Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II

Tamanho: px
Começar a partir da página:

Download "Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II"

Transcrição

1 Nota de aula 10 - Estado Triaxial de Deformações - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2011 Flávia Bastos RESMAT II 1/29

2 Informações sobre este documento: Estes slides servem para auxiliar no desenvolvimento expositivo durante as aulas de resistência dos materiais II ministradas pela professora Flávia Bastos e são baseados na apostila do Prof. Elson Toledo. Flávia Bastos RESMAT II 2/29

3 Relações Deslocamentos x Deformações Deslocamentos Descrição do movimento de um corpo (e/ou de um ponto do corpo) A(x, y, z) A (x + u, y + v, z + w) δ A = L = F L ES u x=l = L ɛ x = σx E = F ES ɛ x x=0al = cte ɛ x = L L Flávia Bastos RESMAT II 3/29

4 Relações Deslocamentos x Deformações Deformação medida do movimento relativo entre pontos adjacentes S ɛ = lim (alongamento relativo) deformação linear no S 0 S ponto A na direção AB. Flávia Bastos RESMAT II 4/29

5 Deformações lineares Deslocamento de P Deslocamento de A Deslocamento de B u(x, y, z) v(x, y, z) w(x, y, z) u(x + x, y, z) v(x + x, y, z) w(x + x, y, z) u(x, y + y, z) v(x, y + y, z) w(x, y + y, z) Flávia Bastos RESMAT II 5/29

6 Deformações lineares Por definição: ɛ xx = P A P A lim P A 0 P A (1) Admitindo pequenas deformações: Ficamos com: P A = P A (2) ɛ xx = P A P A lim P A 0 P A (3) Flávia Bastos RESMAT II 6/29

7 Deformações lineares mas: P A = x (4) Logo: P A = P A + u A u p = x + u A u p (5) ɛ xx = lim = lim x 0 x + u A u p x x u(x + x, y, z) u(x, y, z) x x 0 ɛ xx = u x (6) (7) Flávia Bastos RESMAT II 7/29

8 Deformações lineares Analogamente (nas direções y e z) teríamos: ɛ yy = v y (8) e ɛ zz = w z (9) Flávia Bastos RESMAT II 8/29

9 Deformações angulares Definimos a deformação angular no plano xy como a distorção angular sofrida por um ângulo reto neste plano. Conforme a figura temos que: - Cálculo de α e β: γ xy = α + β (10) tgα = A A P A (11) Admitindo pequenas rotações: tgα = α = A A P A (12) onde α valor médio da distorção α para valores de x e y finitos. Flávia Bastos RESMAT II 9/29

10 Deformações angulares α = Assumindo u x 1: A A lim P A 0 P A (distorção no ponto) (13) v(x + x, y, z) v(x, y, z) α = lim x 0 P A + P A u = lim x 0 x v(x + x, y, z) v(x, y, z) x + u x x (14) ( x 1 + u ) = x (15) x Flávia Bastos RESMAT II 10/29

11 Deformações angulares que, por definição: v(x + x, y, z) v(x, y, z) α = lim x 0 x α = v x Racicínio semelhante para β obtemos: β = u y (16) (17) (18) Obtemos então: γ xy = v x + u y (19) Flávia Bastos RESMAT II 11/29

12 Deformações angulares Procedendo de modo similar nos planos yz e zx, obtemos: γ xz = w x + u z γ yz = w y + v z (20) (21) Flávia Bastos RESMAT II 12/29

13 Tensor de Deformações Definindo, ɛ xy = 1 2 γ xy; ɛ xz = 1 2 γ xz; ɛ yz = 1 2 γ yz (por conveniência) Temos calculado ou definido o tensor de deformações ɛ (da elasticidade linear): Sendo: ɛ xx = u ɛ = x, ɛ yy = v y, ɛ zz = w ( ) ɛ xy = 1 u 2 y + v x, ɛ xz = 1 2 ɛ xx ɛ xy ɛ xz ɛ xy ɛ yy ɛ yz ɛ xz ɛ yz ɛ zz z ; ( u z + w x ), ɛyz = 1 2 (22) ( ) v z + w y. Observar que ɛ xy = ɛ yx e assim sucessivamente, resultando que ɛ T = tensor simétrico! ɛ Flávia Bastos RESMAT II 13/29

14 Cálculo da deformação numa direção qualquer Flávia Bastos RESMAT II 14/29

15 Cálculo da deformação numa direção qualquer Deformação Linear Dados: ũ campo de deslocamentos; ɛ tensor de deformações referido a um sistema x, y, z; Ñ vetor de cossenos diretores da direção em que se deseja determinar a deformação linear ɛ. ɛ xx ɛ xy ɛ xz ɛ = ɛ xy ɛ yy ɛ yz (23) ɛ xz ɛ yz ɛ zz Ñ = [ l m n ] T (24) δ n ɛ nn = lim =? (25) n 0 n Flávia Bastos RESMAT II 15/29

16 Cálculo da deformação numa direção qualquer Os vetores diretores das direções P Q e P R são: Ñ = [ l n m n n n ] T direção P Q (26) S = [ l s m s n s ] T direção P R (27) Os deslocamentos nessas direções são dados por: u n = ũ Ñ Projeção de ũ sobre Ñ (28) u s = ũ Projeção de ũ sobre S S onde ũ = [ ] T [ ] T u x u y u z = u v w (29) Flávia Bastos RESMAT II 16/29

17 Cálculo da deformação numa direção qualquer Podemos então escrever que: u n = u x l n + u y m n + u z n n (30) Da definição de deformação: u s = u x l s + u y m s + u z n s (31) u n Q u n P ɛ nn = lim s 0 s = du n ds onde s comprimento do segmento P Q. Mas: du n ds = u n dx x ds + u n dy y ds + u n dz z ds (32) (33) Flávia Bastos RESMAT II 17/29

18 Cálculo da deformação numa direção qualquer Considerando que dx dy ds = l, ds = m e dz ds = n (Cossenos diretores da direção Ñ figura***), obtemos: ɛ nn = + + [ ] x (u xl + u y m + u z n) l (34) [ ] y (u xl + u y m + u z n) m [ ] z (u xl + u y m + u z n) n Flávia Bastos RESMAT II 18/29

19 Cálculo da deformação numa direção qualquer Reagrupando estes termos, temos (e observando que a direção está fixa, isto é, l x = 0): ɛ nn = u x x l2 + u y y m2 + u z z n2 (35) ( ux + y + u ) y lm x ( ux + z + u ) z ln x ( uy + z + u ) z mn y Flávia Bastos RESMAT II 19/29

20 Cálculo da deformação numa direção qualquer Observando que: ( ux y + u ) y lm = 1 ( ux x 2 y + u ) y lm + 1 ( uy x 2 x + u ) x lm y (36) Observando ainda que a expressão acima vale de modo similar para as duas últimas parcelas de (35), e levando em conta a definição das componentes de ɛ ficamos com: (37) ɛ nn = ɛ xx l 2 + ɛ xy lm + ɛ xz ln + ɛ yx ml + ɛ yy m 2 + ɛ yz mn + ɛ zx nl + ɛ zy nm + ɛ zz n 2 Flávia Bastos RESMAT II 20/29

21 Cálculo da deformação numa direção qualquer que pode ser escrita como: ou ainda: ɛ xx l + ɛ yx m + ɛ zx n ɛ nn = ɛ xy l + ɛ yy m + ɛ zy n ɛ xz l + ɛ yz m + ɛ zz n ɛ nn = [ l m n ] T ɛ xx ɛ xy ɛ xz ɛ yx ɛ yy ɛ yz ɛ zx ɛ zy ɛ zz l m n l m n (38) (39) Flávia Bastos RESMAT II 21/29

22 Cálculo da deformação numa direção qualquer ou: ɛ nn = Ñ T ɛ Ñ (40) Esta expressão nos permite a partir do conhecimento do tensor de deformação ɛ referido a um sistema de coordenadas x, y, z, obter a deformação linear em qualquer direção em torno do ponto considerado. Flávia Bastos RESMAT II 22/29

23 Cálculo da deformação numa direção qualquer Deformação Angular Sejam duas direções ortogonais arbitrárias passando por um ponto P. A deformação cisalhante no plano definido por P, Q, R é dada por: ɛ ns = 1 ( un 2 s + u ) s (41) n de modo semelhante à deformação de ɛ xy, ɛ xz e ɛ yz. Flávia Bastos RESMAT II 23/29

24 Cálculo da deformação numa direção qualquer Logo, podemos escrever: ɛ ns = 1 2 Entretanto: [ s (u xl n + u y m n + u z n n ) + ] n (u xl s + u y m s + u z n s ) (42) { ui s = u i dx x ds + u i dy y ds + u i dz z ds u i n = u i dx x dn + u i dy y dn + u i dz z dn que são válidas para i = x,y ou z. Considerando-se que: (43) dx ds = l s dx dn = l n dy ds = m s dy dn = m n dz ds = n s dz dn = n n (44) Flávia Bastos RESMAT II 24/29

25 Cálculo da deformação numa direção qualquer Obtemos: ɛ ns = ux x l nl s + uy y m nm s + ( ) uz z n nn s + 1 ux 2 y + uy x l n m s ( ) + 1 uy 2 x + ux y m n l s + 1 ( ux 2 z + ) ( uz x ) ln n s + 1 uy 2 z + uz y m n n s + 1 ( uz 2 x + ) ux z nn l s ( uz y + uy z ) n n m s (45) Flávia Bastos RESMAT II 25/29

26 Cálculo da deformação numa direção qualquer que pode ser escrito como: ou ainda: e finalmente: (46) ɛ ns = ɛ xx l n l s + ɛ xy l n m s + ɛ xz l n n s + ɛ yx m n l s + ɛ yy m n m s + ɛ yz m n n s + ɛ zx n n l s + ɛ zy n n m s + ɛ zz n n n s ɛ ns = ɛ xx l s + ɛ xy m s + ɛ xz n s ɛ yx l s + ɛ yy m s + ɛ yz n s ɛ zx l s + ɛ zy m s + ɛ zz n s T l n m n n n (47) ɛ ns = S T Ñ (48) ɛ Flávia Bastos RESMAT II 26/29

27 Rotação do tensor de deformação Questão: dado xyz, determinar ɛ x ɛ y z. Desenvolvimento na apostila (semelhante ao do tensor de tensões). ɛ = ɛ R R T (49) Flávia Bastos RESMAT II 27/29

28 Direções Principais Definimos direções principais do tensor de deformação como as direções segundo às quais o tensor de deformação ɛ é diagonal. Desenvolvimento na apostila (semelhante ao do tensor de tensões). ɛ p Ĩ) = 0 (50) det(ɛ Flávia Bastos RESMAT II 28/29

29 Círculo de Mohr para estado de deformações Desenvolvimento na apostila (semelhante ao do tensor de tensões). Flávia Bastos RESMAT II 29/29

Nota de aula 7 - Estado Triaxial de Tensões - Resistência dos Materiais II

Nota de aula 7 - Estado Triaxial de Tensões - Resistência dos Materiais II Nota de aula 7 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos

Leia mais

Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II

Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Estado Triaxial de Tensões Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o.

Leia mais

Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II

Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Nota de aula 9 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 010 Flávia Bastos

Leia mais

Nota de aula 12 - Lei de Hooke Generalizada - Resistência dos Materiais II

Nota de aula 12 - Lei de Hooke Generalizada - Resistência dos Materiais II Nota de aula 12 - Lei de Hooke Generalizada - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. lson Toledo) MAC - Faculdade de ngenharia - UFJF 2o. semestre de 2010 Flávia Bastos

Leia mais

Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II

Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 011 Flávia Bastos

Leia mais

Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II

Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II Nota de aula 13 - Estudo da Energia de Deformação - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 21 Flávia

Leia mais

Nota de aula 1 - Teoria da Flexão Oblíqua - Resistência dos Materiais II

Nota de aula 1 - Teoria da Flexão Oblíqua - Resistência dos Materiais II Nota de aula 1 - Teoria da Flexão Oblíqua - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 2o. semestre de 2010 Flávia Bastos

Leia mais

Apostila de Resistência dos Materiais II

Apostila de Resistência dos Materiais II Departamento de Mecânica Aplicada e Computacional Faculdade de Engenharia Juiz de Fora - MG Apostila de Resistência dos Materiais II Prof. Elson Magalhães Toledo (emtc@lncc.br) Prof. Aleandre Cur (aleandre.cur@ufjf.edu.br)

Leia mais

Cinemática da partícula fluida

Cinemática da partícula fluida Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática

Leia mais

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos Aula 5 1

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos Aula 5 1 Sumário e Objectivos Sumário: Deformações sobre um plano. Valores Estacionários das Deformações. Compatibilidade das Deformações. Construção de Mohr para Deformações. Roseta de Extensómetros. Objectivos

Leia mais

Torção de uma Barra Prismática

Torção de uma Barra Prismática Torção de uma Barra Prismática 1 Torção de uma Barra Prismática Torção Uniforme ou de Saint Venant; Aplicação do método semi-inverso. 2 Figura 1. Barra prismática genérica. Barra submetida a momentos de

Leia mais

Sumário e Objectivos. 2007/2008 Lúcia MJS Dinis. Mecânica dos Sólidos 4ª Aula 1

Sumário e Objectivos. 2007/2008 Lúcia MJS Dinis. Mecânica dos Sólidos 4ª Aula 1 Sumário e Objectivos Sumário: Deformações. Conceito de Extensão e Distorção. Componentes do Tensor das Deformações. Propriedades do Tensor das Deformações. Deformação Volumétrica. Casos Particulares do

Leia mais

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula Sumário e Objectivos Sumário: Equações de Equilíbrio de Forças e Momentos. Mudança de Eixos de Referência. Tensões Principais e Direcções Principais. Invariantes das Tensões. Tensor Hidrostático ou Isotrópico.

Leia mais

Conceitos fundamentais

Conceitos fundamentais Conceitos fundamentais Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 2010 Sumário o fluido como um meio contínuo a hipótese

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

Estados de Tensão e Critérios de ruptura

Estados de Tensão e Critérios de ruptura Estados de Tensão e Critérios de ruptura GEOTECNIA II SLIDES 09 / AULAS 17 e 18 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Tópicos abordados Coeficiente de empuxo em repouso Tensões

Leia mais

Nota de aula 15 - Flambagem

Nota de aula 15 - Flambagem Nota de aula 15 - Flambagem Flávia Bastos (retirado da apostila do rof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 1o. semestre de 2011 Flávia Bastos RESMAT II 1/22 Informações sobre este documento:

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/1 Resistência dos Materiais 3/4 Curso de Gestão e Engenharia Industrial 4ª Aula Duração - Horas Data - de Outubro de 3 Sumário: Mudança de Eixos de Referência. Tensões Principais e Direcções Principais.

Leia mais

Equações de Navier-Stokes

Equações de Navier-Stokes Equações de Navier-Stokes J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Equações de Navier-Stokes 1 / 16 Sumário 1 Relações constitutivas 2 Conservação do momento

Leia mais

1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação.

1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação. Mecânica dos Sólidos I Lista de xercícios III Tensões, Deformações e Relações Constitutivas.. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em

Leia mais

Fluidos não Newtonianos na Indústria do Petróleo

Fluidos não Newtonianos na Indústria do Petróleo Fluidos não Newtonianos na Indústria do Petróleo Profa. Mônica F. Naccache naccache@puc-rio.br Sala 153-L, R 1174 http://naccache.usuarios.rdc.puc-rio.br/cursos/fnnip.html Introdução Reologia: ciência

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 PME-235 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 6.1. Introdução O objetivo destas notas é apresentar, de forma um pouco mais detalhada,

Leia mais

Mecânica dos Sólidos I Parte 2

Mecânica dos Sólidos I Parte 2 Departamento de Engenharia Mecânica arte 2 rof. Arthur M. B. Braga 2006.1 arte II Barras carregadas axialmente (Cap. 1 e 2) Cisalhamento (Cap. 1) Torção de eixos cilíndricos (Cap. 3) Mecânica dos Sólidos

Leia mais

Lista de exercícios 14 Ortogonalidade

Lista de exercícios 14 Ortogonalidade Universidade Federal do Paraná Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Leia mais

EM34B Mecânica dos Fluidos 1

EM34B Mecânica dos Fluidos 1 EM34B Mecânica dos Fluidos 1 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br : Conceitos Fundamentais 2 Conceitos fundamentais O Fluido como um contínuo Os fluidos são compostos de moléculas em constante

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   6 MÉTODO DOS ELEMENTOS FINITOS LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito

Leia mais

Teoria das Estruturas I - Aula 08

Teoria das Estruturas I - Aula 08 Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Deformação. - comportamento de um material quando carregado

Deformação. - comportamento de um material quando carregado Deformação - comportamento de um material quando carregado : tipos de deformação Deformação - deformação normal variação do comprimento de uma fibra em relação a uma direção. : tipos de deformação Deformação

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Problema (flexão em 4 pontos)

Problema (flexão em 4 pontos) Problema (flexão em 4 pontos) Um provete cilíndrico de osso compacto, com um diâmetro exterior d e =3 mm e diâmetro interior d i =16 mm, está sujeito a um esforço de flexão em 4 pontos (ver figura, F=1

Leia mais

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes: Universidade Federal do Paraná 2 semestre 2016. Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada

Leia mais

3 a LISTA DE EXERCÍCIOS

3 a LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DA BAHIA DEARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR I rofs: Enaldo Vergasta e Glória Márcia a LISTA DE EXERCÍCIOS Sejam u (x, y, z e v (x, y, z vetores do R Verifique se cada uma das

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial /8 Resistência dos Materiais 3/4 Curso de Gestão e Engenharia Industrial 8ª Aula Duração - Horas Data - 3 de Outubro de 3 Sumário: Energia de Deformação. Critérios de Cedência. Equações de Equilíbrio em

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 DINÂMICA Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 1 de março de 013 Roteiro 1 Roteiro 1 : caso geral Componente do momento angular ao longo do eixo de rotação é L = I ω Mas o momento

Leia mais

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem. UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Sétima Lista de Exercícios Prof. Dr. Wesley Góis CECS Prof. Dr. Cesar Freire - CECS Estudo das Deformações 1. Segundo as direções a,b

Leia mais

Dinâmica da partícula fluida

Dinâmica da partícula fluida Dinâmica da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Dinâmica da partícula fluida 1 / 14 Sumário 1 Tipo de forças 2 Dinâmica da partícula

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006 Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA Departamento de Engenharia de Estruturas e Geotécnica CURSO BÁSICO DE RESISTÊNCIA DOS MATERIAIS FASCÍCULO Nº 9 Estado duplo de tensão. Círculo de Mohr H. Britto.015

Leia mais

MECÂNICA DOS SÓLIDOS DEFORMAÇÕES

MECÂNICA DOS SÓLIDOS DEFORMAÇÕES MECÂNICA DOS SÓLIDOS DEFORMAÇÕES Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer os tipos de deformação e deslocamentos Saber estimar valor da deformação nas formas normal/axial e por cisalhamento Calcular

Leia mais

Análise Diferencial de Escoamentos de Fluidos

Análise Diferencial de Escoamentos de Fluidos 12ª aula PME 3230 2016 Análise Diferencial de Escoamentos de Fluidos Prof. Dr. Marcos Tadeu Pereira Equações com Volume de Controle (VC) para Leis de Conservação de Massa, de Energia e de Quantidade de

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de Lorena (EEL) Universidade de São Paulo (USP) LOM310 - Teoria da Elasticidade Aplicada Parte - Critérios de Falha Prof. Dr. João Paulo

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini

Leia mais

Teoria das Estruturas - Aula 08

Teoria das Estruturas - Aula 08 Teoria das Estruturas - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO

Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO Resistência dos Materiais 2 AULA 5-6 TRANSFORMAÇÃO DA DEFORMAÇÃO PROF.: KAIO DUTRA Estado Plano de Deformações O estado geral das deformações em determinado ponto de um corpo é representado pela combinação

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Mecânica Geral I / Aula 8-1 Análise Estrutural Antonio Dias 2017 Antonio Dias / Mecânica Geral I / Aula 8-2 Objetivos do capítulo Mostrar como

Leia mais

3 Revisão da literatura II: Fluxo em meios porosos

3 Revisão da literatura II: Fluxo em meios porosos 46 3 Revisão da literatura II: Fluxo em meios porosos 3.1. Meio poroso saturado e parcialmente saturado O solo na sua estrutura apresenta duas zonas em função do seu conteúdo de umidade, zona saturada

Leia mais

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis. Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................

Leia mais

Integral Triplo. Seja M um subconjunto limitado de 3.

Integral Triplo. Seja M um subconjunto limitado de 3. Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br DERIVADAS PARCIAIS DERIVADAS PARCIAIS Sejam z = f x, y uma função real de duas variáveis reais; x 0, y 0

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R

L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R 6 L I S TA 6 - D E R I VA D A S PA R C I A I S E D I R E C I O N A I S, P L A N O TA N G E N T E E P O L I N Ô M I O S D E TAY L O R Prof. Benito Frazão Pires questões. Calcule as derivadas parciais de

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Estabilidade de Voo, Eng. Aeroespacial 1 Ângulos de Euler 1.1 Referenciais Referenciais: fixo na Terra e do avião (Ox E y E z E ) : referencial «inercial», fixo na Terra;

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/9 Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 5ª Aula Duração - Horas Data - 6 de Outubro de 003 Sumário: Caso Particular do Estado Plano de Tensão. Circunferência de Mohr.

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Departamento de Engenharia Mecânica Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira

Leia mais

Transformação da deformação

Transformação da deformação - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação da deformação

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO INTRODUÇÃO ESTUDO DE CASO Um motor de dois cilindros roda em vazio a 1000 rpm quando a válvula borboleta é aberta. Como a forma assimétrica da árvore de manivelas e

Leia mais

(x,y) x Exemplo: (x, y) ou f x. x = f x = 2xy. y = f y

(x,y) x Exemplo: (x, y) ou f x. x = f x = 2xy. y = f y 1 DEFINIÇÃO DE Chamamos de derivada parcial quando temos uma função que envolve mais de uma variável e queremos derivar em relação a uma delas. De forma geral, basta derivarmos em relação à variável de

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha INTEGRAIS DE LINHA INTRODUÇÃO: Temos como objetivo definir uma integral que é semelhante a uma integral simples, exceto que ao invés de integrarmos sobre um intervalo [a,b], integramos sobre uma curva

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular INTRODUÇÃO ESTUDO DE CASO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO Um motor de dois cilindros roda em vazio, a 1000 rpm, quando a válvula borboleta (que regula o fluxo de ar e altera a carga de trabalho) é

Leia mais

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos 7ª Aula

Sumário e Objectivos. Lúcia M.J.S. Dinis 2007/2008. Mecânica dos Sólidos 7ª Aula Sumário e Objectivos Sumário: Torção de Veios de Secção Circular Objectivos da Aula: Apreensão dos conceitos Fundamentais associados à torção de veios de Secção Circular. 1 2 Torção 3 Vigas 4 Torção de

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Introdução Resistência dos Materiais Antonio Dias 2017 Intr. - 3 Princípios e conceitos fundamentais - cronologia

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

Geometria Analítica II - Aula 7 178

Geometria Analítica II - Aula 7 178 Geometria Analítica II - Aula 7 178 Aula 8 Superfícies Regradas Dizemos que uma superfície S é regrada quando por todo ponto P pertencente a S passa pelo menos uma reta r P inteiramente contida em S. Fig.

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Professora Renata Alcarde Sermarini Notas de aula do

Leia mais

Lista de exercícios cap. 2

Lista de exercícios cap. 2 Lista de exercícios cap. 2 Nos problemas de 1 a 7 apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para aqueles

Leia mais

Aula Orientação do espaço. Observação 1

Aula Orientação do espaço. Observação 1 Aula 14 Nesta aula vamos definir dois novos produtos entre vetores do espaço, o produto vetorial e o produto misto. Para isso, primeiro vamos apresentar o conceito de orientação. 1. Orientação do espaço

Leia mais

6 TORÇÃO SIMPLES. Equação 6.1. Ou, uma vez que df = da, com sendo a tensão de cisalhamento do elementos de área da, Equação 6.2

6 TORÇÃO SIMPLES. Equação 6.1. Ou, uma vez que df = da, com sendo a tensão de cisalhamento do elementos de área da, Equação 6.2 6 TORÇÃO SIMPLES Torção simples ocorre quando a resultante na seção for um binário cujo plano de ação é o da própria seção. Considerando a barra de seção circular AB submetida em A e B a toques iguais

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III Escola Politécnica - 3 a Prova - 21/06/2016. Turma A 1 a Questão: a) (1,5) Seja

MAT Cálculo Diferencial e Integral para Engenharia III Escola Politécnica - 3 a Prova - 21/06/2016. Turma A 1 a Questão: a) (1,5) Seja urma A 1 a Questão: MA55 - Cálculo Diferencial e Integral para Engenharia III Escola Politécnica - a Prova - 1/6/16 a 1,5 eja parte do plano x + y + z = 8 limitada pelos plano x =, y = e z =. Calcule F

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

REVISÃO DE ANÁLISE TENSORIAL

REVISÃO DE ANÁLISE TENSORIAL REVISÃO DE ANÁLISE TENSORIAL 1.1- Vetores Espaciais Def.: Para cada par de pontos (a,b) do espaço E, existe um segmento de linha ab, caracterizado por um comprimento e uma direção. -Conjunto de vetores

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 7 II SEMESTRE DE 00 Professores: Flávia, Gustavo e Lana. Suponha que uma força

Leia mais

ASPECTOS MATEMÁTICOS DAS EQUAÇÕES

ASPECTOS MATEMÁTICOS DAS EQUAÇÕES ASPECTOS MATEMÁTICOS DAS EQUAÇÕES Classificações: Ordem: definida pela derivada de maior ordem Dimensão: em função de x, y e z (Ex. 1D, D ou 3D) Tipos de fenômenos 1. Transiente; e. Estacionário, ou permanente.

Leia mais

Sumário: Compatibilidade das Deformações. Roseta de Extensómetros. Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência.

Sumário: Compatibilidade das Deformações. Roseta de Extensómetros. Relações Tensões - Deformações. Energia de Deformação. Critérios de Cedência. Sumário e Objectivos Sumário: Compatibilidade das Deformações. Roseta de xtensómetros. Relações Tensões - Deformações. nergia de Deformação. Critérios de Cedência. Objectivos da Aula: Ser Capaz de utilizar

Leia mais

Introdução à Álgebra de Lie

Introdução à Álgebra de Lie Introdução à Álgebra de Lie Wilian Francisco de Araujo Universidade Tecnológica Federal do Paraná e-mail: wilianfrancisco@gmail.com Estou certo, absolutamente certo de que... essas teorias será reconhecido

Leia mais

MECÂNICA GERAL EQUILÍBRIO TRIDIMENSIONAL DE PONTO MATERIAL. Prof. Dr. Daniel Caetano EXERCÍCIOS:

MECÂNICA GERAL EQUILÍBRIO TRIDIMENSIONAL DE PONTO MATERIAL. Prof. Dr. Daniel Caetano EXERCÍCIOS: MECÂNICA GERAL EXERCÍCIOS: EQUILÍBRIO TRIDIMENSIONAL DE PONTO MATERIAL Prof. Dr. Daniel Caetano 2019-1 Objetivos Exercitar os conceitos de problemas de equilíbrio de ponto material em três dimensões Material

Leia mais

Vetores. A soma, V+W, de dois vetores V e W é determinada da seguinte forma:

Vetores. A soma, V+W, de dois vetores V e W é determinada da seguinte forma: Vetores Geometricamente, vetores são representados por segmentos de retas orientadas no plano ou no espaço. A ponta da seta do segmento orientado é chamada ponto final ou extremidade e o outro ponto extremo

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a

Leia mais

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018

MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Lista de Exercícios - 1 o semestre de 2018 MAT3457 ÁLGEBRA LINEAR PARA ENGENHARIA I a Lista de Exercícios - o semestre de 8 Exercícios -8: os espaços V e V 3. Exercícios 9-7: dependência, independência linear, bases. Exercícios 8-48: sistemas lineares.

Leia mais

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por: PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;

Leia mais

Programa Princípios Gerais Forças, vetores e operações vetoriais

Programa Princípios Gerais Forças, vetores e operações vetoriais Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção

Leia mais

2. Deformação - conceitos básicos e guia de estudo (versão 08/03/2013)

2. Deformação - conceitos básicos e guia de estudo (versão 08/03/2013) AGG.0305 Teoria de Ondas Sísmicas e Estrutura da Terra 2. Deformação - conceitos básicos e guia de estudo (versão 08/03/2013) Recomenda- se estudar o Turcotte & Schubert: partes 2.7 (principalmente) e

Leia mais

Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga

Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

LOM Introdução à Mecânica dos Sólidos

LOM Introdução à Mecânica dos Sólidos LOM 3081 - CAP. ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 1 ANÁLISE DE TENSÃO VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE Seja por exemplo uma barra sujeita a um carregamento axial. Ao aplicar o MÉTODO DAS SEÇÕES,

Leia mais