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baeado na aula de M. Pagano e Gravreau

Leia mais

ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA ROTEIRO DE RECUPERAÇÃO 1 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Profeore: Diego, Rafael, Marcello, Yuri, Cauê Nota: (Valor 1,0) 1º Bimetre 1. Apreentação: Prezado aluno, A etrutura da recuperação bimetral

Leia mais

Resolução do Exame de 1 a Época 2 o Semestre /2010 Grupo 1 Exercício 1 a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0:1 2p A + 0:1 2p F

Resolução do Exame de 1 a Época 2 o Semestre /2010 Grupo 1 Exercício 1 a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0:1 2p A + 0:1 2p F Resolução do Exame de a Época o Semestre - 009/00 Grupo Exercício a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0: p A + 0: p F B = 6 4 0 @B @A @B @A @B @F @ B @A @ B @F @A @B @F @ B @A@F @ B @F

Leia mais