Equações Parciais Em Coordenadas Esféricas

Tamanho: px
Começar a partir da página:

Download "Equações Parciais Em Coordenadas Esféricas"

Transcrição

1 Equações Parciais Em Coordenadas Esféricas Lucas Nobrega Natã Gomes David de Mattos Pereira João Paulo Carvalho Corrêa Ricardo Wertes Motta UFF Depto. de Matemática Aplicada Métodos Matemáticos Aplicados VII, GMA04050 Campus do Valonguinho, Centro, Niterói, R.J., Brasil Resumo: As informações contidas neste artigo oferecem a definição da série de Fourier, partindo de um caso específico, isto é, uma função CP[ π, π] até o caso mais geral da representaçã da mesma no qual o intervalo é substituido por CP[a, b]. Palavras Chave: Séries; Série; Série Fourier; Fourier; intervalo; funções periódicas; período; função seno; seno; função cosseno; cosseno; bases; coeficientes; continuidade; continua; partes Niterói, 7 de outubro de 00

2

3 Introducao No campo científico pode se encontrar um desafio de problemas matemáticos. Esses problemas conhecidos como equações diferenciais, na qual relaciona uma função a si mesma e a suas derivadas. Equações diferenciais quando ocorre em múltiplas dimensões são chamadas de equações diferenciais, e será a discussão do trabalho. No entanto, este trabalho pretende discutir a equação de Laplace na qual pode ser resolvida por um processo conhecido como separação de variáveis.

4 Dedução Laplaciano (Coordenadas Esféricas): Caso Geral: Para coordenadas esféricas temos as relações: x = r cos φ sin θ, y = r sin φ sin θ e z = r cos θ. No caso geral x, y e z podem ser pensadas como funções de l m e n: x = x l, m, n y = y l, m, n z = z(l, m, n) Assumindo que em domínio D no espaço, estas funções têm derivadas contínuas e podem ser resolvidas para l m e n: l = l x, y, z m = m x, y, z n = n(x, y, z) Escolhemos um ponto M com coordenadas (ε, η, ξ), também representado por M(λ, μ, ν) em termos de l m e n. Se m = μ = constante e n n = ν = constante e variarmos l, obtemos uma curva (lisa) passando por M chamada curva l. Igualmente obtemos a curva m e a curva n. Como mostrado na figura. Podemos ainda introduzir os vetores l 0, m 0 e n 0 junto com as tangentes dessas curvas (na direção de crescimento de l m e n). Isto estabelece um sistema local de eixos. Por conveniência l m e n são escolhidos de maneira que (l 0, m 0, n 0 ) assumam a forma da mão direita. Esse sistema local possui, em geral, as seguintes características que o distingue em relação aos cartesianos i, j e k: ) Eixos podem não ser ortogonais; e os ângulos entre eles podem variar de um ponto a outro. ) A orientação de l 0, m 0 e n 0 (com respeito a i, j e k) pode variar de um ponto a outro, mesmo se os ângulos entre os eixos se mantiverem. 3) Os significados físicos de l m e n podem não ser comprimento, e dl dm e dn não precisam ser iguais aos elementos ds de arco na respectiva direção. Podemos pensar em M definido pelo vetor posição r = xi + yj + zk. Se x y e z são funções de l m e n, temos: R = x(l, m, n)i + y(l, m, n)j + z(l, m, n)k Variando r por dr é o mesmo que variar x, y e z por dx, dy e dz, o que é causado por variar l m e n por dl dm e dn. Temos as seguintes relações gerais: dx = dl + dm + dn

5 dy = y y y dl + dm + dn dz = z z z dl + dm + dn Se movermos no sentido da curva l, temos dm = dn = 0, e dr assume a forma: dr m, n = dx i + dy j + dz k m, n = Isto define a derivada de r com respeito ao parâmetro l: = dr m, n dl = i + y y z i + j + k z j + k dl Em seu significado, / é vetor na direção l 0. De maneira que l 0 pode ser representado como: l 0 = = y z i + j + k + y + z A quantidade hl = + y + z tem uma interpretação geométrica simples: o comprimento do arco Elemental ds produzido quando apenas l varia é dado por ds = m, n = hldl. De maneira similar são deduzidos: m 0 = = y z i + j + k + y + z ; n 0 = = y z i + j + k + y + z hm = + y + z ; hn = + y + z Supondo agora que a tríplice l 0, m 0, n 0 é uma tríplice ortogonal, temos as relações: + y y + z z = 0 Estas relações são satisfeitas pela maioria dos sistemas de coordenadas na física. Em particular, é válido para sistemas esférico e cilíndrico. Esta análise verifica a característica () dos eixos locais, variando de ponto a ponto. Sendo essa principal característica de sistemas curvilíneos. A característica (3) também é representada, já que alguns parâmetros representam ângulos.

6 Como regra geral, o deslocamento elementar dr decomposto ao longo do sistema local de eixos: dr = dl + dm + dn = hl dl l 0 + hm dm m 0 + hn dn n 0 Assumindo o sistema local como ortogonal, temos o elemento de arco dado por: ds = dr = h l dl + h m dm + h n dn Por exemplo, no caso de coordenadas esféricas, h r=, h θ= r, h φ= r senθ ds = dr + r dθ + r sen θ dφ Consideremos a análise de coordenadas curvilíneas, verificamos derivação das fórmulas pelos usuais operadores diferenciais. Para expressar gradφ em termos dos novos eixos e novas variáveis, podemos começar com: E depois usar: gradφ = φ φ = φ + φ φ y = φ y + φ φ z = φ z + φ φ φ i + j + y z k + φ y + φ z + φ E ainda expressar i, j, k em termos de l 0, m 0, n 0. Uma maneira mais rápida é utilizar o enunciado: E reescrever na forma: y z gradφ. dr = dφ = φ φ φ dl + dm + dn gradφ. dr = dφ = φ hl hl dl + φ hm φ hm dm + hn hn dn Que segue imediatamente: gradφ = φ hl l 0 + φ hm m 0 + φ hn n 0 Lembrando que dr é arbitrário, e que ao estabelecer dm = dn = 0 obtemos: gradφ = hl. φ, etc.

7 O cálculo da divergência pode ser obtido da definição geral: div u = lim V 0 (u. ds) V Sem perda de generalidade, V pode ser tirado como elemento de lados ao longo das l, m, n (fig??). Em geral o fluxo pela área Elemental orientada na direção l 0 é dada por: u l. h mdm. h ndn Ao subtrair os fluxos através das áreas M N P Q e MNPQ, não esquecer que tanto ul quanto hm e hn são funções de l, m, n. Deduzimos que fluxo externo através dessas duas faces é: (ulhmhn)dl dm dn Somando as contribuições análogas das outras quatro faces e dividindo pelo elemento de volume (que é hl dl hm dm hn dn) obtemos: div u = hl hm hn (ul hm hn) (um hl hn) (un hl hm) + + Em coordenadas esféricas encontramos l, m, n com r, θ, φ nesta ordem. Então hl = hr =, hm = hθ = r, hn = hφ = r sin θ. Finalmente, a expressão para o Laplaciano é obtida combinando as fórmulas para gradiente e divergente: φ = div grad u = hl hm hn hm hn φ hl + hl hn φ hm + hl hm φ hn No sistema esférico, após simplificação trivial: φ = r φ r + r senθ θ senθ φ θ + r sen θ φ

8 Emprego do Laplaciano Admitamos que a seguinte solução: φ r, θ, n = R r H θ N(n) Daí, φ = r r φ + r senθ θ φ senθ θ + r sen θ φ = 0 Porem como no caso do exemplo que estaremos resolvendo teremos uma simetria em (n), assim: r sen θ φ = 0 Logo teremos, r φ r + r senθ θ senθ φ θ = 0 Substituindo φ = R r H(θ) r r RH + r senθ θ senθ RH θ = 0 (RH) => RH r r RH R r r R RH + r senθ senθ θ θ RH RH + r senθ senθ θ θ H = 0 = 0 (r ) => R r R = senθ θ senθ RH θ H = β

9 d(r dr dr ) R dr d Hsenθ dθ = β senθ dh dθ = β Assim, pela primeira sequência teremos uma equação de Cauchy, ou de Euler, que podemos resolver do seguinte modo: Se, Substituindo na equação anterior, temos: Então, r d R dr + r dr dr + β R = 0 R = r p => R = pr p => R = p(p )r p r p p r p + rpr p + β r p = 0 r p p p + p + β = 0 p p + p + β = 0 => p + p + β = 0 p = ± 4 β Logo, se usarmos: n = + 4 β n + = + 4 β Obtendo a seguinte solução: R r = Ar n + B r n+ Assim, podemos dizer que: β = n n + Utilizando este autovalor para determinar a segunda equação do sistema: d Hsenθ dθ senθ dh dθ = β

10 d(senθ( dh dθ ) + n n + senθ H = 0 dθ Façamos agora ε = cosθ nesta equação, então: Assim, Sabe-se que: dh dθ = dh dε dε dθ = senθd dε dθ senθd dε dθ = sen θ dε dθ = cos θ dε dθ = (ε ) dε dθ d(senθ( dh dθ ) = d dθ dε ε dh dε dε dθ = d dε ε dh dε senθ => d ( ε ) dh dε dε + n n + H = 0 Logo, seu substituirmos H por y e ε por x, teremos a equação de Legendre: x y xy + n n + y = 0 Esta equação pode ser resolvida usando Frobenius onde serão encontradas soluções em forma de series. Admitindo uma solução da forma y = c k x k+β onde o somatório k vai de - a e c k = 0 para k < 0, temos: n(n + )y = n(n + )c k x k+β xy = (k + β)c k x k+β x y = k + β (k + β ) c k x k+β (k + β)(k + β )c k x k+β Então, por adição, = k + β + k + β + c k+ x k+β (k + β)(k + β )c k x (k+β)

11 0 k + β + k + β + c k+ k + β k + β c k k + β c k + n(n + )c k x (k+β) = e como o coeficiente de x (k+β) deve ser zero, vem k + β + k + β + c k+ + n n + (k + β)(k + β + ) c k = 0 () Fazendo k = obtemos (pois c = 0), a equação indicial β β c 0 = 0 ou, supondo c 0 0, β = 0 ou Caso : β=0 Neste caso, () se torna k + k + c k+ + n n + k(k + ) c k = 0 () Fazendo k=-, 0,,, 3,..., sucessivamente, constatamos que c é arbitrária, enquanto que c = n(n+) c! 0 c 3 = n(n+) c 3! c 4 = 3 n(n + ) 4! c Obtemos, assim, y = c 0 n(n+) x + c x! n (n+) 3! n n n+ (n+3) x 3 + x 4 + 4! (n ) n 3 n+ (n+4) 5! x 5 (3) Como temos uma solução com duas constantes arbitrárias, não precisamos levar em conta o Caso : β= Para um inteiro par n 0, a primeira série acima tem número finito de termos e dá um polinômio como solução. Para um inteiro ímpar, n > 0, a segunda série tem número finito de termos e dá um polinômio como solução. Assim parar qualquer inteiro n 0, a equação admite soluções sob forma de polinômios. Se n = 0,,, 3,, por exemplo, obtemos de (3) os polinômios c 0, c x, c 0 3x, c 3x 5x3 Que são, a menos de constante multiplicativa, os polinômios de Legendre P n x. Escolhe-se esta constante multiplicativa de modo que P n =. A solução em série em (3), que não tem número finito de termos, diverge se x = ±. Esta segunda solução, que é não-limitada para x = ± ou, equivalentemente, para θ = 0, π, é chamada função de Legendre de segunda espécie e é denotada por Q n x. Segue-se que a solução geral da equação diferencial de Legendre pode ser escrita y = c P n x + c Q n x

12 Se n não é inteiro, ambas as séries são não-limitadas para x = ± A solução da equação de Laplace u = 0 independente de é dada por u = A r n + B r n+ A P n ξ + B Q n (ξ), onde ξ=cosθ. u = RΘ, onde R = A r n + B r n+ E a solução geral da equação em Θ(equação de Legendre) se escreve em termos de duas soluções linearmente independentes P n ξ e Q n ξ como Θ = A P n ξ + B Q n (ξ) As funções P n ξ e Q n (ξ) são as funções de Legendre ª e ª, respectivamente. Assim sendo: u = A r n + B r n+ A P n ξ Pois como u esta limitado em θ=0 a π isto é ξ = ±, devemos dizer que B = 0. Emprego da Solução Determinada )Para o caso de uma esfera homogenia com as seguintes condições: A função de Legendre: P n x = n n! d n dx n (x )

13 Potencial no interior da esfera, 0 r < a v(a, ϴ) = V, se 0 < Θ < π i. e, 0 < ξ < V, se π < Θ < π i. e, < ξ < 0 Donde A n = n + a n v(a, ϴ) P n (ξ)dξ = n + 0 a n ( V) P n (ξ)dξ + n + a n V P n (ξ)dξ 0 Assim A 0 = 0, A = 3 a V, A = 0, A 3 = 7 8a³ V, A 4 = 0, A 5 = 6a 5 V v(r, ϴ) = V a 3rP (cosθ) 7 4a² r³p 3(cosϴ) + 8a 4 r5 P 5 (cosθ) + Potencial no exterior da esfera, a < r < v(a, ϴ) = V, se 0 < Θ < π i. e, 0 < ξ < V, se π < Θ < π i. e, < ξ < 0 Donde Assim B n = (n + )(an+ ) v(a, ϴ) P n (ξ)dξ = (n + )(an+ ) ( V) 0 P n (ξ)dξ B 0 = 0, B = 3a² V, B = 0, + (n + )(an + ) V B 3 = 7a4 8 V, B 4 = 0, B 5 = a6 6 V P n (ξ)dξ 0

14 v(r, ϴ) = a²v r 3 r P (cosθ) 7a² 4r³ P 3(cosϴ) + a4 8r 5 P 5(cosϴ) + ) Para o caso de uma esfera homogenia com as seguintes condições: v(a, ϴ) = V, se 0 < Θ < π i. e, 0 < ξ < 0, se π < Θ < π i. e, < ξ < 0 Potencial no interior da esfera, 0 r < a Como v é limitada em r = 0, escolhamos B = 0. Então uma solução é: Ar n P n (ξ) = Ar n P n (cosθ) Por superposição, Quando r = a, Então Donde v(r, ϴ) = A n r n P n (ξ) n=0 v(a, ϴ) = A n a n P n (ξ) n=0 A n = n + a n v(a, ϴ) P n (ξ)dξ = n + a n V P n (ξ)dξ 0

15 A 0 = V, A = 3 4a V, A = 0, A 3 = 7 6a³ V, A 4 = 0, A 5 = 3a 5 V Assim v(r, ϴ) = V + 3 a rp (cosθ) 7 8a³ r³p 3(cosϴ) + 6a 5 r5 P 5 (cosθ) + Potencial no exterior da esfera, a < r < Como v é limitada quando r, escolhamos A = 0. Então uma solução é: Por superposição Quando r = a B r n+ P n(ξ) = B r n+ P n(cosθ) v(r, ϴ) = n=0 B n r n+ P n(ξ) Então Donde Assim B n = (n + )(an+ ) v(a, ϴ) = n=0 v(a, ϴ) P n (ξ)dξ = (n + )(an+ ) ( V) B n a n+ P n(ξ) 0 P n (ξ)dξ B 0 = 0, B = 3a² V, B = 0, + (n + )(an + ) V B 3 = 7a4 8 V, B 4 = 0, B 5 = a6 6 V P n (ξ)dξ 0 v(r, ϴ) = a²v r 3 r P (cosθ) 7a² 4r³ P 3(cosϴ) + a4 8r 5 P 5(cosϴ) +

16

17 Conclusão Tendo em vista tudo que foi abordado aqui podemos perceber que a equação de Laplace é um tema interessante de ser estudado no ponto de vista matemático teórico, pois há uma variedade impressionante de matemática e sistemas físicos, que vão através de uma mecânica de fluidos, eletromagnetismo, potencial, mecânica dos sólidos, condução de calor, na qual se torna indispensável o domínio desse assunto para o profissional dessas áreas.

Desenvolvimento. Em coordenadas esféricas:

Desenvolvimento. Em coordenadas esféricas: Desenvolvimento Para que possamos resolver a equação da onda em coordenadas esféricas, antes é necessária a dedução do operador Laplaciano nessas coordenadas, portanto temos: Em coordenadas esféricas:

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

Momento Angular. 8.1 Álgebra do Momento Angular

Momento Angular. 8.1 Álgebra do Momento Angular Capítulo 8 Momento Angular Neste capítulo vamos estudar os autovalores e autovetores do momento angular. Este problema também pode ser analisado com o uso do método de operadores, o que faremos na primeira

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006 Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.

Leia mais

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas.

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas. Equação das Ondas Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas. O aspecto essencial da propagação de uma é que esta consiste numa perturbação

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 7 Ref. Butkov, cap. 9, seções 9.3 e 9.4 O problema de Sturm-Liouville A separação de variáveis da equação de Helmholtz,

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

SÉRIE DE FOURIER. Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos Niterói RJ, CEP

SÉRIE DE FOURIER. Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos Niterói RJ, CEP SÉRIE DE FOURIER LUCAS NOBREGA CANELAS COSTA GUIMARÃES NATÃ DOS SANTOS LOPES GOMES RICARDO DE ALMEIDA CARVALHO WERTES MOTTA OLIVEIRA Universidade Federal Fluminense Rua Passo da Pátria, 156 São Domingos

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 1 a Lista de Exercıćios egundo emestre de 2008 Prof. A C Tort Exercıćio 1 O operador nabla Começamos definindo o operador

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Séries de Fourier. Victor Rios Silva

Séries de Fourier. Victor Rios Silva Séries de Fourier Victor Rios Silva victorrios@live.com Universidade Federal Fluminense (UFF) Instituto de Matemática (IM) Departamento de Matemática Aplicada (GMA) Rua Mário Santos Braga, S/N Valonguinho

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II Universidade Fernando Pessoa Departamento de Ciência e Tecnologia Apontamentos de ANÁLISE MATEMÁTICA II Maria Alzira Pimenta Dinis 1999 Índice Índice Pág. Capítulo I Funções Vectoriais. 1 Curvas e Movimento

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma

u t = c 2 u xx, (1) u(x, 0) = 1 (0 < x < L) Solução: Utilizando o método de separação de variáveis, começamos procurando uma solução u(x, t) da forma Seção 9: Equação do Calor Consideremos um fluxo de calor em uma barra homogênea, construída de um material condutor de calor, em que as dimensões da seção lateral são pequenas em relação ao comprimento.

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006

Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006 Transformações Geométricas Transformações Geométricas 2D M.C.F. de Oliveira Rosane Minghim 2006 Aplicadas aos modelos gráficos para alterar a geometria dos objetos, sem alterar a topologia Porque são necessárias:

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

2 Diferença de Potencial e Potencial Eletrostático

2 Diferença de Potencial e Potencial Eletrostático Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 3 - Potencial Eletrostático Prof. Elvis Soares Nesse capítulo, estudaremos o potencial eletrostático criado por cargas

Leia mais

SOLUÇÃO DA EQUAÇÃO DA ONDA EM COORDENADAS ESFÉRICAS E DEDUÇÃO DO OPERADOR LAPLACIANO EM COORDENADAS ESFÉRICAS

SOLUÇÃO DA EQUAÇÃO DA ONDA EM COORDENADAS ESFÉRICAS E DEDUÇÃO DO OPERADOR LAPLACIANO EM COORDENADAS ESFÉRICAS SOLUÇÃO DA EQUAÇÃO DA ONDA EM COORDENADAS ESFÉRICAS E DEDUÇÃO DO OPERADOR LAPLACIANO EM COORDENADAS ESFÉRICAS Jean Alves Rodrigues Fernandes 1 Rafael Caveari Gomes 2 Érick de Oliveira Miranda 3 João Flávio

Leia mais

Capítulo 19. Coordenadas polares

Capítulo 19. Coordenadas polares Capítulo 19 Coordenadas polares Neste capítulo, veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados,

Leia mais

Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II

Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia

Leia mais

Capítulo 4. Coordenadas Curvilíneas. 4.1 Introdução. Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca

Capítulo 4. Coordenadas Curvilíneas. 4.1 Introdução. Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca Capítulo 4 Coordenadas Curvilíneas 4.1 Introdução Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca Φ : E 3 D = D x D y D z R 3,P E 3 7 Φ (P )=(x, y, z) R 3. 1. Se Φ (P )=(x, y, z),x,ye

Leia mais

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 112 do Pozar) Geometria e Condições de Contorno Solução geral para Modos TE Solução geral para Modos TM 31/05/17 2 Cabo Coaxial Vamos considerar os campos de um cabo

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Aula 32 Curvas em coordenadas polares

Aula 32 Curvas em coordenadas polares MÓDULO 3 - AULA 32 Aula 32 Curvas em coordenadas polares Objetivo Aprender a usar as coordenadas polares para representar curvas planas. As coordenadas polares nos dão uma maneira alternativa de localizar

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Tranformada de Fourier. Guillermo Cámara-Chávez

Tranformada de Fourier. Guillermo Cámara-Chávez Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

As séries de fourier tem como objetivo representar uma função periódica como uma soma de

As séries de fourier tem como objetivo representar uma função periódica como uma soma de Métodos Matemáticos Séries de Fourier Pedro Henrique do Nascimento de Luzia Engenharia Elétrica da Universidade Federal Fluminense phnl_vr@hotmail.com Resumo A fórmula geral para uma série de fourier é:.

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES DAS DERIVADAS PARCIAIS9. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES DAS DERIVADAS PARCIAIS9. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES DAS DERIVADAS PARCIAIS9 TÓPICO Gil da Costa Marques 9. Introdução 9. Derivadas com significado físico: o gradiente de um Campo Escalar 9.3 Equação de Euler descrevendo o movimento de um fluido

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo

Leia mais

Detecção de Esteira de Vórtice em um Escoamento Laminar em Torno de uma Esfera, Utilizando Método de Galerkin.

Detecção de Esteira de Vórtice em um Escoamento Laminar em Torno de uma Esfera, Utilizando Método de Galerkin. Universidade Estadual de Campinas Faculdade de Engenharia Mecânica Pós Graduação em Engenharia Mecânica IM458 - Tópicos em Métodos Numéricos: Métodos Numéricos em Mecânica dos Fluidos Alfredo Hugo Valença

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.6 Derivadas Direcionais e o Vetor Gradiente Nesta seção, vamos aprender como encontrar: As taxas de variação de uma função de duas ou mais variáveis

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

Caderno de Exercícios

Caderno de Exercícios Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada

Leia mais

5 Desigualdade de Minkowski e a terceira desigualdade isoperimétrica

5 Desigualdade de Minkowski e a terceira desigualdade isoperimétrica 5 Desigualdade de Minkowski e a terceira desigualdade isoperimétrica afim 5.1 Áreas Mistas O conceito área mista decorre da interação entre duas curvas convexas e fechadas. Assim, vejamos: Sejam as funções

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

Coordenadas esféricas

Coordenadas esféricas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas

Leia mais

Aula 4. Coordenadas polares. Definição 1. Observação 1

Aula 4. Coordenadas polares. Definição 1. Observação 1 Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

CAPíTULO 1. Vetores e tensores Notação indicial

CAPíTULO 1. Vetores e tensores Notação indicial CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x, Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Fundamentos de Matemática II DERIVADAS PARCIAIS7. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática II DERIVADAS PARCIAIS7. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADAS PARCIAIS7 Gil da Costa Marques 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação: Funções de mais do que duas Variáveis

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

1.3 Comprimento de arco

1.3 Comprimento de arco 0 CAPÍTULO. CURVAS NO E ENOE 3.3 Comprimento de arco Seja γ :[a, b] V uma curva não necessariamente regular. Consideremos P ([a, b]) o conjunto de todas as partições de [a, b]. Uma partição P = a = t 0

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x

Leia mais

DIFERENCIAIS E O CÁLCULO APROXIMADO

DIFERENCIAIS E O CÁLCULO APROXIMADO BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG

Leia mais

Dinâmica do Movimento dos Corpos CINEMÁTICA VETORIAL5. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Dinâmica do Movimento dos Corpos CINEMÁTICA VETORIAL5. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques CINEMÁTICA VETORIAL5 Gil da Costa Marques 5.1 Referenciais 5. Vetores e Referenciais Cartesianos 5.3 Referenciais Gerais 5.4 Vetores em Coordenadas Polares 5.5 Vetores Velocidade e Aceleração em coordenadas

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos

Leia mais

Campos dos Goytacazes/RJ Maio 2015

Campos dos Goytacazes/RJ Maio 2015 Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais