Quantas equações existem?

Tamanho: px
Começar a partir da página:

Download "Quantas equações existem?"

Transcrição

1 www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP Reumo O trabalho conite em denir a altura de uma equação polinomial com coeciente inteiro, e depoi em calcular quanta equaçõe exitem com determinado grau e altura pré-xado. Em eguida, utilizaremo ete reultado para motrar que o conjunto deta equaçõe é enumerável. O trabalho conite num ótimo exercício de Análie Combinatória. Palavra chave: Enumerabilidade, Altura de uma Equação, Análie Combinatória. How many equation do exit? Abtract In thi work we dene the high of a polinomial equation with integer coecient and then calculate how many equation do exit in a given degree and height. After, we ue thi reult to how that the et of thi equation i enumerable. Keyword: Enumerability, height of an equation, combinatorial analyi. 1 Introdução A altura de uma equação polinomial a n x n +a n 1 x n 1 + +a 1 x+a 0 = 0 com coeciente a i inteiro é denida como a oma do módulo de eu coeciente. Noa propota é contar o número de equaçõe que pouem uma determinada altura h, o que conite numa boa aplicação da análie combinatória. Ao fazermo tal contagem, eremo capaze também de provar que o conjunto E de toda a equaçõe polinomiai com coeciente inteiro é enumerável, ito é, que exite uma função bijetora de domínio N = {1, 2, } e imagem E. Para tanto, vamo aumir o eguinte teorema, cláico da Análie Real, retirado de (FIGUEIREDO-1996: Teorema 1. Se {X 1, X 2, } é um conjunto enumerável, onde cada X i é um conjunto nito, então a união do X i ' é um conjunto enumerável. Um elemento típico em E erá denotado por a n x n + a n 1 x n a 1 x + a 0 = 0, n > 0. Aim, a equaçõe x 2 2 = 0 e x 8 + 4x 6 13x = 0, de grau 2 e 8 repectivamente, Santo, R.C Quanta equaçõe exitem?

2 www2.jatai.ufg.br/oj/index.php/matematica ão elemento de E. Vamo coniderar que a equaçõe de memo grau, ma que diferem em eu coeciente, ão ditinta, memo que tenham a mema raíze. Por exemplo, 2x 2 4 = 0 x 2 2 = 0. Segue abaixo a denição da altura de uma equação. Denição 2. Fixada uma equação de grau n, denimo a ua altura h como endo h = Oberve que, como o grau da equação é n, egue que a n 0, portanto, h > 0. n a i. i=0 2 Cálculo da altura h para o cao h maior do que o grau da equação Lema 3. Dado {0, 1, } e h tal que h ( + 1 0, então a quantidade de ( + 1- upla (t n 0, t 1 0, t 2 0,, t ( 0, oluçõe inteira e não negativa da equação h 1 t n +t 1 +t 2 + +t 1 +t = h (+1, é (combinação de h=1 elemento tomado a. Demontração. ( h 1 1º cao: h ( + 1 = 0. Temo: h=1 = e, portanto, = 1. Por outro lado, é fácil ver que a única olução da equação nee cao é a (+1-upla (0, 0,..., 0. 2º cao: h ( + 1 > 0. Temo: h > = 1 h 1 > 0. Trata-e de um problema cláico de análie combinatória (veja o o exercício C.1 do cap 26 em (PAIVA-1995: e dipuermo h ( + 1 barra e ímbolo de + em la, o problema e reume em determinarmo de quanta forma podemo permutar todo ete h 1 > 0 objeto. Ea quantidade correponde ao número de permutaçõe de h 1 elemento, do quai h ( + 1 e repetem, e e repetem: P (h (+1, h 1 = ( (h 1! (h ( + 1!! = (h 1! h 1 ((h 1!! = Corolário 4. Dado {0, 1, } e h tal que h=( + 1 0, a quantidade de ( + 1-upla (z n > 0, z 1 > 0,, z > 0, oluçõe poitiva da equação z n + z 1 + z z = h, é ( h 1. Santo, R.C Quanta equaçõe exitem?

3 www2.jatai.ufg.br/oj/index.php/matematica Demontração. Tomando t n = z n =1, t 1 = z 1 =1,, t = z =1, etamo na hipótee do lema 3, ou eja, t n 0, t 1 0,, t 0 e t n + t i = h ( + 1, e o reultado egue imediatamente do lema 3. Corolário 5. Sejam h > n > 0, e conidere o conjunto {0 k 1 < k 2 < < k < n} formado por número inteiro. A quantidade M de equaçõe de grau n, altura ( h, e tendo o +1 coeciente de x n, x k, x k 1,, x k 1 h 1 não-nulo e o demai nulo é M = Demontração. A quetão conite em encontrar quanta ( + 1-upla (a n 0, a k 0,, a k1 0 reolvem a equação a n + i=1 a ki = h. i=1 Tomando a n = z n, a k1 = z 1,, a k = z, etamo na hipótee do colorário 4 (oberve que, como h > n > 0, então h >, e aim h + 1. Como o + 1 coeciente a n, a k1,..., a k etão em módulo, o inal de cada um dele não modica a altura h. E como podemo variar o inal de cada uma da (( + 1-upla (z n, z 1,, z obtida no corolário 4 h 1 de 2 +1 maneira, temo que M = Corolário 6. Fixado h > n > 0, a quantidade ( de equaçõe ( de grau n, altura h e pouindo h 1 n exatamente + 1 coeciente não nulo é Demontração. Na equaçõe que atifazem a hipótee, a n já é diferente de zero. Aim, a quetão conite em pegar coeciente não nulo do conjunto A = {a 0,, a n=1} para então realizarmo a mema contagem realizada no colorário 5. De quanta( forma podemo n pegar coeciente em A? Combinação de n elemento tomado a :. Aim, o ( ( h 1 n número de equaçõe com + 1 coeciente não nulo é O corolário a eguir dá, nalmente, o número de equaçõe com determinada altura h e grau n, no cao em que h > n. Corolário 7. O número de equaçõe em E com um dado grau n > 0 e uma dada altura h > n > 0 é n =0 ( h 1 ( n 2 +1 Santo, R.C Quanta equaçõe exitem?

4 www2.jatai.ufg.br/oj/index.php/matematica Demontração. Como h > n > 0, o valor (número total de coeciente não nulo meno 1 do colorário 6 pode aumir dede o valor 0 até o valor n, veja o exemplo: na equação (n + 1 x n = 0, h = n + 1 > n e = 0, enquanto que na equação x n + x n x + 1 = 0, h também vale n + 1 > n e = n. Bata, portanto, omarmo a quantidade de equaçõe coniderada no colorário 6 para cada = 0, 1,, n. 3 Cálculo da altura h para o cao h menor ou igual do que o grau da equação Corolário 8. O número de equaçõe em E com um dado grau n > 0 e uma dada altura 0 < h < n + 1 é h 1 ( h 1 =0 ( n 2 +1 Demontração. Suponha que a equação a n x n + a k1 x k a k x k = 0, a n 0, a k1 0,, a k 0 tenha altura h < n+1. Portanto +1 a k1 + a k2 + + a k + a n = h n, ito é, a quantidade + 1 de coeciente não-nulo poderá er, no máximo, h. Logo, ao invé de variar de 0 até n como no colorário 7, deve variar de 0 até h=1. Oberve que, na demontraçõe do corolário 5 e 6, foi uado eencialmente que h > 4 Concluão Reumindo a concluõe do corolário 7 e 8, temo: xado n > 0 e h > 0, o número N n,h de equaçõe polinomiai com coeciente inteiro, grau n e altura h é: ( ( h 1 h 1 n =0 2 +1, e h n N n,h = ( ( n h 1 n =0 2 +1, e h > n Seguem algun exemplo (o cálculo de N n,h e a última tabela cam a cargo do leitor: n = 1, h = 1 N 1,1 = 2 n = 1, h = 2 N 1,2 = 6 n = 1, h = 3 N 1,3 = 10 x = 0 x + 1 = 0, x + 1 = 0, x 1 = 0, 3x = 0, 3x = 0, 2x + 1 = 0 x = 0 x 1 = 0, 2x = 0, 2x = 0 2x + 1 = 0, 2x 1 = 0 2x 1 = 0, x + 2 = 0 x + 2 = 0, x 2 = 0 x 2 = 0 Santo, R.C Quanta equaçõe exitem?

5 REMat www2.jatai.ufg.br/oj/index.php/matematica n = 2, h = 1 N 2,1 = 2 n = 2, h = 2 N 2,2 = 10 n = 2, h = 3 N 2,3 = 26 x 2 = 0, x 2 = 0 2x 2 = 0, 2x 2 = 0, x 2 + x = 0, ±3x 2 = 0, (2 equaçõe x 2 + x = 0, x 2 x = 0, ±2x 2 ± 1 = 0, (4 equaçõe x 2 x = 0, x 2 1 = 0 ±2x 2 ± x = 0, (4 equaçõe x = 0, x 2 1 = 0 ±x 2 ± 2x ± 1 = 0, (8 equaçõe x 2 1 = 0 ±x 2 ± x ± 2 = 0, (8 equaçõe n = 3, h = 1 N 3,1 = 2 n = 3, h = 2 N 3,2 = 14 n = 3, h = 3 N 3,3 = 50 Agora, denote por C n,h o conjunto da equaçõe de grau pré-xado n e altura pré-xada h, e C o conjunto de todo o conjunto C n,h, n = 1, 2, e h = 1, 2, Podemo enumerar C eguindo a etinha abaixo, começando por C 1,1 : C 1,1 C 1,2 C 1,3 C 1,4 C 2,1 C 2,2 C 2,3 C 2,4 C 3,1 C 3,2 C 3,3 C 4,1 C 4,2 Concluiremo agora a demontração de que E é enumerável: cada conjunto C n,h poui uma quantidade nita N n,h de elemento, e E = C n,h. Logo, pelo teorema 1, etá provado que E é enumerável. Referência n = 1, 2, h = 1, 2, [FIGUEIREDO-1996] FIGUEIREDO, D. G. Análie I. 2ª edição. LTC, Rio de Janeiro,1996 [PAIVA-1995] PAIVA, M. Matemática 2. 1ª Edição. Editora Moderna, São Paulo, 1995 Santo, R.C Quanta equaçõe exitem?

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória.

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória. Reolução do Problema de Carregamento e Decarregamento 3D de Contêinere em Terminai Portuário para Múltiplo Cenário via Repreentação por Regra e Algoritmo Genético Aníbal Tavare de Azevedo (UNICAMP) anibal.azevedo@fca.unicamp.br

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública PROBLEMA DE CORTE UNIDIMENSIONAL COM SOBRAS APROVEITÁVEIS: RESOLUÇÃO DE UM MODELO MATEMÁTICO Adriana Cherri Departamento de Matemática, Faculdade de Ciência, UNESP, Bauru adriana@fc.unep.br Karen Rocha

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns: A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema)

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s). 2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()

Leia mais

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori.

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Fíica Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Introdução: Ao uarmo uma chave de roda para retirar o parafuo para trocar o pneu de um automóvel, a roda inteira pode

Leia mais

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO Thale Cainã do Santo Barbalho 1 ; Álvaro Daniel Tele Pinheiro 2 ; Izabelly Laria Luna

Leia mais

IDENTIFICAÇÃO DOS PARÂMETROS ELÉTRICOS DE UM MOTOR DE CORRENTE ALTERNADA

IDENTIFICAÇÃO DOS PARÂMETROS ELÉTRICOS DE UM MOTOR DE CORRENTE ALTERNADA Anai do 12 O Encontro de Iniciação Científica e Pó-Graduação do ITA XII ENCITA / 26 Intituto Tecnológico de Aeronáutica São Joé do Campo SP Brail Outubro 16 a 19 26 IDENTIFICAÇÃO DOS PARÂMETROS ELÉTRICOS

Leia mais

Filtros Analógicos Ativos

Filtros Analógicos Ativos Filtro Analógico Ativo Topologia Sallen-Key FPB Prof. láudio A. Fleury onteúdo. Introdução. Filtro Paa-Baixa de a. Ordem 3. Mudança de Ecala 4. Filtro Paa-Alta de a. Ordem 5. Filtro Paa-Faixa e ejeita-faixa

Leia mais

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Rede MPLS, com Dua Clae de Serviço Rita Girão Silva a,c (Tee de Doutoramento realizada ob upervião de Profeor Doutor Joé Craveirinha a,c e Profeor

Leia mais

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras Livro para a SBEA (material em contrução) Edmundo Rodrigue 9 4.1. Análie granulométrica Granulometria, graduação ou compoição granulométrica de um agregado é a ditribuição percentual do eu divero tamanho

Leia mais

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace

Leia mais

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA Benjamin Mariotti Feldmann Mie Yu Hong Chiang Marco Antonio Brinati Univeridade de São Paulo Ecola Politécnica da

Leia mais

RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES

RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES JOSÉ H. DA CRUZ, MARINA T. MIZUKOSHI E RONALDO A. DOS SANTOS Reumo. O cláico problema envolvendo populaçõe de coelho propoto por Fibonacci em 1202 foi a bae

Leia mais

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico Modelagem Matemática e Simulação computacional de um atuador pneumático coniderando o efeito do atrito dinâmico Antonio C. Valdiero, Carla S. Ritter, Luiz A. Raia Depto de Ciência Exata e Engenharia, DCEEng,

Leia mais

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA UNIVESIDADE FEDEAL DE CAMPINA GANDE CENTO DE ENGENHAIA ELÉTICA E INFOMÁTICA DEPATAMENTO DE ENGENHAIA ELÉTICA LABOATÓIO DE ELETÔNICA Experimento #4 Filtro analógico ativo EXPEIMENTO #4 Objetivo Gerai Eta

Leia mais

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL Copright 004, Intituto Braileiro de Petróleo e Gá - IBP Ete Trabalho Técnico Científico foi preparado para apreentação no 3 Congreo Braileiro de P&D em Petróleo e Gá, a er realizado no período de a 5 de

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento.

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento. Liderança para criar e gerir conhecimento Lider ança para criar e gerir conhecimento }A liderança é um fator eencial para e alcançar o uceo também na getão do conhecimento.~ 48 R e v i t a d a ES P M janeiro

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque Motore de indução Arranque São motore robuto e barato (fabricado em maa), embora tendo o inconveniente de não erem regulávei. Conequentemente, uma vez definido um binário e uma corrente, ete apena dependem

Leia mais

Apostila de SINAIS E SISTEMAS

Apostila de SINAIS E SISTEMAS Apotila de SINAIS E SISTEMAS Álvaro Luiz Stelle (PhD) DAELN CPGEI CEFET PR Março de 5 I PREFÁCIO Eta apotila tem como objetivo dar ao leitor um embaamento teórico da Tranformada de Laplace, de Fourier

Leia mais

Afetação de recursos, produtividade e crescimento em Portugal 1

Afetação de recursos, produtividade e crescimento em Portugal 1 Artigo 65 Afetação de recuro, produtividade e crecimento em Portugal 1 Daniel A. Dia 2 Carlo Robalo Marque 3 Chritine Richmond 4 Reumo No período 1996 a 2011 ocorreu uma acentuada deterioração na afetação

Leia mais

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIA E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE Análie de Senibilidade de Anemômetro a Temperatura Contante Baeado em Senore Termo-reitivo

Leia mais

Fotografando o Eclipse Total da Lua

Fotografando o Eclipse Total da Lua Fotografando o Eclipe Total da Lua (trabalho apreentado para o Mueu de Atronomia e Ciência Afin) http://atrourf.com/diniz/artigo.html Autor: Joé Carlo Diniz (REA-BRASIL) "Você pode e deve fotografar o

Leia mais

METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL

METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL Leandro Michel * Robinon F. de Camargo * michel@ieee.org robinonfc@bol.com.br Fernando Botterón *

Leia mais

arxiv:1301.4910v1 [cs.lo] 21 Jan 2013

arxiv:1301.4910v1 [cs.lo] 21 Jan 2013 MÁRIO SÉRGIO FERREIRA ALVIM JÚNIOR arxiv:1301.4910v1 [c.lo] 21 Jan 2013 ASPECTOS COMPUTACIONAIS DO CÁLCULO DAS ESTRUTURAS Belo Horizonte, Mina Gerai 04 de abril de 2008 UNIVERSIDADE FEDERAL DE MINAS GERAIS

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações Mercado de Capitai Avaliação de Açõe Luiz Brandão O título negociado no mercado podem de renda fixa ou de renda variável. Título de Renda Fixa: Conhece-e de antemão qual a remuneração a er recebida. odem

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

GABARITO NÍVEL III. Questão 1) As Leis de Kepler.

GABARITO NÍVEL III. Questão 1) As Leis de Kepler. SOCIEDADE ASTONÔMICA BASILEIA SAB IV Olimpíada Braileira de Atronomia IV OBA - 001 Gabarito da Prova de nível III (para aluno do enino médio) GABAITO NÍVEL III Quetão 1) A Lei de Kepler. Johanne Kepler,

Leia mais

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS Reumo Luca Franco de Ai¹ Marcelo Semenato² ¹Intituto Federal de Educação, Ciência e Tecnologia/Campu Jataí/Engenharia Elétrica/PIBIT-CNPQ lucafranco_jty@hotmail.com

Leia mais

3 Fuga de cérebros e investimentos em capital humano na economia de origem uma investigação empírica do brain effect 3.1.

3 Fuga de cérebros e investimentos em capital humano na economia de origem uma investigação empírica do brain effect 3.1. 3 Fuga de cérebro e invetimento em capital humano na economia de origem uma invetigação empírica do brain effect 3.1. Introdução Uma da vertente da literatura econômica que etuda imigração eteve empre

Leia mais

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M.

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M. UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox Pedro Dini Gapar António Epírito Santo J. A. M. Felippe de Souza

Leia mais

Laboratório de Sistemas e Sinais Equações Diferenciais

Laboratório de Sistemas e Sinais Equações Diferenciais Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe

Leia mais

I Desafio Petzl Para Bombeiros Regulamento Campeonato Internacional de Técnicas Verticais e Resgate

I Desafio Petzl Para Bombeiros Regulamento Campeonato Internacional de Técnicas Verticais e Resgate ! I Deafio Petzl Para Bombeiro Regulamento Campeonato Internacional de Técnica Verticai e Regate A Spelaion, ditribuidor excluivo Petzl no Brail e o Corpo de Bombeiro de Goiá, etá organizando o Primeiro

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

Estratégias MIMO-OFDM para Sistemas de

Estratégias MIMO-OFDM para Sistemas de XXII SIMPÓSIO BRASILEIRO DE TELECOMUICAÇÕES - SBrT 05, 04-08 DE SETEMBRO DE 005, CAMPIAS, SP Etratégia -OFDM para Sitema de Comunicaçõe Móvei Walter C. Freita Jr., Charle C. Cavalcante e F. Rodrigo. P.

Leia mais

Nestas notas será analisado o comportamento deste motor em regime permanente.

Nestas notas será analisado o comportamento deste motor em regime permanente. MOTO DE INDUÇÃO TIFÁSICO 8/0/006 Ivan Camargo Introdução O motor de indução trifáico correponde a, aproximadamente, 5 % da carga elétrica do Brail, ou eja, 50 % da carga indutrial que, por ua vez, correponde

Leia mais

EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS

EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO - UNICAMP EE-832 - LABORATÓRIO DE ELETRÔNICA INDUSTRIAL EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS 7. Introdução A máquina de corrente

Leia mais

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO Curo de Análie Matricial de Etrutura 1 I - INTRODUÇÃO I.1 - Introdução O proceo de um projeto etrutural envolve a determinação de força interna e de ligaçõe e de delocamento de uma etrutura. Eta fae do

Leia mais

2 Introdução à Fluorescência

2 Introdução à Fluorescência 2 Introdução à luorecência 2. O fenômeno da fluorecência Luminecência é a emião de luz por alguma ubtância, ocorrendo a partir de etado eletrônico excitado. Para ecrever ee capítulo conultamo principalmente

Leia mais

Palavras-chave: Tubo Evaporador; Modelo de Drift Flux; Escoamento Bifásico, Simulação Numérica. 1. INTRODUÇÃO

Palavras-chave: Tubo Evaporador; Modelo de Drift Flux; Escoamento Bifásico, Simulação Numérica. 1. INTRODUÇÃO IN 1984-818 Reolução da Equaçõe de Conervação da Maa, Eneria e Momento em Termo de Preão, Título Máico e Fração de Vazio para um Tubo Evaporador Utilizando o Modelo de Drit Flux Luí Henrique Gazeta de

Leia mais

No campo da eletrcidade podemos sintetizar 03 elementos fundamentais passivos e são eles: resisores, capacitores e indutores.

No campo da eletrcidade podemos sintetizar 03 elementos fundamentais passivos e são eles: resisores, capacitores e indutores. SIMULAÇÃO MODELAGEM DE SISTEMAS POR LAPLACE Pro. Luí Calda Simulação de Proceo em Eng. de Materiai Diiciplina - MR070 A modelagem matemática de um itema é empre uma tarea muito complexa para o engenheiro

Leia mais

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2 Fíica Báica: Mecânica - H. Moyé Nuenzveig, 4.ed, 003 Problea do Capítulo por Abraha Moyé Cohen Departaento de Fíica - UFAM Manau, AM, Brail - 004 Problea Na célebre corrida entre a lebre e a tartaruga,

Leia mais

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS 3 a 6 de outubro de 0 Univeridade Federal Rural do Rio de Janeiro Univeridade Severino Sombra aoura RJ ESTUDOS EXPERIMENTIS SOBRE LIÇÃO DS PROPRIEDDES DE FLUIDOS DE PERFURÇÃO EM MEIOS POROSOS NISOTRÓPICOS.

Leia mais

ESTUDO COMPARATIVO ENTRE OS PROCEDIMENTOS DE AMOSTRAGEM CASUAL SIMPLES E AMOSTRAGEM SISTEMÁTICA

ESTUDO COMPARATIVO ENTRE OS PROCEDIMENTOS DE AMOSTRAGEM CASUAL SIMPLES E AMOSTRAGEM SISTEMÁTICA Etudo comparativo entre o procedimento de amotragem... 67 ESTUDO COMPARATIVO ENTRE OS PROCEDIMENTOS DE AMOSTRAGEM CASUAL SIMPLES E AMOSTRAGEM SISTEMÁTICA EM INVENTÁRIOS DE ARBORIZAÇÃO URBANA Comparative

Leia mais

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas.

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas. Ecola Báic a 2º º e 3º º Ciclo Tema 1 Viver com o outro Tema Conteúdo Competência Actividade Tema 1 Viver com o outro Valore Direito e Devere Noção de valor O valore como referenciai para a acção: - o

Leia mais

RESISTÊNCIA E PROPULSÃO Mestrado em Engenharia e Arquitectura Naval Exame de 2ª Época 26 de Janeiro de 2010 Duração: 3 horas

RESISTÊNCIA E PROPULSÃO Mestrado em Engenharia e Arquitectura Naval Exame de 2ª Época 26 de Janeiro de 2010 Duração: 3 horas RESISTÊNCIA E PROPULSÃO Metrado e Engenharia e Arquitectura Naval Exae de ª Época 6 de Janeiro de 010 Duração: 3 hora Quetão 1. U porta-contentore te a eguinte caracterítica: -Superfície olhada: 5454.

Leia mais

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força

Leia mais

Objectivo Geral: Familiarização com os conceitos de sinais, espectros e modulação.

Objectivo Geral: Familiarização com os conceitos de sinais, espectros e modulação. Deartamento de Engenharia Electrotécnica Secção de Telecomunicaçõe Metrado integrado em Engenharia Electrotécnica e de Comutadore Licenciatura em Engenharia Informática º Trabalho de Laboratório Gruo:

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA CURSO DE ENGENHARIA DO AMBIENE FÍSICA E QUÍMICA DA AMOSFERA Ano Lectivo 2004/2005 Época Epecial: 17/10/2005 I (4.8 valore) Atribua a cada uma da afirmaçõe eguinte, em jutificar, uma da claificaçõe: Verdadeiro

Leia mais

Implementando modelos DEA no R

Implementando modelos DEA no R Implementando modelo DEA no R Joé Francico Moreira Peanha profeorfmp@hotmail.com UERJ Alexandre Marinho alexandre.marinho@ipea.gov.br UERJ Luiz da Cota Laurencel llaurenc.ntg@terra.com.br UERJ Marcelo

Leia mais

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1:

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1: apítuo I Seja um corpo ob a ação de eforço externo em equiíbrio, como motra a figura I-1: Figura I-3 Eforço que atuam na eção para equiibrar o corpo Tome-e, agora, uma pequena área que contém o ponto,

Leia mais

Análise Matemática IV

Análise Matemática IV Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a

Leia mais

O CORPO HUMANO E A FÍSICA

O CORPO HUMANO E A FÍSICA 1 a fae Prova para aluno do 9º e 1º ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Eta prova detina-e excluivamente a aluno do 9 o ano do enino fundamental e 1º ano do enino médio. Ela contém trinta quetõe.

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CEFET-SP ÁREA INDUSTRIAL Disciplina: Mecânica dos Fluidos Aplicada Exercícios Resolvidos 1 a lista.

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CEFET-SP ÁREA INDUSTRIAL Disciplina: Mecânica dos Fluidos Aplicada Exercícios Resolvidos 1 a lista. ÁREA INDUSTRIAL Diciplina: Mecânica do Fluido Aplicada Exercício Reolvido 1 a lita Profeor: 1 de 7 Data: /03/008 Caruo Em todo o problema, ão upoto conhecido: água =1000kgm 3 e g= 9,80665m 1. Motrar que

Leia mais

Inclusão Social dos Jovens nos Assentamentos Rurais de Areia com ênfase no trabalho da Tutoria e recursos das novas TIC s

Inclusão Social dos Jovens nos Assentamentos Rurais de Areia com ênfase no trabalho da Tutoria e recursos das novas TIC s Incluão Social do Joven no Aentamento Rurai de Areia com ênfae no trabalho da Tutoria e recuro da nova TIC MIRANDA 1, Márcia C.V.; SILVA 2, Fátima do S.; FÉLIX 3, Jânio 1 Profeora orientadora e coordenadora

Leia mais

RECUPERAÇÃO DE DADOS CLIMATOLÓGICOS DO RIO GRANDE DO SUL E SANTA CATARINA

RECUPERAÇÃO DE DADOS CLIMATOLÓGICOS DO RIO GRANDE DO SUL E SANTA CATARINA UPERAÇÃO DE DADOS CLIMATOLÓGICOS DO RIO GRANDE DO SUL E SANTA CATARINA Flavio Varone Gonçalve (1) Ilia S. Kim (1) Curo Pó-Graduação em Meteorologia, Faculdade de Meteorologia, UFPel. ABSTRACT Climatological

Leia mais

DISTRIBUIÇÃO DE TEMPOS DE RESIDÊNCIA EM SISTEMAS ALIMENTADOS COM VAZÃO VARIÁVEL. Renata Akemi Sassaki

DISTRIBUIÇÃO DE TEMPOS DE RESIDÊNCIA EM SISTEMAS ALIMENTADOS COM VAZÃO VARIÁVEL. Renata Akemi Sassaki DISTRIBUIÇÃO DE TEMPOS DE RESIDÊNIA EM SISTEMAS ALIMENTADOS OM VAZÃO VARIÁVEL Renata Akemi Saaki TESE SUBMETIDA AO ORPO DOENTE DA OORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE

Leia mais

Marés, fases principais da Lua e bebês

Marés, fases principais da Lua e bebês Maré, fae principai da ua e bebê CADERNO BRASIEIRO DE ENSINO DE FÍSICA, FORIANÓPOIS, V.0, N. 1: P.10-9, ABR. 003 Fernando ang da Silveira Univeridade Federal do Rio Grande do Sul UFRGS Intituto de Fíica

Leia mais

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada. Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):

Leia mais

ANÁLISE LINEAR COM REDISTRIBUIÇÃO E ANÁLISE PLÁSTICA DE VIGAS DE EDIFÍCIOS

ANÁLISE LINEAR COM REDISTRIBUIÇÃO E ANÁLISE PLÁSTICA DE VIGAS DE EDIFÍCIOS Anai do 47º Congreo Braileiro do Concreto - CBC005 Setembro / 005 ISBN 85-98576-07-7 Volume XII - Projeto de Etrutura de Concreto Trabalho 47CBC06 - p. XII7-85 005 IBRACON. ANÁLISE LINEAR COM REDISTRIBUIÇÃO

Leia mais

3 Amplificador óptico a fibra dopada

3 Amplificador óptico a fibra dopada 3 Amlificador ótico a fibra doada Em qualquer itema de tranmião o amlificador tem um ael imortante de catar o inal que leva a informação, amlificá-lo, e devolvê-lo ara o canal de tranmião ou ara o recetor,

Leia mais

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis Teoria e Prática na Engenharia Civil, n.14, p.71-81, Outubro, 2009 Método implificado para cálculo de laje maciça apoiada em viga fleívei: validação por meio da análie não linear Simplified method for

Leia mais

Taxa de Juros e Default em Mercados de Empréstimos Colateralizados

Taxa de Juros e Default em Mercados de Empréstimos Colateralizados Etudo Econômico 41(4) outubro/dezembro de 2011 Taxa de Juro e Default em Mercado de Emprétimo Colateralizado Sergio Ricardo Fautino Batita - Joé Angelo Divino - Jaime Orrillo Submetido: 26 de março de

Leia mais

AULA 02 POTÊNCIA MECÂNICA. = τ. P ot

AULA 02 POTÊNCIA MECÂNICA. = τ. P ot AULA 0 POTÊNCIA MECÂNICA 1- POTÊNCIA Uma força pode realizar um memo trabalho em intervalo de tempo diferente. Quando colocamo um corpo de maa m obre uma mea de altura H num local onde a aceleração da

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

CAPÍTULO 4 4.1 GENERALIDADES

CAPÍTULO 4 4.1 GENERALIDADES CAPÍTULO 4 PRIMEIRA LEI DA TERMODINÂMICA Nota de aula pepaada a pati do livo FUNDAMENTALS OF ENGINEERING THERMODINAMICS Michael J. MORAN & HOWARD N. SHAPIRO. 4. GENERALIDADES Enegia é um conceito fundamental

Leia mais

Vestibular 2013 2 a fase Gabarito Física

Vestibular 2013 2 a fase Gabarito Física etibular 203 2 a fae Gabarito Fíica Quetão 0 (alor: 5 ponto) Cálculo da variação da quantidade de movimento A velocidade inicial no momento do impacto erá a velocidade final da queda Aplicando conervação

Leia mais

MODELAGEM DE TRANSFORMADORES TRIFÁSICOS DE DISTRIBUIÇÃO PARA ESTUDOS DE FLUXO DE POTÊNCIA

MODELAGEM DE TRANSFORMADORES TRIFÁSICOS DE DISTRIBUIÇÃO PARA ESTUDOS DE FLUXO DE POTÊNCIA MODELAGEM DE TRANSFORMADORES TRIFÁSICOS DE DISTRIBUIÇÃO PARA ESTUDOS DE FLUXO DE POTÊNCIA FABRÍCIO LUIZ SILA DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA

Leia mais

Imposto de Renda Pessoa Física

Imposto de Renda Pessoa Física Impoto de Renda Peoa Fíica 2006 Manual de Preenchimento Declaração de Ajute Anual Modelo Completo - Ano-calendário de 2005 Receita Federal Minitério da Fazenda GOVERNO FEDERAL Índice PÁG. ENTREGA DA DECLARAÇÃO

Leia mais

Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna

Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna Técnica Econométrica para Avaliação e Impacto Problema e Contaminação na Valiação Interna Rafael Perez Riba Centro Internacional e Pobreza Braília, 18 e junho e 28 Introução Valiação Interna é quano um

Leia mais

CAPÍTULO 7 - Intervalos de confiança

CAPÍTULO 7 - Intervalos de confiança INF 16 CAPÍTULO 7 - Itervalo de cofiaça É uma maeira de calcularmo uma etimativa de um parâmetro decohecido. Muita veze também fucioa como um tete de hipótee. A idéia é cotruir um itervalo de cofiaça para

Leia mais

Universidade Presbiteriana Mackenzie. Automação e Controle I

Universidade Presbiteriana Mackenzie. Automação e Controle I Univeridade Prebiteriana Mackenzie Curo de Engenharia Elétrica Automação e Controle I Nota de Aula Prof. Marcio Eiencraft Segundo emetre de 006 Univeridade Prebiteriana Mackenzie Curo de Engenharia Elétrica

Leia mais

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição PROCEDIMENTO DE MERCADO AM.04 Cálculo de Voto e Contribuição Reponável pelo PM: Acompanhamento do Mercado CONTROLE DE ALTERAÇÕES Verão Data Decrição da Alteração Elaborada por Aprovada por PM AM.04 - Cálculo

Leia mais

operação. Determine qual o percentual de vezes que o servidor adicional será acionado.

operação. Determine qual o percentual de vezes que o servidor adicional será acionado. P r i m e i r o e m e t r e d e 2 4 Revião da Poion e da Exponencial. Suponha ue o aceo a um ervidor de web iga uma Poion com taxa de uatro aceo por minuto. (i) Encontre a probabilidade de ue ocorram aceo

Leia mais

Revista Agroambiental - Dezembro/2011

Revista Agroambiental - Dezembro/2011 evita Agroambiental - Deembro/211 Avaliação da correção gravimétrica do terreno calculada a partir de Modelo Digitai de Elevação e aociado ao Sitema Geodéico Braileiro e ao EGM28 Karoline Pae Jamur Univeridade

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

COP Comunication on Progress EQÜIDADE DE GÊNERO

COP Comunication on Progress EQÜIDADE DE GÊNERO COP Comunication on Progre São Paulo, 28 de fevereiro de 2011 A Ferol Indútria e Comércio SA declara eu apoio contínuo ao Pacto Global. A Ferol acredita na diveridade e na pluralidade como ferramenta de

Leia mais

consumidores por hora. Uma média de três clientes por hora chegam solicitando serviço. A capacidade

consumidores por hora. Uma média de três clientes por hora chegam solicitando serviço. A capacidade D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r

Leia mais

QUATRO ARTISTAS E SEUS POSICIONAMENTOS FRENTE À REALIDADE DAS MÁQUINAS FOUR ARTISTS AND THEIR VIEWS ABOUT MACHINES

QUATRO ARTISTAS E SEUS POSICIONAMENTOS FRENTE À REALIDADE DAS MÁQUINAS FOUR ARTISTS AND THEIR VIEWS ABOUT MACHINES 105 QUATRO ARTISTAS E SEUS POSICIONAMENTOS FRENTE À REALIDADE DAS MÁQUINAS FOUR ARTISTS AND THEIR VIEWS ABOUT MACHINES 1 RESUMO: Ete artigo traz uma reflexão obre o poicionamento de quatro artita frente

Leia mais

eber nunes ferreira 2013.2 geometria descritiva

eber nunes ferreira 2013.2 geometria descritiva 0. MTERIL PROISÓRIO ORREÇÃO NÃO FOI FINLIZ ÍNIE. INTROUÇÃO. SISTEMS E PROJEÇÃO. GEOMETRI ESRITI. OORENS. SINIS. REPRESENTÇÃO EM ÉPUR. IST E PERFIL (TEREIR PROJEÇÃO) 4. ESTUO RET 4. ETERMINÇÃO E RETS 4.

Leia mais

6.2.1 Prescrições gerais

6.2.1 Prescrições gerais CAPÍTULO 6.2 PRESCRIÇÕES RELATIVAS AO FABRICO E AOS ENSAIOS SOBRE OS RECIPIENTES SOB PRESSÃO, AEROSSÓIS, RECIPIENTES DE BAIXA CAPACIDADE CONTENDO GÁS (CARTUCHOS DE GÁS) E CARTUCHOS DE PILHAS DE COMBUSTÍVEL

Leia mais

Guia de Estudo de Análise Real

Guia de Estudo de Análise Real Guia de Estudo de Análise Real Marco Cabral Baseado na V2.4 Dezembro de 2011 Introdução O objetivo deste texto é orientar o estudo da aluna(o) em análise real. Ele é baseado no livro Curso de Análise Real

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

ESTIMAÇÃO DO PRÊMIO DE OPÇÕES ASIÁTICAS POR MONTE CARLO E QUASI-MONTE CARLO

ESTIMAÇÃO DO PRÊMIO DE OPÇÕES ASIÁTICAS POR MONTE CARLO E QUASI-MONTE CARLO FAÇAS ESTMAÇÃO DO PRÊMO DE OPÇÕES ASÁTCAS POR MOTE CARLO E QUAS-MOTE CARLO ESTMATO OF ASA OPTOS PREMUM BY MOTE CARLO AD QUAS-MOTE CARLO FAÇAS Rafael greja da Silva Pontifícia Univeridade Católica do Rio

Leia mais